CN108345747A - 一种研究电离缺陷和位移缺陷间接交互作用的试验方法 - Google Patents

一种研究电离缺陷和位移缺陷间接交互作用的试验方法 Download PDF

Info

Publication number
CN108345747A
CN108345747A CN201810136616.XA CN201810136616A CN108345747A CN 108345747 A CN108345747 A CN 108345747A CN 201810136616 A CN201810136616 A CN 201810136616A CN 108345747 A CN108345747 A CN 108345747A
Authority
CN
China
Prior art keywords
defect
ionization
displacement
insulator
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810136616.XA
Other languages
English (en)
Other versions
CN108345747B (zh
Inventor
李兴冀
杨剑群
刘超铭
吕钢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201810136616.XA priority Critical patent/CN108345747B/zh
Publication of CN108345747A publication Critical patent/CN108345747A/zh
Application granted granted Critical
Publication of CN108345747B publication Critical patent/CN108345747B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/33Design verification, e.g. functional simulation or model checking
    • G06F30/3323Design verification, e.g. functional simulation or model checking using formal methods, e.g. equivalence checking or property checking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

一种研究电离缺陷和位移缺陷间接交互作用的试验方法,它涉及电离/位移协同效应,属于空间环境效应、核科学与应用技术领域。本发明的目的是为了制备一种结构,基于该结构应用不同类型的带电粒子,从而实现电离和位移缺陷间接交互作用的研究。方法:制备MIS结构,导体‑绝缘体‑半导体中导体、绝缘体和半导体的厚度分别为a1,a2和a3,计算入射粒子的入射深度、电离吸收剂量(Id)和位移吸收剂量(Dd),3<log[(Id+Dd)/Dd]<5,产生稳定的电离缺陷和位移缺陷;log[(Id+Dd)/Dd]≤3,产生稳定的位移缺陷;log[(Id+Dd)/Dd]≥5,产生稳定的电离缺陷;本发明的试验方法,步骤简单,易于操作。本发明所提出的技术途径能够有效地揭示电离缺陷和位移缺陷之间交互作用。

Description

一种研究电离缺陷和位移缺陷间接交互作用的试验方法
技术领域
本发明涉及电离/位移协同效应,属于空间环境效应、核科学与应用技术领域。
背景技术
随着人类航天事业的发展,不同类型材料和器件在空间环境中的使用频率日益增多,空间环境对于航天器用关键材料和器件的影响也日益突出。人类70年的航天探索实践表明,空间环境对航天器是苛刻的、不可忽视的,有着极其重要的影响,是诱发航天器异常和故障的重要原因。其中,以空间带电粒子辐射环境对航天器用关键材料和器件的影响最为突出。这些不同类型的空间带电粒子同时作用于航天器用关键材料和器件,导致空间综合环境效应,尤其是电离/位移协同效应。
电离/位移协同效应包括两方面含义:一是同种粒子本身同时产生电离和位移效应时,彼此发生交互作用。二是两种不同种类的粒子分别产生电离和位移效应时彼此发生交互作用。无论哪种形式诱导的协同效应,其微观机理涉及电离缺陷和位移缺陷交互作用的方式。电离缺陷和位移缺陷主要通过两种方式进行交互作用:间接和直接作用方式。并且,常常是这两种方式同时作用的结果。为了深入研究电离/位移交互作用机制,有必要分别针对间接作用过程和直接作用过程开展研究工作。
不同类型的材料对电离损伤和位移损伤的敏感性不同,绝缘体材料主要对电离损伤敏感,半导体材料主要对位移损伤敏感。此外,有些粒子主要导致电离损伤、有些粒子主要导致位移损伤,有些粒子既能产生电离损伤同时可以产生位移损伤。因此,可以设计出一种特殊的结构。基于该结构,应用一种准确的方式,揭示电离缺陷和位移缺陷间接交互作用的方式,对于实现空间综合环境与材料和器件作用基本理论和评价方法,揭示空间综合环境下材料和器件性能退化的基本规律与各种空间环境综合效应的物理本质,具有重要的工程价值和科学意义。
发明内容
本发明的目的是为了制备一种结构,基于该结构应用不同类型的带电粒子,从而实现电离和位移缺陷间接交互作用的研究,提供了一种研究电离缺陷和位移缺陷间接交互作用的试验方法。
一种研究电离缺陷和位移缺陷间接交互作用的试验方法按照以下步骤进行:
一、将绝缘体、半导体与导体按照每层从上到下的顺序制备成导体-绝缘体-半导体的结构,其中半导体的掺杂浓度为1E14/cm3~1E17/cm3;常温条件下,绝缘体的电阻率不小于1E12Ω·cm,导体的电阻率不大于1E~4Ω·cm;
二、导体-绝缘体-半导体中导体、绝缘体和半导体的厚度分别为a1、a2和a3,其中,a2≤1/5a3,a2≥10a1
三、确定导体-绝缘体-半导体中每层导体、绝缘体及半导体的组分、成份、密度及化学式,通过Geant4软件,计算不同能量入射粒子I在导体-绝缘体-半导体中的入射深度d1,且d1>a1
四、根据步骤三中不同能量入射粒子I的能量,通过Geant4软件计算单位注量的入射粒子I在绝缘体内的电离吸收剂量和位移吸收剂量,其中Id1表示电离吸收剂量,Dd1表示位移吸收剂量;
计算log[(Id1+Dd1)/Dd1];
五、若入射粒子I在绝缘体内log[(Id1+Dd1)/Dd1]<5,需要返回到步骤三,重新选择粒子种类或能量,继续计算;
若入射粒子I在绝缘体内log[(Id1+Dd1)/Dd1]≥5,则能量下的入射粒子I会在绝缘体中产生稳定的电离缺陷;进行步骤六;
六、通过Geant4软件,计算不同能量入射粒子II在导体-绝缘体-半导体结构中的入射深度d2,且d2>a1+a2
根据不同能量入射粒子II的能量,通过Geant4软件计算单位注量的入射粒子II在半导体内的电离吸收剂量和位移吸收剂量,其中Id2表示电离吸收剂量,Dd2表示位移吸收剂量;
计算log[(Id2+Dd2)/Dd2];
若入射粒子II在绝缘体内3<log[(Id2+Dd2)/Dd2],则需要返回到步骤六,重新选择粒子种类或能量,继续计算;
若入射粒子II在半导体内log[(Id2+Dd2)/Dd2]≤3,则能量下的入射粒子I会在半导体中产生稳定的位移缺陷;即完成电离缺陷和位移缺陷的间接交互作用研究。
步骤一中所述的导体为金属。
步骤一中所述的导体为金、银、铂或铝。
步骤一中所述的绝缘体为SiO2
步骤一中所述的半导体为N型的Si或P型的Si。
步骤三中所述入射粒子I为电子、质子、重离子、中子、光子或介子。
步骤六中所述入射粒子II为电子、质子、重离子、中子、光子或介子。
本发明的目的是设计一种特殊的结构,基于该结构应用不同能量的带电粒子,实现电离和位移缺陷间接交互作用的研究。
航天器用关键材料和器件主要受到不同能量的质子、电子及重离子等空间综合辐射环境因素的影响。本发明基于不同类型材料的属性,设计特殊的结构单元,分别计算不同能量和类型带电粒子的穿透深度,以及单位注量粒子所产生的电离和位移吸收剂量,通过综合匹配结构单元的尺寸特征和入射粒子的输运状态,来实现研究电离缺陷和位移缺陷间接交互作用的目的。
具体来说,为了达到上述技术目的,本发明采用如下技术方案:
本发明所涉及的一种研究电离缺陷和位移缺陷间接交互作用的试验方法,其应用对象包括空间环境效应、核科学与应用技术。该技术的特征在于,选用合适的导体、绝缘体和半导体,制备成金属—绝缘体—半导体结构(MIS结构)。在此基础上,基于Monte Carlo计算方法,计算单位注量入射粒子的电离/位移吸收剂量和射程。根据电离和位移吸收剂量的比例关系,以及MIS结构,确定不同类型入射粒子的能量,保证在MIS结构的不同部位,分别产生稳定的电离和位移缺陷,进而开展电离缺陷和位移缺陷间接交互作用研究。
不同类型的入射粒子(尤其是不同类型的带电粒子),在材料和器件的输运过程中,会同时产生电离和位移损伤,分别会在瞬间导致大量的电子—空穴对和间隙原子—空位对。这些电子/空穴对和间隙原子/空位对,在室温条件下不稳定,大部分会发生复合。未发生复合的电子/空穴对和间隙原子/空位对会继续在材料与器件中运动。在此运动过程中,间隙原子、空位会与靶材原子或杂质形成稳定缺陷;电子、空穴也会被俘获,逐渐形成稳定的缺陷。不同材料对上述复合过程影响不同,导体材料主要会影响间隙原子/空位对的复合;半导体材料中间隙原子/空位对的复合除受半导体材料影响外,还会受到电子/空穴对的影响;绝缘体材料中的间隙原子/空位对和电子/空穴对的复合会发生交互作用。因此,为研究稳定的电离缺陷和位移缺陷,主要针对半导体材料和绝缘体材料。为此,需要设计并制备合适的MIS结构单元,选择不同能量的入射粒子,并通过Geant4软件计算,保证其在MIS结构单元的不同部位分别产生电离缺陷和位移缺陷。
本发明应用一种研究电离缺陷和位移缺陷间接交互作用的试验方法,步骤简单,易于操作。本发明所提出的技术途径能够有效地揭示电离缺陷和位移缺陷之间交互作用机制,对材料和器件空间环境效应地面模拟试验和研究具有重大的意义。在空间环境效应研究与抗辐照加固技术应用中,有着明显的优势和广泛的应用前景。
附图说明
图1是入射粒子在本发明导体-绝缘体-半导体的结构中的输运示意图;
图2是实验一中经110keV电子辐照后,MIS结构的深能级瞬态谱图;
图3是实验一中经40MeV Br离子辐照后,MIS结构的深能级瞬态谱图;
图4是实验一中先经110keV电子辐照,再进行40MeV Br离子辐照后,MIS结构的深能级瞬态谱图。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式一种研究电离缺陷和位移缺陷间接交互作用的试验方法按照以下步骤进行:
一、将绝缘体、半导体与导体按照每层从上到下的顺序制备成导体-绝缘体-半导体的结构,其中半导体的掺杂浓度为1E14/cm3~1E17/cm3;常温条件下,绝缘体的电阻率不小于1E12Ω·cm,导体的电阻率不大于1E~4Ω·cm;
二、导体-绝缘体-半导体中导体、绝缘体和半导体的厚度分别为a1、a2和a3,其中,a2≤1/5a3,a2≥10a1
三、确定导体-绝缘体-半导体中每层导体、绝缘体及半导体的组分、成份、密度及化学式,通过Geant4软件,计算不同能量入射粒子I在导体-绝缘体-半导体中的入射深度d1,且d1>a1
四、根据步骤三中不同能量入射粒子I的能量,通过Geant4软件计算单位注量的入射粒子I在绝缘体内的电离吸收剂量和位移吸收剂量,其中Id1表示电离吸收剂量,Dd1表示位移吸收剂量;
计算log[(Id1+Dd1)/Dd1];
五、若入射粒子I在绝缘体内log[(Id1+Dd1)/Dd1]<5,需要返回到步骤三,重新选择粒子种类或能量,继续计算;
若入射粒子I在绝缘体内log[(Id1+Dd1)/Dd1]≥5,则能量下的入射粒子I会在绝缘体中产生稳定的电离缺陷;进行步骤六;
六、通过Geant4软件,计算不同能量入射粒子II在导体-绝缘体-半导体结构中的入射深度d2,且d2>a1+a2
根据不同能量入射粒子II的能量,通过Geant4软件计算单位注量的入射粒子II在半导体内的电离吸收剂量和位移吸收剂量,其中Id2表示电离吸收剂量,Dd2表示位移吸收剂量;
计算log[(Id2+Dd2)/Dd2];
若入射粒子II在绝缘体内3<log[(Id2+Dd2)/Dd2],则需要返回到步骤六,重新选择粒子种类或能量,继续计算;
若入射粒子II在半导体内log[(Id2+Dd2)/Dd2]≤3,则能量下的入射粒子I会在半导体中产生稳定的位移缺陷;即完成电离缺陷和位移缺陷的间接交互作用研究。
具体实施方式二:本实施方式与具体实施方式一不同的是步骤一中所述的导体为金属。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是步骤一中所述的导体为金、银、铂或铝。其它与具体实施方式一或二相同。
具体实施方式四:本具体实施方式与具体实施方式一至三之一不同的是步骤一中所述的绝缘体为SiO2。其它与具体实施方式一至三之一相同。
具体实施方式五:本具体实施方式与具体实施方式一至四之一不同的是步骤一中所述的半导体为N型的Si或P型的Si。其它与具体实施方式一至四之一相同。
具体实施方式六:本具体实施方式与具体实施方式一至五之一不同的是步骤三中所述入射粒子I为电子、质子、重离子、中子、光子或介子。其它与具体实施方式一至五之一相同。
具体实施方式七:本具体实施方式与具体实施方式一至六之一不同的是步骤六中所述入射粒子II为电子、质子、重离子、中子、光子或介子。其它与具体实施方式一至六之一相同。
采用下述实验验证本发明效果:
实验一:
一种研究电离缺陷和位移缺陷间接交互作用的试验方法按照以下步骤进行:
一、将SiO2、金N型的Si与金按照每层从上到下的顺序制备成金-SiO2-金N型的Si的结构(MIS结构),其中金N型的Si的掺杂浓度为1E15/cm3;常温条件下,SiO2的电阻率不小于1E12Ω·cm,金的电阻率不大于1E~4Ω·cm;
二、MIS结构中金、SiO2和金N型的Si的厚度分别为200nm、2um和20um;
三、通过Geant4软件,计算不同能量入射粒子I(110keV电子)在MIS结构中的入射深度d1,且d1>a1
d1=100μm
四、根据步骤三中不同能量入射粒子I的能量,通过Geant4软件计算单位注量的入射粒子I在SiO2内的电离吸收剂量和位移吸收剂量,其中Id1表示电离吸收剂量,Dd1表示位移吸收剂量;
Id1=7.9×10-8rad/(1/cm2)
Dd1=1.4×10-13rad/(1/cm2)
计算log[(Id1+Dd1)/Dd1]=5.7;
五、若入射粒子I在SiO2内log[(Id1+Dd1)/Dd1]≥5,则能量下的入射粒子I会在SiO2中产生稳定的电离缺陷;
六、通过Geant4软件,计算不同能量入射粒子II(40MeV Br离子)在金-SiO2-金N型的Si结构中的入射深度d2;且d2>a1+a2
d2=10μm
根据不同能量入射粒子II的能量,通过Geant4软件计算单位注量的入射粒子II在N型的Si内的电离吸收剂量和位移吸收剂量,其中Id2表示电离吸收剂量,Dd2表示位移吸收剂量;
Id2=4.7×10-4rad/(1/cm2)
Dd2=2.9×10-6rad/(1/cm2)
计算log[(Id2+Dd2)/Dd2]=2.2;
若入射粒子II在金N型的Si内log[(Id2+Dd2)/Dd2]≤3,则能量下的入射粒子I会在N型的Si中产生稳定的位移缺陷,即完成电离缺陷和位移缺陷的间接交互作用研究。
图2给出了经110keV电子辐照后,MIS结构的深能级瞬态谱结果。由图可见,此时,MIS结构中呈现明显的电离缺陷(氧化物电荷和界面态)。
图3给出了经40MeV Br离子辐照后,MIS结构的深能级瞬态谱结果。由图可见,此时,MIS结构中呈现明显的位移缺陷。
图4给出了,先经110keV电子辐照,再进行40MeV Br离子辐照。由图可见,在进行电子辐照后,再进行重离子辐照时,位移缺陷信号明显减弱。出现了间接交互作用的结果。

Claims (7)

1.一种研究电离缺陷和位移缺陷间接交互作用的试验方法,其特征在于一种研究电离缺陷和位移缺陷间接交互作用的试验方法按照以下步骤进行:
一、将绝缘体、半导体与导体按照每层从上到下的顺序制备成导体-绝缘体-半导体的结构,其中半导体的掺杂浓度为1E14/cm3~1E17/cm3;常温条件下,绝缘体的电阻率不小于1E12Ω·cm,导体的电阻率不大于1E~4Ω·cm;
二、导体-绝缘体-半导体中导体、绝缘体和半导体的厚度分别为a1、a2和a3,其中,a2≤1/5a3,a2≥10a1
三、确定导体-绝缘体-半导体中每层导体、绝缘体及半导体的组分、成份、密度及化学式,通过Geant4软件,计算不同能量入射粒子I在导体-绝缘体-半导体中的入射深度d1,且d1>a1
四、根据步骤三中不同能量入射粒子I的能量,通过Geant4软件计算单位注量的入射粒子I在绝缘体内的电离吸收剂量和位移吸收剂量,其中Id1表示电离吸收剂量,Dd1表示位移吸收剂量;
计算log[(Id1+Dd1)/Dd1];
五、若入射粒子I在绝缘体内log[(Id1+Dd1)/Dd1]<5,需要返回到步骤三,重新选择粒子种类或能量,继续计算;
若入射粒子I在绝缘体内log[(Id1+Dd1)/Dd1]≥5,则能量下的入射粒子I会在绝缘体中产生稳定的电离缺陷;进行步骤六;
六、通过Geant4软件,计算不同能量入射粒子II在导体-绝缘体-半导体结构中的入射深度d2,且d2>a1+a2
根据不同能量入射粒子II的能量,通过Geant4软件计算单位注量的入射粒子II在半导体内的电离吸收剂量和位移吸收剂量,其中Id2表示电离吸收剂量,Dd2表示位移吸收剂量;
计算log[(Id2+Dd2)/Dd2];
若入射粒子II在绝缘体内3<log[(Id2+Dd2)/Dd2],则需要返回到步骤六,重新选择粒子种类或能量,继续计算;
若入射粒子II在半导体内log[(Id2+Dd2)/Dd2]≤3,则能量下的入射粒子I会在半导体中产生稳定的位移缺陷;即完成电离缺陷和位移缺陷的间接交互作用研究。
2.根据权利要求1所述一种研究电离缺陷和位移缺陷间接交互作用的试验方法,其特征在于步骤一中所述的导体为金属。
3.根据权利要求1所述一种研究电离缺陷和位移缺陷间接交互作用的试验方法,其特征在于步骤一中所述的导体为金、银、铂或铝。
4.根据权利要求1所述一种研究电离缺陷和位移缺陷间接交互作用的试验方法,其特征在于步骤一中所述的绝缘体为SiO2
5.根据权利要求1所述一种研究电离缺陷和位移缺陷间接交互作用的试验方法,其特征在于步骤一中所述的半导体为N型的Si或P型的Si。
6.根据权利要求1所述一种研究电离缺陷和位移缺陷间接交互作用的试验方法,其特征在于步骤三中所述入射粒子I为电子、质子、重离子、中子、光子或介子。
7.根据权利要求1所述一种研究电离缺陷和位移缺陷间接交互作用的试验方法,其特征在于步骤六中所述入射粒子II为电子、质子、重离子、中子、光子或介子。
CN201810136616.XA 2018-02-09 2018-02-09 一种研究电离缺陷和位移缺陷间接交互作用的试验方法 Active CN108345747B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810136616.XA CN108345747B (zh) 2018-02-09 2018-02-09 一种研究电离缺陷和位移缺陷间接交互作用的试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810136616.XA CN108345747B (zh) 2018-02-09 2018-02-09 一种研究电离缺陷和位移缺陷间接交互作用的试验方法

Publications (2)

Publication Number Publication Date
CN108345747A true CN108345747A (zh) 2018-07-31
CN108345747B CN108345747B (zh) 2021-04-09

Family

ID=62960141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810136616.XA Active CN108345747B (zh) 2018-02-09 2018-02-09 一种研究电离缺陷和位移缺陷间接交互作用的试验方法

Country Status (1)

Country Link
CN (1) CN108345747B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541670A (zh) * 2018-11-19 2019-03-29 西北核技术研究所 散裂中子源1MeV等效中子注量的测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142575A1 (en) * 2006-06-07 2007-12-13 Wickman Goeran Device for measuring absorbed dose in an ionizing radiation field and use of the device
CN103116176A (zh) * 2013-01-23 2013-05-22 哈尔滨工业大学 电子元器件带电粒子辐照效应地面等效注量计算方法
CN105866573A (zh) * 2016-03-28 2016-08-17 北京空间飞行器总体设计部 一种基于重离子加速器的单粒子软错误防护设计验证方法
CN106645216A (zh) * 2016-11-18 2017-05-10 中国航天标准化研究所 绝缘材料在轨性能退化的预测方法
CN106644907A (zh) * 2016-10-19 2017-05-10 哈尔滨工业大学 低地球轨道航天器用暴露材料空间综合环境效应地面模拟试验方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142575A1 (en) * 2006-06-07 2007-12-13 Wickman Goeran Device for measuring absorbed dose in an ionizing radiation field and use of the device
CN103116176A (zh) * 2013-01-23 2013-05-22 哈尔滨工业大学 电子元器件带电粒子辐照效应地面等效注量计算方法
CN105866573A (zh) * 2016-03-28 2016-08-17 北京空间飞行器总体设计部 一种基于重离子加速器的单粒子软错误防护设计验证方法
CN106644907A (zh) * 2016-10-19 2017-05-10 哈尔滨工业大学 低地球轨道航天器用暴露材料空间综合环境效应地面模拟试验方法
CN106645216A (zh) * 2016-11-18 2017-05-10 中国航天标准化研究所 绝缘材料在轨性能退化的预测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541670A (zh) * 2018-11-19 2019-03-29 西北核技术研究所 散裂中子源1MeV等效中子注量的测量方法

Also Published As

Publication number Publication date
CN108345747B (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
CN108460196B (zh) 双极器件异种辐照源电离损伤等效评价试验方法
Paternò et al. Perovskite solar cell resilience to fast neutrons
CN107229775A (zh) 利用蒙特卡罗模拟评估光电成像器件辐射损伤的方法
Li et al. Synergistic radiation effects on PNP transistors caused by protons and electrons
CN105552113A (zh) 一种辐射敏感场效应晶体管及其制备方法
CN108254668B (zh) 分析器件电离辐射损伤过程中加速界面态缺陷形成的方法
Li et al. Characteristic of displacement defects in npn transistors caused by various heavy ion irradiations
US9786608B2 (en) Wafer structure for electronic integrated circuit manufacturing
CN108345747A (zh) 一种研究电离缺陷和位移缺陷间接交互作用的试验方法
Poklonski et al. Impedance and barrier capacitance of silicon diodes implanted with high-energy Xe ions
CN108346565B (zh) 一种基于电离辐照诱导位移缺陷退火的方法
US9378955B2 (en) Wafer structure for electronic integrated circuit manufacturing
US9396947B2 (en) Wafer structure for electronic integrated circuit manufacturing
Zhang et al. Synergistic effect of total ionizing dose on single event effect induced by pulsed laser microbeam on SiGe heterojunction bipolar transistor
Pavlov et al. Simulation of the current induced by 63 Ni beta radiation
CN108363864A (zh) 一种研究电离缺陷和位移缺陷直接交互作用的试验方法
Geng et al. Modeling the applicability of linear energy transfer on single event upset occurrence
Xing-Ji et al. Radiation effects on MOS and bipolar devices by 8 MeV protons, 60 MeV Br ions and 1 MeV electrons
Kumar et al. Influence of high dose gamma irradiation on electrical characteristics of Si photo detectors
Livingstone et al. Charge collection in n-SOI planar microdosimeters
CN108362965A (zh) 一种基于位移损伤抑制氧化物俘获电荷形成的方法
Yannakopoulos et al. Influence of ionizing radiation in electronic and optoelectronic properties of III–V semiconductor compounds
CN108335979A (zh) 同时产生电离和位移缺陷的辐照粒子能量选择方法
Yang et al. Effect of H2 on interface traps in the LPNP transistors caused by 3 MeV proton irradiations
Puzanov et al. Computational and experimental simulation of static memory cells of submicron microcircuits under the effect of neutron fluxes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant