CN108348604B - 用于分析抗体-药物缀合物的多维色谱方法 - Google Patents

用于分析抗体-药物缀合物的多维色谱方法 Download PDF

Info

Publication number
CN108348604B
CN108348604B CN201680065226.7A CN201680065226A CN108348604B CN 108348604 B CN108348604 B CN 108348604B CN 201680065226 A CN201680065226 A CN 201680065226A CN 108348604 B CN108348604 B CN 108348604B
Authority
CN
China
Prior art keywords
sample
drug
column
antibody
linker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680065226.7A
Other languages
English (en)
Other versions
CN108348604A (zh
Inventor
R.伯德萨尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waters Technologies Corp
Original Assignee
Waters Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waters Technologies Corp filed Critical Waters Technologies Corp
Priority to CN202210408008.6A priority Critical patent/CN114814055A/zh
Publication of CN108348604A publication Critical patent/CN108348604A/zh
Application granted granted Critical
Publication of CN108348604B publication Critical patent/CN108348604B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/20Partition-, reverse-phase or hydrophobic interaction chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6034Construction of the column joining multiple columns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/94Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving narcotics or drugs or pharmaceuticals, neurotransmitters or associated receptors

Abstract

本公开涉及用于在基于半胱氨酸的抗体‑药物缀合物制备中使用的非缀合的细胞毒性剂和相关联的接头分子的萃取、检测和定量的灵敏的多维色谱法。

Description

用于分析抗体-药物缀合物的多维色谱方法
相关申请的引用
本申请要求2015年9月8日提交的美国临时申请62/215,339的权益,该临时申请的全部内容以引用方式并入本文。
技术领域
本公开涉及用于在基于半胱氨酸的抗体-药物缀合物制备中使用的非缀合的细胞毒性剂和相关联的接头分子的萃取、检测和定量的灵敏的多维色谱方法。
背景技术
抗体-药物缀合物(ADC)复合物代表一类日益增多的免疫缀合物疗法。ADC复合物是复杂的分子,其由经由可切割接头(例如,酸不稳定性接头、蛋白酶可切割的接头和二硫化物接头)或不可切割接头连接到具有生物活性的高细胞毒性药物的单克隆抗体构成。强效药物与单克隆抗体的缀合实现了有毒的有效载荷向肿瘤表面的靶向递送,同时使对健康组织的全身毒性作用最小化,因此改善了此类模式在癌治疗中的治疗窗。
不完全缀合过程可产生游离或非缀合的药物、药物接头或药物相关杂质。另外,随时间推移可在制剂中以及体内出现降解产物,从而增大了患者的风险并且降低了ADC复合物的疗效。尽管在制备过程中实施了纯化步骤,但所配制的ADC复合物中也可存在这些游离药物物质的痕量水平。出于这些原因,需要表征残余游离药物和相关联的产物以确保安全且有效的产物。
当前检测痕量游离药物物质的方法最终受到若干缺点的妨碍,这些缺点包括在无杂质ADC复合物样品中的痕量游离药物物质的检测、表征和定量方面的低特异性和/或灵敏度。因此,本领域仍然需要能够直接整合到现有或新颖工作流程中的新检测方法。
发明内容
本公开涉及用于对在基于半胱氨酸的抗体-药物缀合物复合物制备中使用的一种或多种非缀合的药物(例如,细胞毒性和抗癌化合物)和相关联的接头分子进行检测和/或定量的新型且有用的多维色谱方法。
因此,本文提供了用于在包括抗体-药物缀合物复合物和未缀合的药物化合物的样品中分析抗体-药物缀合物复合物的方法。该方法包括以下步骤:使样品暴露于具有混合模式固定相的第一维,以及使样品暴露于具有疏水性固定相的第二维。该方法提供样品中的抗体-药物缀合物复合物和未缀合的药物化合物的分离。
在一些实施方案中,该方法还包括捕集未缀合的药物化合物的步骤。在一个实施方案中,在使样品暴露于第一维的步骤之前执行捕集步骤。另选地,在使样品暴露于第一维的步骤和使样品暴露于第二维的步骤之间执行捕集步骤。
本文还提供了在包括抗体-药物缀合物复合物、未缀合的药物化合物和相关联的接头分子的样品中分析抗体-药物缀合物复合物的方法。在一些实施方案中,未缀合的药物化合物是游离药物。在其它实施方案中,未缀合的药物化合物连接到相关联的接头分子的反应性形式。在其它实施方案中,未缀合的药物化合物连接到接头分子的淬灭或灭活形式。首先使样品暴露于第一维分离,然后使样品暴露于第二维分离。该方法涉及在第一维分离之前或在第一维分离与第二维分离之间用固定相捕集未缀合的药物化合物和/或相关联的接头分子的一部分的步骤。
本文所提供的方法在这些方法的样品中检测抗体-药物缀合物复合物、未缀合的药物化合物和任选地相关联的接头分子中的每一者。在一些实施方案中,使用质谱法在该方法的样品中检测抗体-药物缀合物复合物、未缀合的药物化合物和任选地相关联的接头分子中的每一者。在特定实施方案中,本文所提供的方法使用质谱法在这些方法的样品中确立抗体-药物缀合物复合物、未缀合的药物化合物和任选地相关联的接头分子中的每一者的质荷比。在其它实施方案中,使用紫外和/或可见光谱法在该方法的样品中检测抗体-药物缀合物复合物、未缀合的药物化合物和任选地相关联的接头分子中的每一者。在其它实施方案中,使用荧光光谱法在该方法的样品中检测抗体-药物缀合物复合物、未缀合的药物化合物和任选相关联的接头分子中的每一者。
附图说明
图1示出了本发明的方法的一个示例性实施方案。
图2示出了本发明的方法的一个示例性实施方案。
图3示出了本发明的方法的一个示例性实施方案。
图4A至4C描述了抗体-荧光团-缀合物(AFC)模拟组分。在模拟本妥昔单抗的化学结构和接头物质的无毒AFC的制备中使用的药物组分基于A)丹酰磺酰胺乙胺(DSEA)部分,其附接到B)马来酰亚胺己酰基缬氨酸-瓜氨酸接头物质(Mal-接头-DSEA)。在缀合步骤后用N-乙酰基-半胱氨酸淬灭残余反应性mal-接头-DSEA,从而产生C)淬灭的接头-荧光团(NAc-接头-DSEA)加合物物质。
图5示出了使用三种参比标准品的混合物进行的参比标准品评估,这三种参比标准品是在施加的梯度(500)内分离的基线。使用表面多孔的C18RPLC柱以乙腈(含有0.1%FAv/v)作为有机流动相在10min从5%至50%的梯度(虚线)内分离DSEA(510)、NAc-接头-DSEA(520)和Mal-接头-DSEA(530)参比标准品。540表示调节峰(conditioning peak)。示出了使用优化的MS设置(参见可在实施例中找到的“材料与方法”)利用每种组分的[M+H]+1和[M+2H]+2电荷态来自收集的SIR的组合光谱。
图6示出了测定法动态范围。参比标准品的分析重复进行三次。使用最丰富的[M+2H]+2电荷态的来自SIR的峰面积生成参比标准品的校准曲线,并且用普通线性回归模型进行拟合。使用ICH指南,确定mal-接头-DSEA参比标准品的MS四极杆动态范围为1.35pg至688.5pg,并且NAc-接头-DSEA参比标准品的MS四极杆动态范围为1.65pg至854.5pg。
图7A至7C描述了仪器构型示意图。容纳两个六通二位阀的柱管理器如示意图所示的那样被构造为促进保留的药物物质在SPE(第1)维(730)与RPLC(第2)维(760)之间的转移。阀位以数字表示为位置700和705。该仪器的其它部件包括:QSM:四元溶剂管理器(710),AS:自动进样器(720),ACD:柱上稀释(740);TUV:可调紫外检测器(770),BSM:二元溶剂管理器(750),MS:质谱仪(780)。
图8描述了用加标样品对SPE进行的方法评估。将DSEA、mal-接头-DSEA和NAc-接头-DSEA掺杂到纯AFC样品中以用于SPE优化。从加标AFC样品萃取mal-接头-DSEA和NAc-接头-DSEA组分的最佳SPE装载条件被确定为18%乙腈,2%FA。到36%乙腈,2%FA的分步梯度被确定为在以13.5min为中心的窄峰中洗脱结合的药物组分的最佳条件。
图9A至9B描述了2DLC构型的评估。使用图7A至7B所示的2DLC构型作为原理证据,将掺杂到AFC样品中的NAc-接头-DSEA从A)SPE(第1维)成功地转移到B)RPLC(第2维)。
图10A至10B描述了DSEA样品。A)使用如图7所示的优化2DLC方法,在每次DSEA进样之前执行水空白以监测各DSEA进样之间的残留。三个水空白的叠加色谱图指示各运行之间可忽略的mal-接头-DSEA残留并且没有可观察到的NAc-接头-DSEA残留。B)在纯AFC样品的10μL进样(19.4μg)中检测mal-接头-DSEA和NAc-接头-DSEA药物组分。这三次运行的叠加指示高度的测定法再现性。
具体实施方式
现在将详细地参考本发明的某些实施方案,在附图中示出了所述实施方案的示例。虽然将结合所列举的实施方案描述本发明,但应当理解它们并非旨在将本发明限制于这些实施方案。相反,本发明旨在涵盖可包括在由所附权利要求所限定的本发明范围之内的所有替代形式、修改形式和等同物。本领域技术人员将会认识到,许多与本文所述的那些类似或等同的方法和材料也可用于实施本发明。本发明绝不限于所描述的方法和材料。
定义
除非另外说明,否则如本文所用的术语和短语旨在具有以下含义:
如本文所用,“抗体药物缀合物”或“ADC”是由化学接头以不稳定键附接到生物活性药物的单克隆抗体(mAb)。
“抗体”在本文以最广泛的意义使用并且具体地涵盖单克隆抗体、多克隆抗体、多特异性抗体(例如,双特异性抗体)以及抗体片段。抗体可为鼠源的、人源的、人源化的、嵌合的或来源于其它物种。抗体是由免疫系统产生的能够识别并结合到特异性抗原的蛋白质。(Janeway等人(2001年)“Immunobiology”,第5版,Garland Publishing,New York)。靶抗原一般具有由多种抗体上的CDR识别的许多结合位点,也称为表位。特异性地结合到不同表位的每种抗体具有不同结构。因此,一种抗原可具有不止一种对应的抗体。
抗体也是指全长免疫球蛋白分子或全长免疫球蛋白分子的免疫活性部分,即,包含免疫特异性地结合感兴趣的靶标的抗原或其一部分的抗原结合位点的分子,此类靶标包括但不限于产生与自身免疫疾病相关联的自身免疫抗体的一个或多个癌细胞。本文所公开的免疫球蛋白可为任何类型(例如,IgG、IgE、IgM、IgD和IgA)、类(例如,IgG1、IgG2、IgG3、IgG4、IgA1和IgA2)或亚类的免疫球蛋白分子。免疫球蛋白可来源于任何物种。然而,在一个方面,免疫球蛋白是人源的、鼠源的或兔源的。
术语“接头单元”是指抗体与药物的直接或间接键。接头与mAb的附接可通过多种方式实现,诸如通过表面赖氨酸、与氧化碳水化合物的还原偶联以及通过还原链间二硫键而释放的半胱氨酸残基。本领域中已知有多种ADC键体系,包括基于腙、基于二硫化物和基于肽的键。
术语“活性药物成分”或“API”是指医药药物中具有生物活性的成分。术语“医药药物”、“药物”和“有效载荷”可在全文中互换使用,并且是指具有生物活性或可检测活性的任何物质,例如治疗剂、可检测标记、结合剂等以及在体内被代谢为活性剂的前药。
如本文所用,术语“质谱法”或“MS”是指以其质量来识别化合物的分析技术。MS是指基于其质荷比或“m/z”来过滤、检测和测量离子的方法。MS技术一般包括(1)使化合物电离以形成带电的化合物;以及(2)检测带电的化合物的分子量并且计算质荷比。可通过任何合适的装置来电离和检测这些化合物。“质谱仪”一般包括离子发生器和离子检测器。一般来讲,使一种或多种感兴趣的分子电离,并且随后将这些离子引入质谱仪中,在质谱仪中由于磁场和电场相结合,离子沿着空间中的特定路径前行,该路径取决于质量(“m”)和电荷(“z”)。
如本文所用,术语“电离”(“ionization”或“ionizing”)是指产生具有等于一个或多个电子单位的净电荷的分析物离子的过程。负离子是具有一个或多个电子单位的净负电荷的那些,而正离子是具有一个或多个电子单位的净正电荷的那些。
如本文所用,术语“色谱法”是指这样的过程,其中当化学实体在固定的液相或固相周围或上方流动时,由于化学实体的差异分布,由液体或气体携带的化学混合物被分离成组分。
如本文所用,术语“液相色谱法”或“LC”意指在流体均匀渗透穿过细粒物质的柱或穿过毛细通路时对液体溶液的一种或多种组分的选择性阻滞的过程。该阻滞是由在体相流体(即,流动相)相对于一个或多个固定相流动时混合物的组分在一个或多个固定相与该流体之间分布而引起的。“液相色谱法”的示例包括反相液相色谱法(RPLC)、高效液相色谱法(HPLC)、超高效液相色谱法(UHPLC)、湍流液相色谱法(TFLC)(有时被称为高湍流液相色谱法(HTLC)或高通量液相色谱法)。
如本文所用,术语“高效液相色谱法”或“HPLC”(有时也被称为“高压液相色谱法”)是指通过在压力下迫使流动相穿过固定相(通常是密集填充柱)来提高分离程度的液相色谱法。如本文所用,术语“超高效液相色谱法”或“UHPLC”(有时被称为“超高压液相色谱法”)是指在比传统HPLC技术高得多的压力下发生的HPLC。
术语“LC/MS”液相色谱仪(LC)与质谱仪连接。
本发明的方法
本公开涉及用于对在基于半胱氨酸的抗体-药物缀合物复合物制备中使用的一种或多种非缀合的药物(例如,细胞毒性和抗癌化合物)和相关联的接头分子进行检测和/或定量的新型且有用的多维色谱方法。
因此,如图1和图2所示,本文提供了用于在包括抗体-药物缀合物复合物和未缀合的药物化合物的样品中分析抗体-药物缀合物复合物的方法(100,200)。这些方法包括以下步骤:使样品暴露于具有混合模式固定相的第一维(120,220),以及使样品暴露于具有疏水性固定相的第二维(130,230)。这些方法提供样品中的抗体-药物缀合物复合物和未缀合的药物化合物的分离(140,240)。
在一些实施方案中,这些方法中的一些还包括捕集未缀合的药物化合物的步骤。在一个实施方案中,在使样品暴露于第一维的步骤之前执行捕集步骤。另选地,在使样品暴露于第一维的步骤和使样品暴露于第二维的步骤之间执行捕集步骤。
如图3所示,本文还提供了在包括抗体-药物缀合物复合物、未缀合的药物化合物和相关联的接头分子的样品中分析抗体-药物缀合物复合物的方法(300)。在一些实施方案中,未缀合的药物化合物是游离药物。在其它实施方案中,未缀合的药物化合物连接到相关联的接头分子的反应性形式。在其它实施方案中,未缀合的药物化合物连接到接头分子的淬灭或灭活形式。首先使样品暴露于第一维分离(330),然后使样品暴露于第二维分离(350)。该方法涉及在第一维分离之前(320)或在第一维分离与第二维分离之间(340)用固定相捕集未缀合的药物化合物和/或相关联的接头分子的一部分的步骤。
如图1所示,本文所提供的方法在这些方法的样品中检测(150)抗体-药物缀合物复合物、未缀合的药物化合物和任选地相关联的接头分子中的每一者。在一些实施方案中,使用质谱法在该方法的样品中检测抗体-药物缀合物复合物、未缀合的药物化合物和任选地相关联的接头分子中的每一者。如图2所示,在特定实施方案中,本文所提供的方法使用质谱法在这些方法的样品中确立抗体-药物缀合物复合物、未缀合的药物化合物和任选地相关联的接头分子中的每一者的质荷比(250)。在其它实施方案中,使用紫外和/或可见光谱法在该方法的样品中检测抗体-药物缀合物复合物、未缀合的药物化合物和任选地相关联的接头分子中的每一者。在其它实施方案中,使用荧光光谱法在该方法的样品中检测抗体-药物缀合物复合物、未缀合的药物化合物和任选地相关联的接头分子中的每一者。
在一些实施方案中,使用抗体-荧光团-缀合物(AFC)模拟物(图4)。可使用此类无毒AFC模拟例如本妥昔单抗的化学结构和接头物质,并且因此“药物”组分可基于丹酰磺酰胺乙胺(DSEA)部分(图4A),该部分附接到马来酰亚胺己酰基缬氨酸-瓜氨酸接头物质(Mal-接头-DSEA)(图4B)。在缀合步骤后可用N-乙酰基-半胱氨酸淬灭残余反应性mal-接头-DSEA,从而产生淬灭的接头-荧光团(NAc-接头-DSEA)加合物物质(图4C)。
本文所提供的这些方法可特别用于定量所述样品中低水平(例如,ng/mL)的未缀合的药物化合物。
本发明方法提供了优于现有技术的若干优点。例如,本发明方法避开了沉淀蛋白质的需求,并且基本上不需要样品制备(例如,不需要预浓缩、缓冲液更换或稀释)。另外,没有残留可影响检测和定量结果的蛋白质或生物基质组分。所公开的方法还扩展了线性动态范围,从而扩大了可执行的操作规范范围。
第1维
第1维柱应能够将蛋白质或抗体与游离药物组分分离或离析,且这两种物质之间具有足够的分离度以允许药物被送往捕集阱或第2维柱,同时将蛋白质组分引向废弃物。这利用ADC的物理化学特性来执行。混合模式的示例是抗体与游离药物分子的净电荷差别。尺寸排阻色谱法或SEC利用大抗体与小药物物质之间的尺寸差异。
在一个实施方案中,第1维是混合模式阴离子交换器。于是,净正蛋白质在酸性条件下穿过柱,而净中性或碱性药物被吸附到柱固定相以用于随后洗脱。
在另一个实施方案中,第1维是混合模式阳离子交换器。于是,带正电的蛋白质被保留,同时允许药物物质穿过注射空隙而被捕集阱或第2维柱捕获。
在另一个实施方案中,第1维是尺寸排阻色谱法。于是,大抗体以等强度的方式流至废弃物且洗脱时间较早,同时小药物分子因与固定相的次级相互作用而稍后在总夹杂物峰中或总夹杂物峰后洗脱。
在一个实施方案中,第1维柱是在线2.1mm×20mm、30微米固相萃取柱(
Figure GDA0003417051020000081
MAX,购自马萨诸塞州米尔福德的沃特世科技公司(Waters Technologies Corporation,Milford,MA))。于是,在该柱内发生捕集和第一维分离两者。
第2维柱
第2维柱应被设计为在第1维柱无法耐受高压的情况下使第1维上的压力最小化。例如,使用
Figure GDA0003417051020000082
柱(购自马萨诸塞州米尔福德的沃特世科技公司)作为第1维分离的实施方案;该第1维柱的压力应不超过6,000PSI以上。影响压力的因素是柱长(较短=较低压力)、颗粒尺寸(较大颗粒=较低压力)、流量(低流量=较低压力)、柱内径(大内径=较低压力)以及温度(较高温度=较低压力)。然而,这些参数的平衡(被认为是短、大颗粒、宽口径柱)可导致色谱性能降低。因此,在一个实施方案中,所公开的方法使用表面多孔小颗粒50mm Cortecs柱。在一些实施方案中,第二维柱是2.1mm×50mm、2.7微米表面多孔C18柱(
Figure GDA0003417051020000091
C18,购自马萨诸塞州米尔福德的沃特世科技公司)。
然而,如果不受到第1维柱的限制,则第2维柱可具有任何尺寸和固定相,该固定相表现出足够的保持力以在执行柱上稀释之后保留药物物质并且引起药物组分的可接受的分离。尽管如此,保持力太大的柱可导致痕量蛋白质残留、漫长洗脱时间和/或疏水性药物物质的不良色谱。
有机改性剂和酸%
疏水性活性药物成分(API)需要优化有机溶剂的洗脱强度。在低酸浓度条件下,疏水性更强的分析物可能不会完全洗脱,或可能太宽泛而不能在所限定的窗口中洗脱。较高的酸浓度条件允许药物物质在可接受的窗口中洗脱。
在一些实施方案中,使用具有增大的洗脱强度的纯有机溶剂或混合组成从第1维洗脱疏水性更强的药物物质。对于亲水性太强或在相对温和的有机组成下洗脱的药物组分而言,可降低进样时的初始有机组成以保留这些物质,并且可采用两步梯度用疏水性更强的物质来捕获疏水性更弱的物质。
在其它实施方案中,在进样时调节酸%,使得在进样时使用较低酸%以保留亲水性更强的物质,然后升高至2%酸组成以洗脱所有药物组分。这可通过使用四元溶剂管理器上的一个或多个附加溶剂管路(例如,泵)来实现。
可用于所公开的方法中的示例性溶剂包括但不限于水、乙腈、乙酸胺、甲酸铵、甲醇、乙醇、异丙醇、丙醇、四氢呋喃以及它们的组合。可用于所公开的方法中的示例性酸包括但不限于乙酸、甲酸、二氟乙酸和三氟乙酸。
药物组分的转移
可使用捕集柱或柱上稀释来执行将药物组分转移到分析第2维的机制。
当使用柱上稀释时,目标是稀释强洗脱溶剂组成%以促进洗脱的药物组分吸附到第2维柱的柱头上。如果有机组成太高,则药物在被吸附时可导致峰分裂或色谱性能降低,或者最坏情形是药物穿过柱而未被保留,从而导致药物水平的错误评估。调节第2维泵的流量允许适当稀释。示例将是:如果药物以50%有机组成在0.100ml/min的恒定流量下从第1维洗脱并且第2维柱中的重新吸附的所需有机组成是25%,则该方法将在0.100mL/min下从第2维泵流出以便以1:1比率有效地稀释样品。
在一些实施方案中,使用捕集阱。于是,捕集阱应具有足够的保持力以保留洗脱的药物物质并且极有可能仍须使用柱上稀释。另外,捕集阱应具有与第2维柱相比相等或更低的保持力。如果捕集阱的保持力大于第2维柱,则一种或多种分析物将以不利于吸附到第2维柱的流动相组成从捕集阱洗脱出,并且第2维柱不会增加附加的分离益处。捕集阱的使用可有助于降低第1维柱上的压力暴露并且允许该方法以更高的流量和更短的运行时间执行。
接头和药物类型
在一个实施方案中,本文所公开的方法使用具有荧光团缀合物的ADC模拟物,该ADC模拟物表现出比包含商业API的ADC更低疏水性的特性,如Li等人[J ChromatogrA.2015年;第1393卷,第81-88页]所证实。对于疏水性更强的药物物质而言,有机百分比和酸浓度可以与疏水性更强的API类似的方式进行调节,如上所讨论。同样,如果需要增加的有机组成以洗脱API组分,则可相应地调节第2维的柱上稀释和保持力。
本文所公开的方法可应用于不可切割接头和/或pH不稳定接头。
在一个实施方案中,本发明方法可用于分析半胱氨酸缀合的ADC。另选地,本发明方法可用于分析赖氨酸缀合的ADC。半胱氨酸缀合的ADC通常具有相对较低的载药量(例如,0至8种药物)。相比之下,赖氨酸缀合的ADC通常具有较高的载药量(例如,1至10种或更多种药物)。赖氨酸缀合的ADC可表现出较高的疏水性程度,原因在于(1)增加的载药量以及(2)链间二硫键仍然完好无损的事实。如果增强的疏水性使得蛋白质材料保留在第1维上且随后洗脱到第2维柱,则可能适当的是在分析之前切割缀合的药物,此时所切割的物质将生成可与游离药物组分区分开的独特质量。通过切割药物,降低了抗体的疏水性,从而允许其穿过所设计的第1维柱,同时保留所切割的药物和游离药物。如果蛋白质的疏水性仍然太强,则可使用还原剂的添加以还原链间二硫化物,从而将完整的抗体还原成其相应亚单元。
检测技术
本发明技术的方法包括一个或多个检测步骤。例如,一些实施方案利用质谱法来检测样品中的抗体-药物缀合物复合物和未缀合的药物化合物。在一些实施方案中,使用质谱法确立样品中的抗体-药物缀合物复合物和未缀合的药物化合物中的每一者的质荷比。
在某些其它实施方案中,光谱法用作优选的检测技术。在特定实施方案中,使用紫外(UV)和/或可见光谱法。
质谱法
拥有高质量精确度、高灵敏度和高分离度的多种质谱系统是本领域已知的,并且可用于本发明的方法。此类质谱仪的质量分析器包括但不限于四极杆(Q)、飞行时间(TOF)、离子阱、扇形磁场或FT-ICR、或它们的组合。质谱仪的离子源应主要产生样品分子离子或准分子离子以及某些可表征的碎片离子。此类离子源的示例包括大气压电离源,例如电喷雾电离(ESI)和基质辅助激光解吸电离(MALDI)。ESI和MALDI是使蛋白质电离以用于质谱分析的两种最常用的方法。ESI和APC1是LC/MS的最常用离子源技术(Lee,M.“LC/MSApplications in Drug Development”(2002年)J.Wiley&Sons,New York)。
表面增强激光解吸电离(SELDI)是实现高通量质谱法的基于表面的电离技术的示例(美国专利6,020,208)。通常,使用SELDI分析蛋白质与其它生物分子的复杂混合物。SELDI采用化学反应性表面(诸如“蛋白质芯片”)来与溶液中的分析物(例如,蛋白质)相互作用。此类表面选择性地与分析物相互作用并在其上固定分析物。因此,可在该芯片上部分地纯化本发明的分析物,并且然后在质谱仪中快速分析。通过在底物表面上的不同位点处提供不同反应性部分,可提高通量。
市售质谱仪可同时对整个质谱进行采样和记录,并且采用的频率允许获取混合物中的多种组分的足够光谱,以确保质谱信号强度或峰面积具有定量代表性。这也将确保对所有质量观察到的洗脱时间不会因质量分析器而修改或失真,并且这将有助于确保定量测量结果不会受到测量瞬态信号丰度的需要的影响。
光谱法
拥有高精确度、高灵敏度和高分离度的多种光谱系统是本领域已知的,并且可用于本发明的方法。吸收光谱法是指测量因其与样品的相互作用引起的随频率或波长而变化的辐射吸收的光谱技术。样品从辐射场吸收能量,即光子。吸收的强度随频率而变化,并且该变化是吸收光谱。在整个电磁波谱中执行吸收光谱法。
吸收光谱法用作分析化学工具以确定样品中的特定物质的存在,并且在许多情况下对所存在的物质的量进行定量。红外和紫外-可见光谱法在分析应用中特别常见。
有各种各样的实验方法可用于测量吸收光谱。最常见的布置是将所生成的辐射束引向样品处并且检测穿过该样品的辐射的强度。可使用所传输的能量来计算吸收。源、样品布置和检测技术根据频率范围和实验目的而而显著变化。
吸收光谱法的最直接方法是用源生成辐射,用检测器测量该辐射的参考光谱,并且然后在将感兴趣的材料置于源与检测器之间后重新测量样品光谱。然后可将这两种测量光谱组合以确定材料的吸收光谱。单独的样品光谱不足以确定吸收光谱,因为其将受到实验条件的影响-源的光谱、源与检测器之间的其它材料的吸收光谱、以及检测器的波长相关特性。但参考光谱将以同样的方式受到这些实验条件的影响,并且因此该组合单独产生材料的吸收光谱。
可采用多种多样的辐射源以覆盖电磁波谱。对于光谱法而言,一般希望源覆盖宽幅的波长以便测量吸收光谱的较宽区域。一些源固有地发射宽光谱。这些源的示例包括红外区中的碳化硅棒或其它黑体源、可见和紫外区中的汞灯以及x射线管。一种最近开发的新型宽光谱辐射源是同步加速器辐射,其覆盖所有这些光谱区。其它辐射源生成窄光谱,但可调谐发射波长以覆盖光谱范围。这些辐射源的示例包括微波区中的速调管以及跨越红外、可见和紫外区的激光器(但并非所有激光器都具有可调谐的波长)。
用于测量辐射功率的检测器也将取决于感兴趣的波长范围。大多数检测器对相当宽的光谱范围都较灵敏,并且所选择的传感器通常将更取决于给定测量的灵敏度和噪声要求。光谱法中常见的检测器的示例包括微波区中的外差接收机、毫米波和红外区中的辐射热计、红外区中的碲镉汞和其它冷却的半导体检测器、以及可见和紫外区中的光电二极管和光电倍增管。
UV/可见光谱法
“紫外/可见光谱法”是指紫外(UV)和/或可见电磁光谱区中的吸收光谱法或反射光谱法。紫外(UV)电磁辐射的波长可在100nm(30PHz)至380nm(750THz)的范围内,其短于可见光的波长,但长于X射线的波长。可见光是人眼可见的一种电磁辐射。可见电磁辐射的波长可在约390nm(430THz)至约700nm(770THz)的范围内。
紫外-可见光谱法中使用的仪器被称为UV/Vis分光光度计。其测量穿过样品的光的强度(I),并且将该强度与其穿过样品之前的光的强度(Io)进行比较。比率I/Io被称为透射率,并且通常表示为百分比(%T)。吸光度A基于透射率:
荧光光谱法
“荧光光谱法”是指分析来自样品的荧光的一种电磁光谱法。其涉及使用一束光(通常是紫外光)激发某些化合物的分子中的电子并使这些电子发出光;通常是可见光,但并非必须如此。配套技术是吸收光谱法。在单分子荧光光谱法的特殊情况中,由单个荧光团或成对荧光团来测量发射光的强度波动。
存在两种普通型仪器:(1)使用滤光片来分离入射光和荧光的滤光荧光计;以及(2)使用衍射光栅单色仪来分离入射光和荧光的分光荧光计。这两种类型均使用以下方案:来自激发源的光穿过滤光片或单色仪并入射到样品。一部分入射光被样品吸收,并且样品中的分子中的一些发荧光。荧光沿所有方向发射。该荧光中的一些穿过第二滤光片或单色仪并且到达检测器,该检测器通常被设置成与入射光束成90°以使透射或反射的入射光到达检测器的风险最小化。
各种光源可用作激发源,包括激光器、LED和灯;具体地氙弧灯和汞蒸气灯。激光器仅在非常窄的波长区间(通常在0.01nm下)发射高辐照度的光,这就使激发单色仪或滤光片显得没有必要。汞蒸气灯是线灯,这意味着其发射接近峰值波长的光。相反,氙弧灯具有在300nm至800nm范围内强度几乎恒定的连续发射光谱,并且具有足以一直向下测量到刚好超过200nm的辐照度。
滤光片和/或单色仪可用于荧光计中。单色仪透射具有可调容差的可调波长的光。最常见类型的单色仪利用衍射光栅,即,准直光照射光栅并且以取决于波长的不同角度存在。然后可调节单色仪以选择透射哪些波长。为了允许各向异性测量,需要增加两个偏振滤光片:一个在激发单色仪或滤光片之后,并且一个在发射单色仪或滤光片之前。
如上所述,最常在相对于激发光的90°角下测量荧光。使用该几何形状,而不是将传感器以180°角置于激发光的路线处,以便避免透射的激发光的干涉。没有完美无缺的单色仪,并且其将透射一些杂散光,即,具有目标波长以外的其它波长的光。理想的单色仪将仅透射指定范围内的光,并且具有高波长无关性透射。当以90°角测量时,仅样品散射的光会引起杂散光。当与180°几何形状相比时,这得到了更好的信噪比,并且将检出限降低了大约10000倍。此外,还可从前面测量荧光,这通常对混浊或不透明样品进行。
检测器可为单通道或多通道的。单通道检测器仅可一次检测一种波长的强度,而多通道检测器同时检测所有波长的强度,从而发射单色仪或滤光片显得没有必要。不同类型的检测器均有优缺点。
具有双重单色仪和连续激发光源的最通用的荧光计可记录激发光谱和荧光光谱两者。当测量荧光光谱时,激发光的波长保持恒定,优选地处于高吸收的波长,并且发射单色仪扫描该光谱。对于测量激发光谱而言,穿过发射滤光片或单色仪的波长保持恒定,并且激发单色仪进行扫描。激发光谱一般与吸收光谱相同,因为荧光强度与吸收成比例。
以引用方式并入
在本申请中引用的所有参考文献、专利和公布的专利申请的内容以及附图均据此全文以引用方式并入。
实施例
已经对本发明进行了描述,但是,通过参考下面的实施例,可更容易地理解本发明,这些实施例以举例说明的方式提供,并非旨在以任何方式限制本发明。
实施例1:为实现改善的特异性和灵敏度而使用质谱检测来评估无杂质抗体-药物 缀合物(ADC)样品中的痕量游离药物物质的靶向多维方法(SPE-RPLC/MS)
该实施例使用SPE-RPLC/MS方法,其是特异性的、灵敏的,并且实现了二维中的方法控制。使用基于本妥昔单抗的临床相关的缬氨酸-瓜氨酸替代品分子来评估该方法。发现使用MS检测时的测定法灵敏度比基于UV的检测的灵敏度要高两个数量级,其中LOQ为0.30ng/mL。游离药物物质以低于7.0ng/mL的浓度(即,单独UV无法检测的水平)存在于无杂质ADC替代品样品中。2DLC方法提供了评估痕量游离药物物质时的高度特异性和灵敏度且改善了对每一维的控制,从而能够直接整合到现有或新颖工作流程中。
结果
优选的是为该实施例选择这样的ADC,其提供所提出的方法的最广泛适用性并且表现出pH稳定接头分子。为便于使用和处理,同样需要这样的ADC,其表现出可忽略的细胞毒性或没有细胞毒性,同时非常近似于商业ADC的特性。为此,将如此前所述的抗体-荧光团-缀合物(AFC)[Wagner-Rousset,E.等人,mAbs,2014年,第6卷,第1期,第173-184页]用于本研究。AFC设计中的关键方面在于其模拟临床相关的ADC本妥昔单抗
Figure GDA0003417051020000151
的生理化学特性[Pro,B.等人,Journal of Clinical Onocology,2012年,第30卷,第18期,第2190-2196页;Francisco,J.A.等人,Blood,2003年,第102卷,第4期,第1485-1465页],通过使用非细胞毒性药物模拟物来使细胞毒性最小化,并且对原始ADC的完整性具有最小的影响。将单甲基澳瑞他汀E(MMAE)替换为丹酰磺酰胺胺(DSEA,图4A),同时保留ADC中有效使用的马来酰亚胺己酰基缬氨酸-瓜氨酸接头(mal-接头-DSEA,图4B),从而成功满足了这些标准。Wagner-Rousett和同事对所制造的AFC进行了一项深入研究,确立了ADC替代品的的完整性未受影响并且非常适合ADC的研发,而没有暴露于细胞毒性剂的风险。[mAbs,2014年,第6卷,第1期,第173-184页。]作为缀合过程的一部分,通过添加N-乙酰基-半胱氨酸(NAc-接头-DSEA,图4C)来淬灭未发生缀合的含有缬氨酸-瓜氨酸接头的反应性马来酰亚胺,并且经由SEC纯化将其去除。使用多维方法进行残余药物物质的评估,该多维方法将在线SPE混合模式阴离子交换柱(
Figure GDA0003417051020000152
MAX,沃特世公司(Waters))与表面多孔高分离度C18柱(Cortecs C18,沃特世公司)偶联,其中同时使用可调UV(ACQUITY TUV,沃特世公司)和单四极杆MS检测器(ACQUITY QDa,沃特世公司)进行在线检测。
参比标准品
使用处于1DLC构型的具有2D技术的ACQUITY H-Class Bio(沃特世公司(WatersCorp.))来表征由DSEA、接头-DSEA和NAc-接头-DSEA构成的参比标准品(参见“材料与方法”)。使用表面多孔2.1mm×50mm、2.7um C18柱(Cortecs C18,沃特世公司)执行10min反相(RP)梯度,以评估参比标准品对于所提出的方法的适用性。为每种标准品收集[M+1H]+1和[M+2H]+2电荷态的选择离子检测(SIR)。如图5所示,这三种参比标准品的混合物是在所施加的梯度(500)内分离的基线。有趣的是,与NAc-接头-DSEA和mal-接头-DSEA标准品分别42%和46%的有机流动相(MP)组成相比,DSEA(510)药物模拟物的疏水性明显比在24%MP组成下洗脱的mal-接头-DSEA(530)和NAc-接头-DSEA(520)标准品更弱。NAc-接头-DSEA和mal-接头-DSEA的相对保留时间类似于Li等人[J Chromatogr A,2015年,第1393卷,第81-88页]使用相同缬氨酸-瓜氨酸接头所观察到的RPLC结果。相比之下,游离药物模拟物(DSEA)的疏水性更弱。
参比标准品校准曲线
采用与图5相同的仪器和柱构型,使用10min RP梯度对mal-接头-DSEA和NAc-接头-DSEA标准品的系列稀释重复进行三次分析。同时使用设定为280nm吸光度波长的可调UV检测器以及使用每种标准品的[M+2H]+2电荷态的SIR的单四极杆MS检测器来执行数据采集。使用SIR(图6)和TUV色谱图的回归分析对所采集的数据进行积分、绘制和分析(数据未示出)。使用监管指南[Green,J.M.Analytical Chemistry,1996年,第68卷,第9期,第305A-309A页]评估对于准确度(在LOQ下<20%R.S.D.,否则<15%)和精确度(在LOQ下<20%相对误差(R.E.),否则<15%)的测定法适用性以确定方法的动态范围。
普通线性回归被确定为能精确地对数据进行建模。单四极杆的动态范围(表1)被确定为对于mal-接头-DSEA标准品而言跨越2.5个数量级(0.27ng/mL至137.70ng/mL),对于NAc-接头-DSEA标准品而言跨越2.5个数量级(0.33ng/mL至170.90ng/mL),其中LOQ分别为0.27ng/mL(1.35pg柱上;SNR D 9.56)和0.33ng/mL(1.65pg柱上;SNR D 9.97)。这些动态范围结果结合较低浓度下的拟合数据的良好相符(图6,插图)表明,用所提出的测定法应可实现0.10ng/mL(0.5pg柱上)的检出限。在实践中,为了实现适当的积分,需要在较低浓度下进行非期望水平的数据处理,从而妨碍了精确分析。尽管如此,检测标称0.3ng/mL(1.5pg柱上)的目标化合物的能力证实了这些方法以高度的灵敏度检测药物化合物的能力。
TUV测量的线性动态范围(表1)被确定为对于mal-接头-DSEA(34.42ng/mL至4,406.25ng/mL)和NAc-接头-DSEA(85.45ng/mL至5,468.75ng/mL)标准品而言跨越2个数量级,其中LOQ被分别确定为34ng/mL(0.17ng柱上)和85ng/mL(0.43ng柱上)。未在较高浓度下评估UV测量以扩展动态范围,因为较高浓度将超出当前对容许杂质水平的监管建议。TUV测量的较低灵敏度(或较高检出限)在意料之中,并且支持为改善灵敏度而构造在线MS检测的研究。质量检测的结合扩大了所提出的方法的灵敏度,超出传统基于UV的检测2个数量级,并且与此前公布的使用类似化合物的SEC-RPLC/UV构型的方法相比,对游离药物物质的灵敏度提高150倍,其中LOQ为0.30ng/mL(1.5pg柱上)。[Li Y等人,J Chromatogr A 2015年;第1393卷,第81-88页。]
Figure GDA0003417051020000171
Figure GDA0003417051020000181
表1:测定法适用性。对标准品重复执行三次分析,并且使用ICH指南评估准确度 (在LOQ下<20%R.SD,否则<15%)和精确度(在LOQ下<20%相对误差(R.E.),否则<15%)。使 用与LC-TUV光学检测器串联的构型的四极杆MS检测器将动态范围扩展2个数量级
固相萃取优化
在偶联用于AFC分析的柱之前独立地对每一维执行多维方法的方法开发,作为执行诊断运行的有效手段。使用2.1mm×20mm、30um SPE柱(Oasis MAX,沃特世公司)执行SPE方法的优化,以评估将mal-接头-DSEA和NAc-接头-DSEA从第1维(SPE柱)转移到第2维(分析C18柱)所需的洗脱窗。为此,图7A至7C所示的2D LC构型与不锈钢联管节一起使用,代替位置2中具有左右阀组的第2维柱。
表2示出了柱管理器事件表。在两个阀均在位置2中的情况下使用柱上稀释在5.50洗脱窗中转移所萃取的药物物质,以将洗脱的药物物质重新集中于分析柱的柱头。该转移之间存在位置2,1中的0.6秒间隔以吹洗流体路径。
柱管理器:事件表
时间(min) 事件 动作
初始 左阀 位置1
初始 右阀 位置1
12.00 左阀 位置2
12.01 右阀 位置2
17.50 右阀 位置1
17.51 左阀 位置1
表2:图7A至7C的仪器的柱管理器事件表
在用于柱调节的稀释曲妥珠单抗样品的小等分试样中掺杂mal-接头-DSEA和NAc-接头-DSEA参比标准品。将加标的曲妥珠单抗样品注入到SPE柱中,采用基于参比标准品的RPLC结果的筛选条件。以迭代方式调节初始和洗脱MP组成,直到在MS色谱图的5min至12min和15min至20min部分之间未检测到与参比标准品相关的可观察到的离子。5min至12min之间存在离子将指示参比标准品的不良保留,而15min至20min之间检测到离子将指示参比标准品的不良回收。对于上样和洗脱条件而言,优化的组成分别被确定为18%和36%有机溶剂。
如图8所示,使用这些条件允许蛋白质流至废弃物,其中保留的参比标准品使用最少量的有机MP在相对较窄的窗口中洗脱,从而改善柱上稀释效率。
为了验证这一点,将不锈钢联管节更换为第2维表面多孔C18 RP柱,并且将初始阀状态设定为位置1。在稀释曲妥珠单抗样品的新鲜等分试样中只掺杂NAc-接头-DSEA参比标准品,并且使用如针对AFC分析所述的优化条件(参见“材料与方法”)以及如表1中所指示的那样发生的定时阀改变来注入该等分试样。如图9A所示,在初始进样时在空隙中洗脱蛋白质,从而允许加标的NAc-接头-DSEA被成功地转移并且重新集中于第2维RPLC柱,随后使用10分钟梯度来洗脱(图9B)。
回收效率评估
在使用所提出的2DLC构型成功转移的NAc-接头-DSEA参比标准品的情况下,自然延伸是测试该方法的回收效率。在2ng/mL、17ng/mL、74ng/mL、146ng/mL的标称浓度下制备NAc-接头-DSEA的四种样品,这四种浓度表示如通过四极杆MS数据的回归分析所确定的方法的整个动态范围中间隔开的四个点。在1DLC和2DLC仪器构型中重复执行三次进样。比较这两种仪器构型的峰面积以评估回收率。如表3中所示,回收率被确定为在所建议的指南内[Green,J.M.Analytical Chemistry,1996年,第68卷,第9期,第305A-309A页。],其中两种构型的准确度(R.S.D.)均低于5%并且精确度(R.E.)在3%内。这些结果指示SPE柱从洗脱液中有效地萃取出NAc-接头-DSEA样品,其中没有可观察到的标准品在空隙中的损失。另外,1D和2D构型两者之间的面积相符指示保持了柱之间的转移效率,其中用于柱上稀释的不锈钢三通未带来损失。合并的回收结果指示所提出的偶联SPE-RPLC的多维方法足够稳健且符合目的,其中证实在所确立的整个动态范围中回收到NAc-接头-DSEA标准品。
Figure GDA0003417051020000201
表3:2DLC回收评估。在实验确定的整个动态范围中的四种浓度下制备Nac-接头- DSEA参比标准品,并且使用图7所示的2DLC构型评估回收效率。使用具有联管节的相同系统 代替作为参考的SPE柱(第1维),在1DLC构型中执行相同分离。NAc-接头-DSEA参比标准品的 三次重复进样中的峰面积的比较指示样品回收率在1DLC和2DLC构型之间是相同的
AFC样品分析
按原样使用在1.94mg/mL浓度下的AFC样品而不附加制备,并且使用图7所示的2DLC构型评估mal-接头-DSEA和NAc-接头-DSEA的存在。使用与如前述相同的方法(参见“材料与方法”)对纯AFC样品的10μL进样重复进行三次分析。在每次样品运行之前使用水空白执行相同分离以评估残留。如图10A所示,空白进样的三次重复SIR光谱叠加显示在22min时没有可观察到的NAc-接头-DSEA物质残留并且在23min时可观察到洗脱的mal-接头-DSEA物质的可忽略残留(按面积计<5%),这表明该方法可再现并且可在多次运行内执行,从而延长柱使用。如图10B所示,确认了AFC样品中存在NAc-接头-DSEA和mal-接头-DSEA,其中这两种物质可分别再现地在22min和23min时洗脱。在更仔细检查如表4所示的数据后确认了方法准确度,其中对于mal-接头-DSEA和NAc-接头-DSEA药物组分而言,R.S.D.均被确定为小于3%。使用基于MS的校准曲线(图6),对于NAc-接头-DSEA和mal-接头-DSEA组分而言,游离药物组分的浓度分别被确定为7.19ng/mL和3.82ng/mL。单独用光学检测无法在适度浓度和进样体积的样品中检测这些水平下的药物物质,因此强调了配备MS的2DLC方法(诸如该方法)的实用性。
Figure GDA0003417051020000211
表4:AFC样品结果。如ICH指南所建议,在测定法的动态范围(图6)内检测NAc-接 头-DSEA和mal-接头-DSEA。NAc-接头-DSEA和mal-接头-DSEA的浓度分别被确定为7.19ng/ mL和3.82ng/mL
讨论
用于检测、表征和定量痕量游离药物物质的传统方法已包括基于ELISA和RPLC技术的测定法,其中取得不同程度的成功。[Stephan,J.P.、K.R.Kozak和W.L.WongBioanalysis,2011年,第3卷,第6期,第677-700页;Kozak,K.R.等人,Bioconjug Chem,2013年,第24卷,第5期,第772-779页。]通过结合多维技术来减少样品制备步骤,这已为分析员提供了以改善的灵敏度评估痕量药物物质的更有效的方法。为多维测定法选择正交柱化学物可能是富有挑战性的前景,因为洗脱液和规格可影响测定法特异性、效率和灵敏度。[Fleming,M.S.等人,Analytical Biochemistry,2005年,第340卷,第2期,第272-278页;Li,Y.等人,J Chromatogr A,2015年,第1393卷,第81-88页;He,Y.等人,J Chromatogr A,2012年,第1262卷,第122-129页。]使用基于SPE的技术从生物基质中靶向去除API在制药工业中沿用已久。为此,SPE技术在生物医药的表征和常规测试中变得越来越普遍。[Souverain,S.、S.Rudaz和J.L.Veuthey,Journal of Chromatography B,2004年,第801卷,第2期,第141-156页。]具有离线和在线选项的方法灵活性与使用挥发性溶剂的能力相结合使SPE技术成为具有MS检测的多维方法的理想之选。独特混合模式OASIS化学物促进了基于不同物理化学特性来分离复杂混合物的能力,并且当考虑由缀合到疏水性药物的亲水性底物构成的ADC的独特性质时,这是理想的。[Wakankar,A.等人,mAbs,2011年,第3卷,第2期,第161-172页。]当前研究已通过开发偶联SPE-RPLC化学物的特异且灵敏的MS相容性多维方法解决了与残余游离药物分析相关联的挑战。
通过使用散布有阴离子交换官能团的疏水性SPE树脂实现了靶向游离或非缀合的疏水性药物物质以用于选择性萃取。从概念上讲,pH低于其pI的溶液中的净正底物诸如mAb穿过带正电的SPE材料,包括附接有药物的mAb物质。相比之下,游离药物和相关联的产物被吸附到SPE配体的混合模式表面以用于下游分析。当前研究通过使用SPE-RPLC/MS方法从无杂质ADC模拟样品捕获和洗脱临床相关的基于缬氨酸-瓜氨酸的替代分子及其N-乙酰基-半胱氨酸淬灭产物成功地证实了该方法。替代分子中观察到的类似疏水特性和已确立的文献支持该方法在临床实践中的可行性。[Li,Y.等人,J ChromatogrA,2015年,第1393卷,第81-88页。]
所提出的方法的成功依赖于以协同方式发挥作用的若干关键方面。SPE柱实施为第1维(其对API物质具有保持力)使分析员针对不同底物或药物候选物来调谐方法的特异性的手段变得容易。相比之下,第1维分离诸如SEC不提供相同程度的特异性或选择性。另外,混合模式SPE柱因同性电荷相斥而有效地去除蛋白质底物并且减少残留,从而允许柱重复使用。由于所捕集的药物物质的疏水性很强,因此它们洗脱时的有机百分比可降低第2维RP色谱法性能。为了克服该挑战,结合了柱上稀释以将药物产物有效地保留在第1维洗脱液中的第2维柱的柱头处。[Hurwitz E Fau-Levy,R.等人,Cancer Research,1975年,第35卷,第1175-1181页;Souverain,S.、S.Rudaz和J.L.Veuthey Journal ofChromatography B,2004年,第801卷,第2期,第141-156页。]洗脱液需要稀释的程度将取决于从第1维中洗脱药物产物所需的有机强度,但易于使用所提出的构型进行调节。通过增加柱上稀释而改善的第2维分离效率与在线MS检测相结合,使得当与UV检测相比时,对于mal-接头-DSEA而言测定法的灵敏度提高了125倍,并且对于NAc-接头-DSEA药物物质而言测定法的灵敏度提高了250倍,其中标称LOQ为0.3ng/mL(表4)。
与Li等人所述的使用类似、但不同的药物物质的SEC-RPLC/UV方法相比,当前研究中基于MS的方法表现出灵敏度改善150倍以上。[Li,Y.等人,J Chromatogr A,2015年,第1393卷,第81-88页。]除了改善灵敏度之外,在整个宽动态范围中有效地回收痕量水平的药物物质的能力使得所提出的方法特别适合在整个ADC产品生命周期(包括开发、配制和临床试验)中评估游离药物物质。
当鉴定潜在更强效的ADC药物候选物时[Thorson,J.S.等人,CurrentPharmaceutical Design,2000年,第6卷,第18期,第1841-1879页;Clardy,J.和C.WalshNature,2004年,第432卷,第7019期,第829-837页],扩展治疗窗的工作将需要在评估和表征残余游离药物物质方面具有改善的灵敏度的测定法以确保产品安全性和疗效。[Wakankar,A.等人,mAbs,2011年,第3卷,第2期,第161-172页。]多维方法在生物医药表征中的实用性变得越来越明显[Fleming,M.S.等人,Analytical Biochemistry,2005年,第340卷,第2期,第272-278页;Li,Y.等人,J Chromatogr A,2015年,第1393卷,第81-88页;He,Y.等人,J Chromatogr A,2012年,第1262卷,第122-129页;Li,Y.等人,AnalyticalChemistry,2014年,第86卷,第10期,第5150-5157页;Stoll,D.R.等人,AnalyticalChemistry,2015年,第87卷,第16期,第8307-8315页;Zhang,K.等人,Journal ofSeparation Science,2013年,第36卷,第18期,第2986-2992页。]。在本研究中,与柱上稀释相结合的SPE-RPLC/MS多维方法被证实是一种有效的手段,它避开了漫长的样品制备步骤,同时实现了对每一维的控制;从而促成了可容易地适用于现有工作流程的、对游离药物分析具有特异性和灵敏度的方法。未来的工作将包括使用多组临床相关的ADC在制剂和生物基质中萃取游离药物物质的所提出的方法的评估。
Figure GDA0003417051020000241
表4:测定法适用性。对标准品重复执行三次分析,并且使用ICH指南评估准确度 (在LOQ下<20%R.S.D.,否则<15%)和精确度(在LOQ下<20%相对误差(R.E.),否则<15%)。 使用处于与LC-TUV光学检测器串联的构型的四极杆MS检测器将动态范围(灰色突出显示) 扩展2个数量级
材料与方法
除非另外指明,否则化学品和试剂均购自西格玛奥德里奇公司(Sigma Aldrich)。质谱级溶剂用于流动相和样品制备。
抗体和接头-有效载荷制备和纯化
该AFC基于丹酰磺酰胺乙胺(DSEAEA)-接头马来酰亚胺在用作参比抗体的曲妥珠单抗的链间半胱氨酸上的缀合。本研究中使用的曲妥珠单抗是欧洲药品管理局(EuropeanMedicines Agency)批准的形式和制剂(21mg/mL)。接头-荧光团有效载荷被设计为模拟最常用于ADC临床试验的接头-药物。该合成在Wagner-Rousset等人[46]所著的补充资料中简要报道。其由模拟细胞毒性剂的具有缬氨酸-瓜氨酸接头的马来酰亚胺-己酸丹酰磺酰胺乙胺(mc_DSEA,结构图4A)组成,并且接头经由马来酰亚胺官能通过还原的链间半胱氨酸缀合到mAb。
如先前所述的那样执行曲妥珠单抗的温和还原和DSEA-接头的偶联。[Sun,M.M.等人,Bioconjug Chem,2005年,第16卷,第5期,第1282-1290页。]简而言之,用2.75当量的TCEP在含有150mM NaCl和2mM EDTA的10mM硼酸盐pH 8.4缓冲液中在37℃下还原曲妥珠单抗2h。使用Ellman试剂以L-半胱氨酸作为标准品来确定游离巯基的浓度,通常每个抗体产生约5个巯基。为了达到DAR为4的目标,然后在相同缓冲液中用每个巯基2当量的DSEA-接头在室温下对部分还原的曲妥珠单抗进行1h烷基化。使用N-乙酰基-半胱氨酸(1.5当量/DSEA-接头)淬灭任何未反应的DSEA-接头。通过尺寸排阻色谱法在Superdex 200pg柱(通用电气医疗集团生命科学部(GE Life Sciences))上纯化AFC,通过AKTA Avant生物色谱系统(通用电气医疗集团生命科学部(GE Life Sciences))使用含有150mM NaCl的25mM组氨酸pH 6.5缓冲液进行洗脱。通过用于铰链区半胱氨酸ADC的大多数方法(nr/rSDS-PAGE、SEC、HIC、非变性MS、LC-MS(IdeS/Red))来表征AFC(平均DAR=4.0),并且得到与针对本妥昔单抗所报道的那些图谱类似的图谱。[Wagner-Rousset,E.等人,mAbs,2014年,第6卷,第1期,第173-184页;Debaene,F.等人,Analytical Chemistry,2014年,第86卷,第21期,第10674-10683页。]所制备的AFC样品按纯物质在1.94mg/mL的浓度下使用。
色谱法
配备有市售2D技术构型的ACQUITY H-Class Bio(沃特世公司)用于这些实验。图7A是仪器设置的示意图,其示出了2DLC的柱、泵和管线构型,其中柱上稀释处于适当位置以用于第2维上样。使用柱管理器控制界面通过编程的阀事件执行固相萃取(SPE)柱(第1维)上所保留的分析物的转移(图7B)。阀开关以0.01min延时交错排列以在分析物转移之前和之后吹洗柱上稀释流体路径。配备有5mm钛流通池的可调UV检测器(ACQUITY TUV,沃特世公司)结合在第2维柱之后以评估分离的分析物的光学检出限。以20Hz的采样速率在280nm的Amax下执行单波长检测。使用相同系统执行第1维柱位置和四元溶剂管理器(QSM)贮存器中分别存在适当柱和流动相(MP)的1DLC实验,具体方式是在二维上对柱后的流体路径连接进行物理交换,并使第2维二元溶剂管理器(BSM)泵处于空闲状态,其中两个阀均位于位置1中。
柱调节
在样品运行之前,使用在含有0.1%FA v/v的MS级H2O中制备的曲妥珠单抗(2mg/mL)的稀释样品调节2.1mm×20mm、30μm SPE柱(
Figure GDA0003417051020000261
MAX,沃特世公司)。用处于1DLC构型的色谱系统以0.300mL/min的流速进行柱调节,其中柱温设定为30℃。QSM贮存器制备为MP A:H2O,2%FA v/v,MP B:乙腈,2%FA v/v。通过执行从0%MP B到95%MP B的10min梯度分离2uL进样的调节样品,直到基线线性响应稳定。以类似的方式调节第2维柱。在实际样品运行之前,使用在50:50的ACN 0.1%FA v/v:H2O 0.1%FA v/v中制备的参比标准品(0.5ng/mL)的稀释混合物调节2.1mm×50mm、2.7um表面多孔C18柱(Cortecs C18,沃特世公司)。流动相制备为MP A:H2O,0.1%FA v/v,MP B:乙腈,0.1%FA v/v。使用从5%MP B到50%MP B的10min梯度在0.300ml/min的流速和40℃的柱温下分离5uL进样的稀释参比混合物。重复进样直到各个物质的保留时间和检测器响应稳定。在对两个柱进行调节之后,系统在2DLC构型中重新调节以用于AFC分析。
校准标准品
将储备参比标准品(图4)溶解于纯DMSO中并且对于DSEA、mal-接头-DSEA和NAc-接头-DSEA分别以4μg/mL、2.82μg/mL和3.5μg/mL的浓度制备。对储备溶液进行涡旋、短暂离心并分成50uL等分试样,并且在使用之前储存于-80℃。使用50:50的ACN 0.1%FA v/v:H2O0.1%FA v/v以1:5的比率稀释各个储备参比溶液以制备初始校准标准品溶液。使用50:50的ACN 0.1%FA v/v:H2O 0.1%FA v/v,对mal-接头-DSEA和NAc-接头-DSEA的初始校准标准品溶液进行顺序的1:1系列稀释。使用处于1DLC构型的色谱系统评估参比标准品,其中QSM贮存器制备为MPA:H2O,0.1%FA v/v,MP B:乙腈,0.1%FA v/v,MP C和MP D:乙腈。将每个标准品的5.0uL上样到2.1mm×50mm、2.7um表面多孔C18柱(Cortecs C18,沃特世)上,其中MP组成在5%MP B下以0.300ml/min的流速和40℃的柱温保持恒定1.0min。使用从5%MP B至50%MP B的10min梯度洗脱参比标准品。使用快速1.0min梯度进行柱修复以将有机组成增加至80%MP B,随后使用1.0min梯度以到达初始条件(5%MP B)并保持恒定2min。
SPE优化
使用掺杂过量mal-接头-DSEA和NAc-接头-DSEA参比标准品的稀释曲妥珠单抗样品的小等分试样执行2.1mm×20um、30um SPE柱(
Figure GDA0003417051020000271
MAX,沃特世公司)的优化,以增加采集期间的MS响应。使用容纳在柱管理器(ACQUITY柱管理器,沃特世公司)中的两个六通二位阀将液相色谱仪构造为图7所示的2DLC构型。出于优化目的,使用不锈钢联管节代替第2维柱,并且将两个阀设定为初始位置2。第1维QSM贮存器制备为MP A:H2O,2%FA v/v,MP B:乙腈,2%FA v/v,MP C和MP D:乙腈。第2维BSM贮存器制备为MP A:H2O,0.1%FA v/v,MP B:乙腈,0.1%FA v/v。第2维BSM被编程为当两个柱均在线时用60%MP B(第2维MP贮存器)的MP组成以0.300mL/min的速率流动以复制第1维柱所遇到的背压。掺杂的曲妥珠单抗样品通过23%MP B(第1维MP贮存器)的初始MP组成以0.100ml/min的流速注入到SPE柱中。然后梯度逐渐增大至54%MP B以洗脱保留的参比标准品。以迭代方式调节初始和洗脱MP组成,直到在MS光谱的5min至12min和15min至20min部分之间未检测到与参比标准品相关的可观察到的离子。对于加载条件,优化的组成被确定为18%MP B,对于洗脱条件,优化的组成为36%MP B。一旦被优化,用第2维表面多孔C18柱替换不锈钢联管节并且初始阀状态被设定为位置1。使用掺杂少量NAc-接头-DSEA参比标准品的稀释曲妥珠单抗样品的新鲜等分试样进行原理证明,并使用AFC样品分析中描述的优化条件进行进样。
AFC样品分析(第1维)
在第1维中使用优化的两步梯度对AFC样品进行分析。QSM贮存器制备为MP A:含有2%FA v/v的H2O,MP B:含有2%FA v/v的乙腈,MP C和MP D:乙腈。使用设定为18%MP B、流速0.100ml/min、以及柱温30℃的等度条件,以10.0uL的体积进样纯AFC样品。在9min之后,MP组成逐渐增大至36%MP B并保持恒定8min以洗脱结合的分析物。分析物到第2维RPLC柱的转移通过编程的阀事件来实现,其中左阀和右阀在梯度的12.00min和17.50min标记之间切换到位置2以组合第1维柱和第2维柱的流体路径。使用急剧的0.50min梯度从17.0min到17.5min将MP组成增加到90%MP B并保持恒定附加的2.50min。使从90%MP B到18%MP B的锯齿梯度循环3次以修复Oasis MAX SPE柱,其中最终循环返回到初始启动条件。
AFC样品分析(第2维)
BSM贮存器制备为MP A:含有0.1%甲酸v/v的H2O,MP B:含有0.1%甲酸v/v的乙腈。作为2DLC方法的一部分,第2维MP组成在进样时设定为0%MP B并在0.300ml/min的流速下保持恒定直到17.50min标记。经由不锈钢分流器(Vicci Valco)以1:4稀释度(0.1mL/min第1维泵:0.3mL/min第2维泵)进行柱上稀释,同时第1维和第2维流体路径在该方法的12.00min和17.50min之间组合。在17.50min之后,MP组成增至25%MP B并保持1min。执行从25%MP B到50%MP B的5.55min梯度并保持恒定附加的0.44min。在执行分离梯度之后,MP组成在1min内上升到90%MP B,随后执行从90%MP B到5%MP B的两个1min的锯齿梯度以修复RPLC柱,其中最终循环返回到初始启动条件。
回收评估
使用NAc-接头-DSEA参比标准品执行SPE柱回收效率的评估。在50:50的ACN 0.1%FA v/v:H2O 0.1%FA v/v中以1.7ng/mL、16.2ng/mL、71.9ng/mL和144.6ng/mL的浓度制备四个样品,以跨越基于NAc-接头-DSEA校准曲线的动态范围(图6)。使用先前所述的用于AFC样品分析的2DLC系统构型,对四个参比标准样品重复执行三次进样。然后系统被重新构造为1DLC模式,并且QSM贮存器改变为MP A:含有0.1%FA v/v的H2O,MP B:含有0.1%FA v/v的乙腈,MP C和MP D:乙腈。将相同的参比样品直接进样到2.1mm×50mm、2.7um表面多孔C18柱上,其中MP组成在5%MP B下以0.300ml/min的流速和40℃的柱温保持恒定1.0min。使用从5%MP B到50%MP B的10min梯度洗脱参比标准品。使用快速1.0min梯度执行柱修复以将有机组成增加至80%MP B,然后进行1.0min梯度以达到5%MP B的初始条件并保持恒定2min。通过比较1DLC和2DLC系统构型中的峰面积来确定回收效率。
MS设置
使用单个四极杆质谱仪(ACQUITY QDa,沃特世公司)进行TUV检测器后的MS分析(图7)。表示DSEA、mal-接头-DSEA和NAc-接头-DSEA的[M+1H]+1和[M+2H]+2的SIR在覆盖30m/z至1,250m/z的质荷范围的正极性中采集。除了其它电荷状态之外,还采集了mal-接头-DSEA的确认片段(718.4m/z),并且用于MS优化。在色谱法部分中定义的整个分离中收集MS数据,其中流体连续通过MS毛细管。可调仪器设定如下:毛细管电压0.8kV,样品锥2.0V,源温度400℃。来自MS分析的数据在色谱数据系统MassLynx内进行处理。对DSEA、mal-接头-DSEA和NAc-接头-DSEA样品的相应SIR求和并且应用5次扫描和1次迭代的窗口尺寸对平均值进行平滑,然后进行积分。
如Birdsall等人mAbs,2016年,第8卷,第2期,第305-317页中所公开的,可发现本发明的其它实施方案,该文献以引用方式并入本文。
参考文献
1.Strebhardt,K.和A.Ullrich,“Paul Ehrlich's magic bullet concept:100years ofprogress”,NatRev Cancer,2008年,第8卷,第6期,第473-480页。
2.Wu,A.M.和P.D.Senter,“Arming antibodies:prospects and challengesforimmunoconjugates”,Nat Biotech,2005年,第23卷,第9期,第1137-1146页。
3.Reichert,J.M.等人,“Monoclonal antibody successes in the clinic”,NatBiotech,2005年,第23卷,第9期,第1073-1078页。
4.Doronina,S.O.等人,“Development ofpotent monoclonal antibodyauristatin conjugatesfor cancer therapy”,NatBiotech,2003年,第21卷,第7期,第778-784页。
5.Remillard,S.等人,“Antimitotic activity ofthepotent tumor inhibitormaytansine”,Science,1975年,第189卷,第4207期,第1002-1005页。
6.Junutula,J.R.等人,“Site-specific conjugation ofa cytotoxic drug toan antibody improves the therapeutic index”,Nat Biotech,2008年,第26卷,第8期,第925-932页。
7.McDonagh,C.F.等人,“Engineered antibody-drug conjugates with definedsites and stoichiometries of drug attachment”,Protein Eng Des Sel,2006年,第19卷,第7期,第299-307页。
8.Hofer,T.等人,“Molecularly Defined Antibody Conjugation through aSelenocysteine Interface”,Biochemistry,2009年,第48卷,第50期,第12047-12057页。
9.Axup,J.Y.等人,“Synthesis ofsite-specific antibody-drug conjugatesusing unnatural amino acids”,Proceedings ofthe National Academy ofSciences,2012年,第109卷,第40期,第16101-16106页。
10.Sun,M.M.等人,“Reduction-alkylation strategiesfor the modificationofspecific monoclonal antibody disulfides”,Bioconjug Chem,2005年,第16卷,第5期,第1282-1290页。
11.Pro,B.等人,“Brentuximab Vedotin(SGN-35)in Patients With Relapsedor Refractory Systemic Anaplastic Large-Cell Lymphoma:Results ofaPhaseIIStudy”,Journal ofClinical Onocology,2012年,第30卷,第18期,第2190-2196页。
12.Lewis Phillips,G.D.等人,“Targeting HER2-positive breast cancerwith trastuzumab-DM1,an antibody-cytotoxic drug conjugate”,Cancer Res,2008年,第68卷,第22期,第9280-9290页。
13.Chari,R.V.,“Targeted cancer therapy:conferring specificity tocytotoxic drugs”,Acc Chem Res,2008年,第41卷,第1期,第98-107页。
14.Dosio,F.、P.Brusa和L.Cattel,“Immunotoxins and Anticancer DrugConjugate Assemblies:The Role of the Linkage between Components”,Toxins,2011年,第3卷,第7期,第848-883页。
15.Sanderson,R.J.等人,“In vivo drug-linker stability ofan anti-CD30dipeptide-linked auristatin immunoconjugate”,Clin Cancer Res,2005年,第11卷,第2Pt 1期,第843-852页。
16.Shen,B.-Q.等人,“Conjugation site modulates the in vivo stabilityand therapeutic activity ofantibody-drug conjugates”,Nat Biotech,2012年,第30卷,第2期,第184-189页。
17.Kovtun,Y.V.等人,“Antibody-Drug Conjugates Designed to EradicateTumors with Homogeneous and Heterogeneous Expression ofthe Target Antigen”,Cancer Research,2006年,第66卷,第6期,第3214-3221页。
18.Stephan,J.P.、K.R.Kozak和W.L.Wong,“Challenges in developingbioanalytical assaysfor characterization ofantibody-drug conjugates”,Bioanalysis,2011年,第3卷,第6期,第677-700页。
19.Li,Y.等人,“Limiting degradation of reactive antibody drugconjugate intermediates in HPLC method development”,Journal of Pharmaceuticaland Biomedical Analysis,2014年,第92卷,第114-118页。
20.Hudecz,F.等人,“The influence of synthetic conditions on thestability ofmethotrexate-monoclonal antibody conjugates determined byreversed phase high performance liquid chromatography”,BiomedicalChromatography,1992年,第6卷,第3期,第128-132页。
21.Hurwitz E Fau-Levy,R.等人,“The covalent binding ofdaunomycin andadriamycin to antibodies,with retention of both drug and antibodyactivities”,Cancer Research,1975年,第35卷,第1175-1181页。
22.Souverain,S.、S.Rudaz和J.L.Veuf,“Restricted access materials andlarge particle supports for on-line sample preparation:an attractive approachfor biological fluids analysis”,Journal of Chromatography B,2004年,第801卷,第2期,第141-156页。
23.Chari,R.V.等人,“Enhancement of the selectivity and antitumorefficacy ofa CC-1065analogue through immunoconjugateformation”,Cancer Res,1995年,第55卷,第18期,第4079-4084页。
24.Greenfield,R.S.等人,“Evaluation in vitro of adriamycinimmunoconjugates synthesized using an acid-sensitive hydrazone linker”,CancerRes,1990年,第50卷,第20期,第6600-6607页。
25.Kozak,K.R.等人,“Total antibody quantification for MMAE-conjugatedantibody-drug conjugates:impact of assay format and reagents”,Bioconjug Chem,2013年,第24卷,第5期,第772-779页。
26.Liu,M.等人,“HPLC method development,validation and impuritycharacterization for an antitumor Hsp90 inhibitor-PU-H71(NSC 750424)”,J PharmBiomed Anal,2014年,第89卷,第34-41页。
27.Cohen,S.A.等人,“Multiple peakformation in reversed-phase liquidchromatography ofpapain”,Analytical Chemistry,1984年,第56卷,第2期,第217-221页。
28.Burton,W.G.等人,“Separation ofproteins by reversed-phase high-performance liquid chromatography:I.Optimizing the column”,Journal ofChromatography A,1988年,第443卷,第363-379页。
29.Lee,H.M.等人,“Microbore high-performance liquid chromatographicdetermination of cisapride in rat serum samples using column switching”,JChromatogr B Biomed Sci Appl,1999年,第727卷,第1-2期,第213-217页。
30.Vega-Morales,T.、Z.Sosa-Ferrera和J.J.Santana Rodriguez,“Developmentand optimisation of an on-line solid phase extraction coupled to ultra-high-performance liquid chromatography-tandem mass spectrometry methodologyfor thesimultaneous determination of endocrine disrupting compounds in wastewatersamples”,J Chromatogr A,2012年,第1230卷,第66-76页。
31.Jeong,C.K.等人,“Narrowbore high-performance liquidchromatographyfor the simultaneous determination ofsildenafil and itsmetabolite UK-103,320in human plasma using column switching”,J Chromatogr BBiomed Sci Appl,2001年,第752卷,第1期,第141-147页。
32.Thorson,J.S.等人,“Understanding andExploitingNature's ChemicalArsenal:The Past,Present and Future ofCalicheamicin Research”,CurrentPharmaceutical Design,2000年,第6卷,第18期,第1841-1879页。
33.Clardy,J.和C.Walsh,“Lessonsfrom natural molecules”,Nature,2004年,第432卷,第7019期,第829-837页。
34.Fleming,M.S.等人,“A reversed-phase high-performance liquidchromatography method for analysis of monoclonal antibody–maytansinoidimmunoconjugates”,Analytical Biochemistry,2005年,第340卷,第2期,第272-278页。
35.Li,Y.等人,“A size exclusion-reversedphase two dimensional-liquidchromatography methodologyfor stability and small molecule related species inantibody drug conjugates”,J Chromatogr A,2015年,第1393卷,第81-88页。
36.He,Y.等人,“On-line coupling ofsize exclusion chromatography withmixed-mode liquid chromatography for comprehensive profiling ofbiopharmaceutical drug product”,J Chromatogr A,2012年,第1262卷,第122-129页。
37.Li,Y.等人,“Characterization and Stability Study ofPolysorbate 20inTherapeutic Monoclonal Antibody Formulation by Multidimensional Ultrahigh-Performance Liquid Chromatography-Charged Aerosol Detection-MassSpectrometry”,Analytical Chemistry,2014年,第86卷,第10期,第5150-5157页。
38.Stoll,D.R.等人,“Direct Identification ofRituximab Main Isoformsand Subunit Analysis by Online Selective Comprehensive Two-Dimensional LiquidChromatography–Mass Spectrometry”,Analytical Chemistry,2015年,第87卷,第16期,第8307-8315页。
39.Zhang,K.等人,“Analysis ofpharmaceutical impurities using multi-heartcutting2D LC coupledwith UV-chargedaerosolMSdetection”,Journal ofSeparation Science,2013年,第36卷,第18期,第2986-2992页。
40.Birdsall,R.E.等人,“A rapid on-line methodfor mass spectrometricconfirmation of a cysteine-conjugated antibody-drug-conjugate structure usingmultidimensional chromatography”,mAbs,2015年,第00-00页。
41.Lazar,A.C.等人,“Analysis ofthe composition ofimmunoconjugatesusingsize-exclusion chromatography coupled to mass spectrometry”,Rapid CommunMass Spectrom,2005年,第19卷,第13期,第1806-1814页。
42.Valliere-Douglass,J.、A.Wallace和A.Balland,“Separation ofpopulations of antibody variants by fine tuning of hydrophobic-interactionchromatography operating conditions”,Journal of Chromatography A,2008年,第1214卷,第1-2期,第81-89页。
43.Valliere-Douglass,J.F.、S.M.Hengel和L.Y.Pan,“Approaches toInterchain Cysteine-Linked ADC Characterization by Mass Spectrometry”,MolecularPharmaceutics,2014年。
44.Valliere-Douglass,J.F.、W.A.McFee和O.Salas-Solano,“NativeIntactMass Determination ofAntibodies Conjugatedwith Monomethyl Auristatin Eand F at Interchain Cysteine Residues”,Analytical Chemistry,2012年,第84卷,第6期,第2843-2849页。
45.Chen,J.等人,“Development of a native nanoelectrospray massspectrometry methodfor determination ofthe drug-to-antibody ratio ofantibody-drug conjugates”,Anal Chem,2013年,第85卷,第3期,第1699-1704页。
46.Wagner-Rousset,E.等人,“Antibody-drug conjugate model fastcharacterization by LC-MSfollowing IdeS”,mAbs,2014年,第6卷,第1期,第173-184页。
47.Debaene,F.等人,“Innovative Native MSMethodologiesforAntibody DrugConjugate Characterization:High Resolution Native MS and IM-MS for AverageDAR and DAR Distribution Assessment”,Analytical Chemistry,2014年,第86卷,第21期,第10674-10683页。
48.Huang,R.C.等人,“Utility of Ion Mobility Mass Spectrometry forDrug-to-Antibody Ratio Measurements in Antibody-Drug Conjugates”,Journal ofThe American Society for Mass Spectrometry,2015年,第1-4页。
49.Janin-Bussat,M.C.等人,“Characterization of antibody drug conjugatepositional isomers at cysteine residues bypeptide mapping LC-MSanalysis”,JChromatogr B Analyt Technol Biomed Life Sci,2014年,第981-982卷,第9-13页。
50.Pascoe,R.、J.P.Foley和A.I.Gusev,“Reduction in matrix-related signalsuppression effects in electrospray ionization mass spectrometry using on-line two-dimensional liquidchromatography”,Anal Chem,2001年,第73卷,第24期,第6014-6023页。
51.King,R.等人,“Mechanistic investigation ofionization suppression inelectrospray ionization”,Journal of the American Society for MassSpectrometry,2000年,第11卷,第11期,第942-950页。
52.Stoll,D.R.、X.Wang和P.W.Carr,“Comparison of the practicalresolvingpower ofone-and two-dimensional high-performance liquidchromatography analysis of metabolomic samples”,Anal Chem,2008年,第80卷,第1期,第268-278页。
53.Francisco,J.A.等人,“cAC10-vcMMAE,an anti-CD30-monomethylauristatin E conjugate with potent and selective antitumor activity”,Blood,2003年,第102卷,第4期,第1458-1465页。
54.Green,J.M.、Peer审核:“A Practical Guide to Analytical MethodValidation”,Analytical Chemistry,1996年,第68卷,第9期,第305A-309A页。
55.Singtoroj,T.等人,“A new approach to evaluate regression modelsduring validation ofbioanalytical assays”,J Pharm Biomed Anal,2006年,第41卷,第1期,第219-227页。
56.Wakankar,A.等人,“Analytical methods for physicochemicalcharacterization ofantibody drug conjugates”,mAbs,2011年,第3卷,第2期,第161-172页。

Claims (10)

1.一种用于分析抗体-药物缀合物复合物的方法,所述方法包括:
(i) 提供包括抗体-药物缀合物复合物和未缀合的药物化合物的样品;
(ii) 使所述样品暴露于具有混合模式固定相的固相萃取柱;
(iii) 从固相萃取柱稀释洗脱溶剂;
(iv) 使所述样品暴露于具有疏水性固定相的反相色谱柱;
(v) 分离所述样品中的所述抗体-药物缀合物复合物和所述未缀合的药物化合物;
(vi) 使用质谱法来检测所述样品中的所述抗体-药物缀合物复合物和所述未缀合的药物化合物中的每一者;以及
(vii) 对所述样品中的未缀合的药物化合物的量进行定量。
2.根据权利要求1所述的方法,其中使用质谱法来确立所述样品中的所述抗体-药物缀合物复合物和所述未缀合的药物化合物中的每一者的质荷比。
3.根据权利要求1所述的方法,其中所述方法还包括捕集所述未缀合的药物化合物的步骤。
4.根据权利要求3所述的方法,其中捕集步骤在使所述样品暴露于所述固相萃取柱之前执行。
5.根据权利要求3所述的方法,其中捕集步骤在使所述样品暴露于所述固相萃取柱和所述反相色谱柱之间执行。
6.根据权利要求1所述的方法,所述方法还包括调节酸浓度以使所述未缀合的药物化合物保留在所述固相萃取柱或所述反相色谱柱中的步骤。
7.根据权利要求1所述的方法,其中所述混合模式固定相包括散布有阴离子交换官能团的疏水性固相萃取树脂。
8.一种用于分析抗体-药物缀合物复合物的方法,所述方法包括:
(i) 提供包括抗体-药物缀合物复合物、未缀合的药物化合物和接头分子的样品;
(ii) 使所述样品暴露于固相萃取柱,然后使所述样品暴露于反相色谱柱;
(iii) 从固相萃取柱稀释洗脱溶剂;
(iv) 在所述固相萃取柱之前或在所述固相萃取柱和所述反相色谱柱之间,用固定相捕集所述未缀合的药物化合物和/或所述接头分子的一部分;
(v) 使用质谱法来确立所述样品中的所述抗体-药物缀合物复合物、所述未缀合的药物化合物和未缀合的肽中的一者或多者的质荷比;以及
(vi) 对所述样品中的未缀合的药物化合物的量进行定量。
9.根据权利要求8所述的方法,所述方法还包括调节酸浓度以使所述未缀合的药物化合物保留在所述固相萃取柱或所述反相色谱柱中的步骤。
10.根据权利要求8或9所述的方法,其中所述固相萃取柱包括散布有阴离子交换官能团的疏水性固相萃取树脂。
CN201680065226.7A 2015-09-08 2016-09-08 用于分析抗体-药物缀合物的多维色谱方法 Active CN108348604B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210408008.6A CN114814055A (zh) 2015-09-08 2016-09-08 用于分析抗体-药物缀合物的多维色谱方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562215339P 2015-09-08 2015-09-08
US62/215339 2015-09-08
PCT/US2016/050628 WO2017044530A1 (en) 2015-09-08 2016-09-08 Multidimensional chromatoggraphy method for analysis of antibody-drug conjugates

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202210408008.6A Division CN114814055A (zh) 2015-09-08 2016-09-08 用于分析抗体-药物缀合物的多维色谱方法

Publications (2)

Publication Number Publication Date
CN108348604A CN108348604A (zh) 2018-07-31
CN108348604B true CN108348604B (zh) 2022-04-29

Family

ID=58239951

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201680065226.7A Active CN108348604B (zh) 2015-09-08 2016-09-08 用于分析抗体-药物缀合物的多维色谱方法
CN202210408008.6A Pending CN114814055A (zh) 2015-09-08 2016-09-08 用于分析抗体-药物缀合物的多维色谱方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202210408008.6A Pending CN114814055A (zh) 2015-09-08 2016-09-08 用于分析抗体-药物缀合物的多维色谱方法

Country Status (4)

Country Link
US (2) US11149059B2 (zh)
EP (1) EP3347049A4 (zh)
CN (2) CN108348604B (zh)
WO (1) WO2017044530A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017044530A1 (en) * 2015-09-08 2017-03-16 Waters Technologies Corporation Multidimensional chromatoggraphy method for analysis of antibody-drug conjugates
US11918936B2 (en) * 2020-01-17 2024-03-05 Waters Technologies Corporation Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8188242B2 (en) * 2008-04-08 2012-05-29 Bio-Rad Laboratories, Inc. Chromatography purification of antibodies
US8481694B2 (en) * 2009-04-29 2013-07-09 Bio-Rad Laboratories, Inc. Purification of immunoconjugates
WO2013158275A1 (en) * 2012-04-20 2013-10-24 Abbvie Inc. Cell culture methods to reduce acidic species
WO2014006124A1 (en) * 2012-07-04 2014-01-09 F. Hoffmann-La Roche Ag Covalently linked antigen-antibody conjugates
CN104208719A (zh) * 2014-09-24 2014-12-17 北京天广实生物技术股份有限公司 一种抗体偶联药物的阳离子交换层析纯化方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242824A (en) * 1988-12-22 1993-09-07 Oncogen Monoclonal antibody to human carcinomas
US20050048574A1 (en) * 2003-03-14 2005-03-03 Kantor Aaron B. Biomarkers for diagnosing rheumatoid arthritis
US20040229334A1 (en) * 2003-05-15 2004-11-18 Mendoza Christine B. Process for manufacture of nematode-extracted anticoagulant protein (NAP)
US8088387B2 (en) * 2003-10-10 2012-01-03 Immunogen Inc. Method of targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via a non-cleavable linker, said conjugates, and methods of making said conjugates
WO2005008247A2 (en) * 2003-07-11 2005-01-27 Science & Technology Corporation @ Unm. Detection of endometrial pathology
DE102004027816A1 (de) * 2004-06-08 2006-01-05 Bioceuticals Arzneimittel Ag Verfahren zur Reinigung von Erythropoietin
FR2884438B1 (fr) * 2005-04-19 2007-08-03 Commissariat Energie Atomique Procede d'extraction d'au moins un compose d'une phase liquide comprenant un liquide ionique fonctionnalise, et systeme microfluidique pour la mise en oeuvre de ce procede.
US20070238129A1 (en) * 2006-03-29 2007-10-11 Moyer Susanne C Catalytically inactive enzymes for affinity binding
US20100075375A1 (en) * 2006-10-03 2010-03-25 Novo Nordisk A/S Methods for the purification of polypeptide conjugates
US20080207487A1 (en) * 2006-11-02 2008-08-28 Neose Technologies, Inc. Manufacturing process for the production of polypeptides expressed in insect cell-lines
US7968687B2 (en) * 2007-10-19 2011-06-28 Seattle Genetics, Inc. CD19 binding agents and uses thereof
DE102008002209A1 (de) * 2008-06-04 2009-12-10 Evonik Degussa Gmbh Verfahren zur Aufreinigung von Erythropoietin
US8202736B2 (en) * 2009-02-26 2012-06-19 The Governing Council Of The University Of Toronto Method of hormone extraction using digital microfluidics
US9851365B2 (en) * 2009-02-26 2017-12-26 The Governing Council Of The University Of Toronto Digital microfluidic liquid-liquid extraction device and method of use thereof
WO2010148339A2 (en) * 2009-06-19 2010-12-23 The Regents Of The University Of Michigan Electrospray and nanospray ionization of discrete samples in droplet format
US9067990B2 (en) * 2013-03-14 2015-06-30 Abbvie, Inc. Protein purification using displacement chromatography
US9679757B2 (en) * 2013-04-12 2017-06-13 Waters Technologies Corporation Liquid chromatography systems and methods
JP2016538267A (ja) * 2013-10-25 2016-12-08 メディミューン,エルエルシー 抗体精製
CN106794388A (zh) * 2014-05-30 2017-05-31 斯佩威尔股份有限公司 分析物的提取、衍生化和定量
WO2017044530A1 (en) * 2015-09-08 2017-03-16 Waters Technologies Corporation Multidimensional chromatoggraphy method for analysis of antibody-drug conjugates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8188242B2 (en) * 2008-04-08 2012-05-29 Bio-Rad Laboratories, Inc. Chromatography purification of antibodies
US8481694B2 (en) * 2009-04-29 2013-07-09 Bio-Rad Laboratories, Inc. Purification of immunoconjugates
WO2013158275A1 (en) * 2012-04-20 2013-10-24 Abbvie Inc. Cell culture methods to reduce acidic species
WO2014006124A1 (en) * 2012-07-04 2014-01-09 F. Hoffmann-La Roche Ag Covalently linked antigen-antibody conjugates
CN104208719A (zh) * 2014-09-24 2014-12-17 北京天广实生物技术股份有限公司 一种抗体偶联药物的阳离子交换层析纯化方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A size exclusion-reversed phase two dimensional-liquid chromatography methodology for stability and small molecule related species in antibody drug conjugates;Yi Li等;《Journal of Chromatography A》;20150316;第1393卷;第81页摘要、第82页以及图1、第82-83页实验方法、第85页第4.3节以及图5、第83-87页第4节 *
Characterization of intact antibody–drug conjugates from plasma/serum in vivo by affinity capture capillary liquid chromatography–mass spectrometry;Keyang Xu 等;《Analytical Biochemistry》;20110107;第412卷;第56页摘要、第57-60页材料与方法 *
On-line coupling of size exclusion chromatography with mixed-mode liquid chromatography for comprehensive profiling of biopharmaceutical drug product;Yan He 等;《Journal of Chromatography A》;20120910;第1262卷;第122页摘要、第123-124页第2节 *
抗体偶联药物的研究进展与质量控制;王兰 等;《中国生物工程杂志》;20141231;第34卷(第4期);第85-94页 *

Also Published As

Publication number Publication date
US11845776B2 (en) 2023-12-19
CN108348604A (zh) 2018-07-31
EP3347049A1 (en) 2018-07-18
WO2017044530A1 (en) 2017-03-16
US11149059B2 (en) 2021-10-19
US20190292220A1 (en) 2019-09-26
US20220073561A1 (en) 2022-03-10
CN114814055A (zh) 2022-07-29
EP3347049A4 (en) 2019-01-30
WO2017044530A8 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
Wagh et al. Challenges and new frontiers in analytical characterization of antibody-drug conjugates
Birdsall et al. A sensitive multidimensional method for the detection, characterization, and quantification of trace free drug species in antibody-drug conjugate samples using mass spectral detection
Wakankar et al. Analytical methods for physicochemical characterization of antibody drug conjugates
Beck et al. Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future
Lazar et al. Analysis of the composition of immunoconjugates using size‐exclusion chromatography coupled to mass spectrometry
Sarrut et al. Analysis of antibody-drug conjugates by comprehensive on-line two-dimensional hydrophobic interaction chromatography x reversed phase liquid chromatography hyphenated to high resolution mass spectrometry. I− Optimization of separation conditions
Stoll et al. Characterization of therapeutic antibodies and related products by two-dimensional liquid chromatography coupled with UV absorbance and mass spectrometric detection
CN108152513B (zh) 蛋白偶联的试剂化合物的整体分子量测定
He et al. High-resolution accurate-mass mass spectrometry enabling in-depth characterization of in vivo biotransformations for intact antibody-drug conjugates
US11845776B2 (en) Multidimensional chromatography method for analysis of antibody-drug conjugates
Baglai et al. Enhancing detectability of anabolic-steroid residues in bovine urine by actively modulated online comprehensive two-dimensional liquid chromatography–high-resolution mass spectrometry
Salamat et al. Extraction of antidepressant drugs in biological samples using alkanol‐based nano structured supramolecular solvent microextraction followed by gas chromatography with mass spectrometric analysis
Lakayan et al. Affinity profiling of monoclonal antibody and antibody-drug-conjugate preparations by coupled liquid chromatography-surface plasmon resonance biosensing
Heudi et al. Quantitative analysis of maytansinoid (DM1) in human serum by on-line solid phase extraction coupled with liquid chromatography tandem mass spectrometry-Method validation and its application to clinical samples
Basa Drug-to-antibody ratio (DAR) and drug load distribution by LC-ESI-MS
Venkatramani et al. High-resolution two-dimensional liquid chromatography analysis of key linker drug intermediate used in antibody drug conjugates
Fanali et al. Separation of basic compounds of pharmaceutical interest by using nano-liquid chromatography coupled with mass spectrometry
Fekete et al. Size exclusion chromatography of protein biopharmaceuticals: Past, present and future
Li et al. Development of a sensitive and rapid method for rifampicin impurity analysis using supercritical fluid chromatography
Deslignière et al. A combination of native LC-MS approaches for the comprehensive characterization of the antibody-drug conjugate trastuzumab deruxtecan
Keski-Hynnilä et al. Quantitation of entacapone glucuronide in rat plasma by on-line coupled restricted access media column and liquid chromatography–tandem mass spectrometry
Damen et al. Quantitative aspects of the analysis of the monoclonal antibody trastuzumab using high-performance liquid chromatography coupled with electrospray mass spectrometry
Hernandez-Alba et al. Analysis of ADCs by native mass spectrometry
US11092597B2 (en) Devices and methods for analyzing intact proteins, antibodies, antibody subunits, and antibody drug conjugates
Hagga et al. A novel quantitative method for the simultaneous assay of rifampicin (RIF), isoniazid (INH), ethambutol (EMB), and pyrazinamide (PYP) in 4-FDC tablets

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant