CN108344866B - Micro-fluidic chip detection system and method for detecting sample based on same - Google Patents
Micro-fluidic chip detection system and method for detecting sample based on same Download PDFInfo
- Publication number
- CN108344866B CN108344866B CN201810031266.0A CN201810031266A CN108344866B CN 108344866 B CN108344866 B CN 108344866B CN 201810031266 A CN201810031266 A CN 201810031266A CN 108344866 B CN108344866 B CN 108344866B
- Authority
- CN
- China
- Prior art keywords
- sample
- microfluidic
- microspheres
- cavity
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 123
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000004005 microsphere Substances 0.000 claims abstract description 123
- 238000007405 data analysis Methods 0.000 claims abstract description 8
- 238000004458 analytical method Methods 0.000 claims abstract description 7
- 239000000523 sample Substances 0.000 claims description 133
- 238000006243 chemical reaction Methods 0.000 claims description 34
- 239000000539 dimer Substances 0.000 claims description 24
- 239000000243 solution Substances 0.000 claims description 20
- 239000003068 molecular probe Substances 0.000 claims description 17
- 239000007853 buffer solution Substances 0.000 claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 9
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 claims description 6
- 239000004793 Polystyrene Substances 0.000 claims description 5
- 239000000872 buffer Substances 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- 229920002223 polystyrene Polymers 0.000 claims description 5
- 102000004169 proteins and genes Human genes 0.000 claims description 5
- 108090000623 proteins and genes Proteins 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 238000011010 flushing procedure Methods 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 claims description 3
- 229960002685 biotin Drugs 0.000 claims description 3
- 235000020958 biotin Nutrition 0.000 claims description 3
- 239000011616 biotin Substances 0.000 claims description 3
- 229940098773 bovine serum albumin Drugs 0.000 claims description 3
- 238000001179 sorption measurement Methods 0.000 claims description 3
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- 238000003491 array Methods 0.000 claims description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims 1
- 230000002349 favourable effect Effects 0.000 abstract 1
- 230000004907 flux Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 10
- 239000000090 biomarker Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000002105 nanoparticle Substances 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 239000012488 sample solution Substances 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000006471 dimerization reaction Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 239000012491 analyte Substances 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000001566 impedance spectroscopy Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011898 label-free detection Methods 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000003701 mechanical milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 238000012123 point-of-care testing Methods 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 230000006916 protein interaction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Description
技术领域technical field
本发明涉及生命科学与医学领域,并且特别地,涉及一种微流控芯片检测系统及基于该系统进行样品检测的方法。The invention relates to the fields of life science and medicine, and in particular, to a microfluidic chip detection system and a method for sample detection based on the system.
背景技术Background technique
生物标志物是检测和评估常规生物学过程、发病机理或治疗性干预的药理学反应的有效手段,因此,对生物标志物进行便利地且准确地检测和定量是现代生物技术的核心目标。对于临床应用而言,三明治免疫测定是使用最为广泛的目标生物标志物检测手段。一般而言,这些方法需要一些类型的标记(酶或荧光等)来选择性和灵敏地检测目标分析物。同时还需要特定的仪器(例如读板仪)和许多洗涤步骤。最近,快速、准确、便携且无需标志物的生物标志物定量检测方法的快速发展使得即时诊断(亦称为床边检测)这个概念成为现实。其中,诸如阻抗谱、电位传感器、表面增强拉曼散射技术、和重量传感器等生物传感器已经被开发且用目标生物标志物的直接定量测量。这些方法通过将特定的受体固定在传感器表面,因而不需要任何形成的标记。另一种很有前景的无标记检测方法是基于生物功能化的微米/纳米粒子。以这种微米/纳米粒子形成的分子探针或载体,已被广泛地用于从复杂样品中直接捕获目标蛋白质或DNA。通过分析这些颗粒的聚集状态,比色法或粒径分析仪已被用于生物标志物的检测。通过固定在颗粒表面上的受体与溶液中的目标分析物之间的特定蛋白质相互作用(例如抗原—抗体),可以使得纳米粒子形成聚集体。一般来说,生物标志物浓度越高,产生的聚集体也就越多,并且越大。Biomarkers are effective means to detect and assess the pharmacological response of routine biological processes, pathogenesis or therapeutic interventions, therefore, convenient and accurate detection and quantification of biomarkers is a core goal of modern biotechnology. For clinical applications, sandwich immunoassays are the most widely used method for detecting biomarkers of interest. Generally, these methods require some type of label (enzymatic or fluorescent, etc.) to selectively and sensitively detect the target analyte. It also requires specific equipment (eg a plate reader) and many washing steps. Recently, the rapid development of rapid, accurate, portable and marker-free biomarker quantification methods has made the concept of point-of-care diagnosis (also known as point-of-care testing) a reality. Among them, biosensors such as impedance spectroscopy, potentiometric sensors, surface-enhanced Raman scattering techniques, and gravimetric sensors have been developed and used for direct quantitative measurement of target biomarkers. These methods do not require any label formation by immobilizing specific receptors on the sensor surface. Another promising label-free detection method is based on biofunctionalized micro/nanoparticles. Molecular probes or carriers formed with such micro/nanoparticles have been widely used to directly capture target proteins or DNA from complex samples. By analyzing the aggregation state of these particles, colorimetric methods or particle size analyzers have been used for biomarker detection. Nanoparticles can be made to form aggregates through specific protein interactions (eg, antigen-antibody) between receptors immobilized on the particle surface and the target analyte in solution. In general, the higher the biomarker concentration, the more aggregates are produced, and the larger they are.
然而,因为缺乏相兼容的方法或工具来准确地量化聚集状态(包括每个聚集体内的纳米颗粒数目等信息),纳米颗粒的聚集与生物标志物浓度之间的准确关系尚未被彻底揭示。除纳米粒子之外,人们也开始对微米粒子的表面进行抗体修饰,并且利用阻抗传感器来检测修饰有特异性抗体的微米小球间的聚集状态,进而实现对抗原的检测。虽然阻抗传感器可以直接读出聚集体的数量,但是这种方法具有通量低、易堵塞,以及分辨率低等问题。此外,开发阻抗分析系统需要专用的流体运输装置和昂贵的数据采集系统,以实现快速和低噪声的电信号处理。这就阻碍了这种电阻抗系统发展成为便携式的检测设备。However, due to the lack of compatible methods or tools to accurately quantify the aggregation state (including information such as the number of nanoparticles within each aggregate), the precise relationship between nanoparticle aggregation and biomarker concentration has not been thoroughly revealed. In addition to nanoparticles, people have also begun to modify the surface of microparticles with antibodies, and use impedance sensors to detect the aggregation state between microspheres modified with specific antibodies, thereby realizing the detection of antigens. Although impedance sensors can directly read out the number of aggregates, this method suffers from low throughput, easy clogging, and low resolution. Furthermore, developing an impedance analysis system requires dedicated fluid transport devices and expensive data acquisition systems for fast and low-noise electrical signal processing. This hinders the development of this electrical impedance system into a portable detection device.
因此,目前亟需一种检测装置以克服现有技术中检测时由于通量低、易堵塞,以及分辨率低导致的不易检测等问题。Therefore, there is an urgent need for a detection device to overcome the problems of difficult detection caused by low throughput, easy clogging, and low resolution in the prior art.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本申请提供一种微流控芯片检测系统及基于该系统进行样品检测的方法,以克服现有技术中检测时由于通量低、易堵塞,以及分辨率低导致的不易检测等问题。实现了高通量、无阻塞、高分辨率的检测。In view of this, the present application provides a microfluidic chip detection system and a method for sample detection based on the system, to overcome the difficulty in detection due to low throughput, easy blockage, and low resolution in the prior art. question. High-throughput, non-blocking, high-resolution detection is achieved.
本申请提供一种微流控芯片检测系统,包括:The application provides a microfluidic chip detection system, including:
微流控检测芯片,包括:Microfluidic detection chip, including:
微流体腔体;microfluidic chamber;
微井阵列,设置于所述微流体腔体内的底面上;a microwell array, disposed on the bottom surface of the microfluidic cavity;
样品导入导管、样品导出导管;其分别连接设置所述微流体腔体的两侧;The sample introduction conduit and the sample export conduit; they are respectively connected and arranged on both sides of the microfluidic cavity;
微流体操作装置,用于使与微球反应后的样品通过样品导入导管进入所述微流体腔体,且通过控制流速以使与微球反应后的样品沉积到所述微井中;A microfluidic operating device, used to make the sample reacted with the microspheres enter the microfluidic cavity through a sample introduction conduit, and control the flow rate to deposit the sample reacted with the microspheres into the microwells;
图像采集装置,设置于所述微井阵列的上方,用于采集沉积于所述微井中的样品的信息;an image acquisition device, arranged above the micro-well array, for acquiring information of the samples deposited in the micro-well;
数据分析装置,用于分析所述图像采集装置采集的样品信息并获取分析结果。A data analysis device, configured to analyze the sample information collected by the image acquisition device and obtain analysis results.
由上,本申请通过微流体操作装置控制流速,并结合本申请的上述结构将微球反应后的样品分散沉积到所述微流控检测芯片的微井中,并进一步通过便携式的图像采集装置(例如手机)采集微井中的信息进行分析,克服了现有技术中由于样品不分散、叠加导致的通量低、易堵塞,以及分辨率低的缺陷,实现了对待测样品高通量、无阻塞、便携式、高分辨率的检测。From the above, the present application controls the flow rate through a microfluidic operating device, and in combination with the above-mentioned structure of the present application, the samples after the microsphere reaction are dispersed and deposited into the microwells of the microfluidic detection chip, and further through a portable image acquisition device ( For example, a mobile phone) collects the information in the micro-well for analysis, which overcomes the defects of low throughput, easy clogging and low resolution caused by non-dispersion and superposition of samples in the prior art, and realizes high throughput and no clogging of the sample to be tested. , Portable, high-resolution detection.
优选地,所述微流体操作装置还用于:将缓冲液通过样品导入导管导入微流体腔体,且通过控制缓冲液的流速将未沉积到所述微井中的样品进行冲洗,使其通过样品导出导管流出。Preferably, the microfluidic operating device is further used for: introducing the buffer solution into the microfluidic chamber through the sample introduction conduit, and flushing the sample not deposited in the microwell by controlling the flow rate of the buffer solution, so that the sample can pass through the sample Outflow from the conduit.
由上,将未沉积到所述微井中的样品进行冲洗,有利于减少对微井中样品检测的干扰。在此时冲洗的过程中,由于微井的存在,使得其中的二聚体不会被冲走。From the above, the samples that are not deposited into the micro-wells are washed, which is beneficial to reduce the interference to the detection of the samples in the micro-wells. During the flushing process at this time, due to the existence of the microwell, the dimer in it will not be washed away.
优选地,所述系统,还包括:Preferably, the system further includes:
根据权利要求2所述的系统,其特征在于,还包括样品反应室:The system of
所述样品反应室为与所述微流体操作装置连通的一独立设置的腔室;或The sample reaction chamber is an independent chamber in communication with the microfluidic manipulation device; or
所述微流体腔体或所述样品导入导管同时兼作为所述样品反应室接。The microfluidic chamber or the sample introduction conduit also serves as the sample reaction chamber connection.
由上,上述样品反应室可以是单独设置的试管、离心管、导管、微腔体等,也可以直接将样品导入导管作为样品反应室,使得设备更加简洁易携带。From the above, the above-mentioned sample reaction chamber can be a separately set test tube, centrifuge tube, catheter, micro-cavity, etc., or the sample can be directly introduced into the catheter as the sample reaction chamber, which makes the device more compact and easy to carry.
优选地,所述微流控检测芯片数量为1或者至少为2;Preferably, the number of the microfluidic detection chips is 1 or at least 2;
当所述微流控检测芯片数量至少为2时;依次相邻的微流控检测芯片通过连接管道依次串联连通;每个微流控检测芯片中的各个微井阵列尺寸一致;不同微流控检测芯片的微井的尺寸沿样品流动方向依次增大。When the number of the microfluidic detection chips is at least 2; successively adjacent microfluidic detection chips are connected in series through connecting pipes; the size of each microwell array in each microfluidic detection chip is the same; The size of the microwells of the detection chip increases sequentially along the flow direction of the sample.
由上,当设置单个微流控检测芯片时,其内设置微井阵列,流入的样品不易阻塞,通量高,且待测样品分散的落入各个微井中,使得检测更加清楚。From the above, when a single microfluidic detection chip is set, a microwell array is set in it, the inflowing sample is not easy to be blocked, the throughput is high, and the sample to be tested falls into each microwell dispersedly, making the detection more clear.
当设置两个以上的微流控检测芯片时(例如3个),可以实现对微球的逐级分类捕捉:第一级微流体腔体用于捕捉反应后微球溶液中的单个微球,第二级微流体腔体主要用于捕捉由两个两个微球组成的二聚体,第三级微流体腔体用于捕捉三个或者三个以上微球组成的聚合体。这样分级处理,可以降低微球的检测与计数难度,进而降低检测误差。When more than two microfluidic detection chips (for example, three) are set up, the microspheres can be classified and captured step by step: the first-stage microfluidic cavity is used to capture a single microsphere in the microsphere solution after the reaction, The second-stage microfluidic cavity is mainly used to capture dimers composed of two or two microspheres, and the third-stage microfluidic cavity is used to capture aggregates composed of three or more microspheres. Such a grading process can reduce the difficulty of detection and counting of microspheres, thereby reducing detection errors.
优选地,依次相邻的微流控检测芯片之间的连接管道上还设置有可被控的阀门。Preferably, a controllable valve is also provided on the connecting pipes between successively adjacent microfluidic detection chips.
由上,通过设置上述的阀门,可以更好的分级实现对不同聚合程度的微球的捕捉。例如,当第一级的微流控检测芯片的微流体腔体捕捉反应后微球溶液中的单个微球时,关闭第一级和第二级微流体腔体之间的管道;当通入缓冲液对未沉积到第一级的微流体腔体的微井中的样品进行冲洗时,打开第一级和第二级微流体腔体之间的管道;同时关闭第二级和第三级微流体腔体之间的管道;将未沉积到第一级的微流体腔体的微井中的样品重新悬浮冲洗至第二级微流体腔体中,使其中的由两个微球组成的二聚体被捕捉到微井中;当通入缓冲液对未沉积到第二级的微流体腔体的微井中的样品进行冲洗时,打开第二级和第三级微流体腔体之间的管道;将未沉积到第二级的微流体腔体的微井中的样品重新悬浮冲洗至第三级微流体腔体中,使其中的由三个或者三个以上微球组成的聚合体被捕捉到微井中。这样分级处理,可以降低微球的检测与计数难度,进而降低检测误差。From the above, by setting the above valve, the capture of microspheres with different degrees of polymerization can be better graded. For example, when the microfluidic cavity of the microfluidic detection chip of the first stage captures a single microsphere in the microsphere solution after the reaction, the pipeline between the first stage and the second stage microfluidic cavity is closed; When the buffer rinses the sample not deposited into the microwells of the microfluidic chamber of the first stage, open the pipeline between the first and second stage microfluidic chambers; close the second and third stage microfluidic chambers at the same time. Conduit between fluidic chambers; resuspend the sample not deposited in the microwells of the first-stage microfluidic chamber into the second-stage microfluidic chamber, allowing the dimerization of two microspheres in it The body is captured into the micro-well; when the sample in the micro-well that is not deposited into the micro-fluidic chamber of the second stage is flushed with the buffer solution, the pipeline between the second-stage and the third-stage microfluidic chamber is opened; The samples that were not deposited in the microwells of the second-stage microfluidic chamber were resuspended and rinsed into the third-stage microfluidic chamber, so that the aggregates composed of three or more microspheres were captured in the microfluidic chambers. in the well. Such a grading process can reduce the difficulty of detection and counting of microspheres, thereby reducing detection errors.
优选地,所述微流体操作装置包括:气压流体泵或注射泵。Preferably, the microfluidic manipulation device comprises: a pneumatic fluid pump or a syringe pump.
优选地,所述微球直径范围为:1微米-20微米;Preferably, the diameter of the microspheres ranges from 1 micron to 20 microns;
所述微球的材料至少包括但不限于以下其一:聚苯乙烯、二氧化硅、四氧化三铁;The materials of the microspheres include but are not limited to at least one of the following: polystyrene, silicon dioxide, and iron tetroxide;
其中,所述微球表面修饰有特异性分子探针及设置于所述分子探针间隙的用于减少分子非特异性吸附的阻抗分子;Wherein, the surface of the microsphere is modified with specific molecular probes and impedance molecules disposed in the gaps of the molecular probes for reducing non-specific adsorption of molecules;
其中,所述特异性分子探针至少包括但不限于以下其一:DNA、RNA、蛋白质分子、生物素分子;Wherein, the specific molecular probe includes but is not limited to at least one of the following: DNA, RNA, protein molecule, biotin molecule;
其中,所述阻抗分子至少包括但不限于以下其一:牛血清白蛋白BSA、聚乙二醇PEG。Wherein, the impedance molecules include but are not limited to at least one of the following: bovine serum albumin BSA, polyethylene glycol PEG.
由上,其中,微球的直接范围可以是1-100微米,优选为1-10微米,可以根据需要进行选择。From the above, the direct range of the microspheres can be 1-100 microns, preferably 1-10 microns, which can be selected according to needs.
优选地,所述微井的直径为单个微球直径3-10倍;Preferably, the diameter of the microwell is 3-10 times the diameter of a single microsphere;
所述微井的深度为单个微球直径的1-5倍;The depth of the microwell is 1-5 times the diameter of a single microsphere;
其中,所述微流体腔体的高度为单个微球直径2-10倍;Wherein, the height of the microfluidic cavity is 2-10 times the diameter of a single microsphere;
其中,所述微井在水平方向投影为:圆形、椭圆形或多边形。Wherein, the projection of the micro-well in the horizontal direction is: circle, ellipse or polygon.
由上,微井直径优选地为所单个微球直径的3-5倍;微井深度优选的单个微球直径的2-3倍。所述微流体腔体的高度优选地为单个微球直径2-10倍。From the above, the diameter of the microwell is preferably 3-5 times the diameter of the single microsphere; the depth of the microwell is preferably 2-3 times the diameter of the single microsphere. The height of the microfluidic cavity is preferably 2-10 times the diameter of a single microsphere.
优选地,所述微流体腔体及微井的制作材料至少包括但不限于以下其一:透明有机聚合物、玻璃、二氧化硅。Preferably, the fabrication materials of the microfluidic cavity and the microwell include but are not limited to at least one of the following: transparent organic polymers, glass, and silicon dioxide.
由上,所述微流体腔体及微井的制作材料可以是一切的透明材料。以有利于后续的图像采集。From the above, the fabrication materials of the microfluidic cavity and the microwell can be all transparent materials. to facilitate subsequent image acquisition.
优选地,所述导入导管和导出导管的制作材料至少包括但不限于以下其一:塑料管,Teflon管,玻璃导管、金属导管。Preferably, the materials for making the introduction conduit and the outflow conduit include but are not limited to at least one of the following: a plastic tube, a Teflon tube, a glass conduit, and a metal conduit.
本申请还提供一种基于微流控芯片检测系统进行样品检测的方法,包括:The application also provides a method for sample detection based on a microfluidic chip detection system, including:
A、将待测样品置于盛有微球的样品反应室中,使待测样品中的待测目标分子与所述微球反应形成二聚体;A. Place the sample to be tested in a sample reaction chamber containing microspheres, so that the target molecule to be tested in the sample to be tested reacts with the microspheres to form a dimer;
B、通过微流体操作装置使反应后的样品通过样品导入导管进入微流控检测芯片的微流体腔体,且通过控制流速以使所述二聚体沉积到所述微井中;B. The reacted sample is introduced into the microfluidic cavity of the microfluidic detection chip through the sample introduction conduit through the microfluidic operating device, and the dimer is deposited into the microwell by controlling the flow rate;
C、通过所述微流体操作装置使缓冲液通过样品导入导管进入微流体腔体,且通过控制缓冲液的流速将未沉积到所述微井中的样品进行冲洗,使其通过样品导出导管流出;C. Through the microfluidic operating device, the buffer solution enters the microfluidic chamber through the sample introduction conduit, and the sample not deposited in the microwell is washed by controlling the flow rate of the buffer solution, so that it flows out through the sample export conduit;
D、通过图像采集装置采集沉积于所述微井中的所述二聚体的信息;D. Collect the information of the dimer deposited in the microwell by an image acquisition device;
E、通过数据分析装置分析所述图像采集装置采集的二聚体的信息,以获取待测分子在待测样品中的浓度。E. The information of the dimer collected by the image acquisition device is analyzed by the data analysis device to obtain the concentration of the molecule to be tested in the sample to be tested.
优选地,所述微流控检测芯片数量为1或者至少为2;Preferably, the number of the microfluidic detection chips is 1 or at least 2;
当所述微流控检测芯片数量至少为2时;依次相邻的微流控检测芯片通过连接管道依次串联连通;每个微流控检测芯片中的各个微井阵列尺寸一致;不同微流控检测芯片的微井的尺寸沿样品流动方向依次增大;When the number of the microfluidic detection chips is at least 2; successively adjacent microfluidic detection chips are connected in series through connecting pipes; the size of each microwell array in each microfluidic detection chip is the same; The size of the microwells of the detection chip increases sequentially along the flow direction of the sample;
其中,依次相邻的微流控检测芯片之间的连接管道上还设置有可被控的阀门。Wherein, a controllable valve is also provided on the connecting pipeline between the adjacent microfluidic detection chips.
由上,通过设置上述的阀门,可以更好的分级实现对不同聚合程度的微球的捕捉。例如,当第一级的微流控检测芯片的微流体腔体捕捉反应后微球溶液中的单个微球时,关闭第一级和第二级微流体腔体之间的管道;当通入缓冲液对未沉积到第一级的微流体腔体的微井中的样品进行冲洗时,打开第一级和第二级微流体腔体之间的管道;同时关闭第二级和第三级微流体腔体之间的管道;将未沉积到第一级的微流体腔体的微井中的样品重新悬浮冲洗至第二级微流体腔体中,使其中的由两个微球组成的二聚体被捕捉到微井中;当通入缓冲液对未沉积到第二级的微流体腔体的微井中的样品进行冲洗时,打开第二级和第三级微流体腔体之间的管道;将未沉积到第二级的微流体腔体的微井中的样品重新悬浮冲洗至第三级微流体腔体中,使其中的由三个或者三个以上微球组成的聚合体被捕捉到微井中。这样分级处理,可以降低微球的检测与计数难度,进而降低检测误差。From the above, by setting the above valve, the capture of microspheres with different degrees of polymerization can be better graded. For example, when the microfluidic cavity of the microfluidic detection chip of the first stage captures a single microsphere in the microsphere solution after the reaction, the pipeline between the first stage and the second stage microfluidic cavity is closed; When the buffer rinses the sample not deposited into the microwells of the microfluidic chamber of the first stage, open the pipeline between the first and second stage microfluidic chambers; close the second and third stage microfluidic chambers at the same time. Conduit between fluidic chambers; resuspend the sample not deposited in the microwells of the first-stage microfluidic chamber into the second-stage microfluidic chamber, allowing the dimerization of two microspheres in it The body is captured into the micro-well; when the sample in the micro-well that is not deposited into the micro-fluidic chamber of the second stage is flushed with the buffer solution, the pipeline between the second-stage and the third-stage microfluidic chamber is opened; The samples that were not deposited in the microwells of the second-stage microfluidic chamber were resuspended and rinsed into the third-stage microfluidic chamber, so that the aggregates composed of three or more microspheres were captured in the microfluidic chambers. in the well. Such a grading process can reduce the difficulty of detection and counting of microspheres, thereby reducing detection errors.
综上所述,本申请通过将微球反应后的样品分散沉积到所述微流控检测芯片的微井中,并进一步通过便携式的图像采集装置(例如手机)采集微井中的信息进行分析,克服了现有技术中由于样品不分散、叠加导致的通量低、易堵塞,以及分辨率低的缺陷,实现了对待测样品高通量、无阻塞、便携式、高分辨率的检测。并且本申请还可以实现对不同的类型的聚合体的分级捕捉,从而降低了检测与计数的难度,进而降低了检测误差。To sum up, the present application overcomes the problem by dispersing and depositing the reacted samples of the microspheres into the microwells of the microfluidic detection chip, and further collecting the information in the microwells through a portable image acquisition device (such as a mobile phone) for analysis. The defects of low throughput, easy blockage, and low resolution caused by non-dispersion and superposition of samples in the prior art are eliminated, and high-throughput, non-blocking, portable, and high-resolution detection of the sample to be tested is realized. In addition, the present application can also realize the hierarchical capture of different types of polymers, thereby reducing the difficulty of detection and counting, thereby reducing detection errors.
附图说明Description of drawings
图1为本申请实施例提供的微流控检测芯片的俯视图;1 is a top view of a microfluidic detection chip provided by an embodiment of the present application;
图2为本申请实施例提供的微流控检测芯片三维立体示意图;2 is a three-dimensional schematic diagram of a microfluidic detection chip provided by an embodiment of the present application;
图3为本申请实施例提供的样品反应室中的微球与样品中的待测目标分子的反应的原理示意图;3 is a schematic diagram of the principle of the reaction between the microspheres in the sample reaction chamber and the target molecule to be measured in the sample provided by the embodiment of the present application;
图4为本申请实施例提供的微流控芯片检测系统整体结构及工作原理示意图;4 is a schematic diagram of the overall structure and working principle of the microfluidic chip detection system provided by the embodiment of the present application;
图5为本申请实施例提供的当样品反应室为样品导入导管时的示意图;5 is a schematic diagram when the sample reaction chamber is a sample introduction conduit according to an embodiment of the present application;
图6为本申请实施例提供的当样品反应室为微流体腔体时的示意图;FIG. 6 is a schematic diagram when the sample reaction chamber is a microfluidic cavity according to an embodiment of the present application;
图7为本申请实施例提供的当微流控检测芯片为两个以上(本实施例为3个,通过导管连通)时的示意图;FIG. 7 is a schematic diagram when there are more than two microfluidic detection chips (three in this embodiment, which are connected through a conduit) according to an embodiment of the present application;
图8为修饰有不同的分子探针的不同大小的微球同时与含有被检测样品混合分别形成不同放入二聚体的示意图;Fig. 8 is a schematic diagram showing that different sizes of microspheres modified with different molecular probes are simultaneously mixed with samples to be tested to form different put-in dimers;
图9为将微流控检测芯片集成到一个便携式黑盒子的结构示意图;FIG. 9 is a schematic structural diagram of integrating a microfluidic detection chip into a portable black box;
图10为通过图像采集装置采集后的图像的示意图;10 is a schematic diagram of an image collected by an image collection device;
图11为本申请实施例的一种实施例检测前列腺癌抗体(PSA)的检测结果的示意图;11 is a schematic diagram of the detection result of detecting prostate cancer antibody (PSA) according to an embodiment of the present application;
图12为本申请实施例提供的基于微流控芯片检测系统进行样品检测的方法的流程示意图。FIG. 12 is a schematic flowchart of a method for sample detection based on a microfluidic chip detection system according to an embodiment of the present application.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments in the present invention, all other embodiments obtained by those of ordinary skill in the art fall within the protection scope of the present invention.
本申请提供一种微流控芯片检测系统及基于该系统进行样品检测的方法,有利于实现对待测样品高通量、无阻塞、便携式、低检测极限的检测。The present application provides a microfluidic chip detection system and a method for sample detection based on the system, which is conducive to realizing high-throughput, non-blocking, portable, and low detection limit detection of the sample to be tested.
如图1-4所示本申请提供一种微流控芯片检测系统,包括:As shown in Figures 1-4, the present application provides a microfluidic chip detection system, including:
微流体检测芯片,包括:Microfluidic detection chip, including:
微流体腔体100;
微井阵列101,设置于所述微流体腔体内的底面上;The
样品导入导管102、样品导出导管103;其分别连接设置所述微流体腔体的两侧;The
微流体操作装置200,用于使与微球反应后的样品通过样品导入导管进入所述微流体腔体,且通过控制流速以使与微球反应后的样品沉积到所述微井中;其中,所述微流体操作装置还用于:将缓冲液通过样品导入导管导入微流体腔体,且通过控制缓冲液的流速将未沉积到所述微井中的样品进行冲洗,使其通过样品导出导管流出。有利于将未沉积到所述微井中的样品进行冲洗,有利于减少对微井中样品检测的干扰。其中,所述微流体操作装置包括:气压流体泵或注射泵或者其他原理诸如电学驱动的流体泵等。The
图像采集装置300,设置于所述微井阵列的上方,用于采集沉积于所述微井中的样品的信息。The
数据分析装置,用于分析所述图像采集装置采集的样品信息并获取分析结果。利用图片处理技术,例如Matlab程序、深度学习对图片进行处理提取微球聚合体形状、尺寸、数量与比例信息,从而进一步地据此获取待测目标分子的浓度。A data analysis device, configured to analyze the sample information collected by the image acquisition device and obtain analysis results. Image processing technology, such as Matlab program and deep learning, is used to process the image to extract the shape, size, quantity and proportion information of the microsphere aggregate, so as to further obtain the concentration of the target molecule to be measured.
其中,所述系统,还包括:Wherein, the system also includes:
样品反应室400,与所述微流体操作装置连接;在样品反应室中,微球与样品中的待测目标分子进行反应,形成二聚体。具体的原理如图3所示。微球31表面修饰有特异性吸附样品中目标分子32的分子探针33。此外,被测样品34中还包含有其他分子35和36等。利用分子探针33与目标分子32的特异性结合,形成了微球聚合体37。The
其中,所述样品反应室为单独设置的腔室;或者,将所述样品导入导管或微流体腔体作为样品反应室。其中,上述样品反应室可以是单独设置的试管、离心管、导管、微腔体等,也可以直接将样品导入导管或微流体腔体作为样品反应室,使得设备更加简洁易携带。Wherein, the sample reaction chamber is a separate chamber; or, the sample is introduced into a conduit or a microfluidic cavity as a sample reaction chamber. The above-mentioned sample reaction chamber can be a separately set test tube, centrifuge tube, conduit, micro-cavity, etc., or the sample can be directly introduced into the conduit or microfluidic cavity as the sample reaction chamber, which makes the device more compact and easy to carry.
其中,所述微流体腔体为单个腔体;或者Wherein, the microfluidic cavity is a single cavity; or
通过连接管道并联连接相通的两个以上的腔体;其中,每一个腔体中设置一微井阵列;其中,每一个腔体中的微井的尺寸一致,不同的腔体中的微井的尺寸沿着样品导入导管--微流体腔体--样品导出导管的方向依次增大。Two or more cavities that communicate with each other are connected in parallel by connecting pipes; wherein, a micro-well array is arranged in each cavity; wherein, the size of the micro-wells in each cavity is the same, and the micro-wells in different cavities have the same size. The size increases sequentially along the direction of the sample introduction conduit—the microfluidic chamber—the sample outflow conduit.
由上,单个腔体,其内设置微井阵列,设置流入的样品不易阻塞,通量高,且待测样品分散的落入各个微井中,使得检测更加清楚。From the above, a single cavity is provided with an array of microwells, the inflowing samples are not easily blocked, the throughput is high, and the samples to be tested fall into each microwell dispersedly, making the detection more clear.
两个以上的腔体的设置,可以实现对微球的逐级分类捕捉:第一级微流体腔体用于捕捉反应后微球溶液中的单个微球,第二级微流体腔体主要用于捕捉由两个两个微球组成的二聚体,第三级微流体腔体用于捕捉三个或者三个以上微球组成的聚合体。这样分级处理,可以降低微球的检测与计数难度,进而降低检测误差。The setting of more than two cavities can realize the step-by-step classification and capture of microspheres: the first-stage microfluidic cavity is used to capture a single microsphere in the microsphere solution after the reaction, and the second-stage microfluidic cavity is mainly used for The third-stage microfluidic chamber is used to capture the polymer composed of three or more microspheres. Such a grading process can reduce the difficulty of detection and counting of microspheres, thereby reducing detection errors.
其中,与样品中的待测目标分子进行结合的微球直径范围为:1微米-20微米;其中,微球的直接范围可以是1-100微米,优选为1-10微米,或1微米-20微米;可以根据具体需要进行选择。Wherein, the diameter range of the microspheres to be combined with the target molecule to be detected in the sample is: 1 micrometer-20 micrometers; wherein, the direct range of the microspheres can be 1-100 micrometers, preferably 1-10 micrometers, or 1 micrometer- 20 microns; can be selected according to specific needs.
所述微球的材料至少包括但不限于以下其一:聚苯乙烯、二氧化硅、四氧化三铁;The materials of the microspheres include but are not limited to at least one of the following: polystyrene, silicon dioxide, and iron tetroxide;
其中,所述微球表面修饰有特异性分子探针及设置于所述分子探针间隙的用于减少分子非特异性吸附的阻抗分子;Wherein, the surface of the microsphere is modified with specific molecular probes and impedance molecules disposed in the gaps of the molecular probes for reducing non-specific adsorption of molecules;
其中,所述特异性分子探针至少包括但不限于以下其一:(脱氧核糖核酸)DNA、(核糖核酸)RNA、蛋白质分子、生物素分子;Wherein, the specific molecular probes include but are not limited to at least one of the following: (deoxyribonucleic acid) DNA, (ribonucleic acid) RNA, protein molecules, biotin molecules;
其中,所述阻抗分子至少包括但不限于以下其一:(牛血清蛋白)BSA、(低聚乙二醇-聚L赖氨酸)PLL-OEG。Wherein, the impedance molecules include but are not limited to at least one of the following: (bovine serum albumin) BSA, (oligoethylene glycol-poly-L-lysine) PLL-OEG.
优选地,所述微井的直径为单个微球直径3-10倍;优选地为所单个微球直径的3-5倍。Preferably, the diameter of the microwell is 3-10 times the diameter of a single microsphere; preferably, it is 3-5 times the diameter of the single microsphere.
所述微井的深度为单个微球直径的1-5倍;深度优选的单个微球直径的2-3倍。The depth of the microwell is 1-5 times the diameter of a single microsphere; the depth is preferably 2-3 times the diameter of a single microsphere.
其中,所述微流体腔体的高度为单个微球直径2-10倍;Wherein, the height of the microfluidic cavity is 2-10 times the diameter of a single microsphere;
其中,所述微井在水平方向投影为:可以为各种拓扑结构,例如圆形、椭圆形或多边形(菱形、梯形、三角形、正方形、长方形、平行四边形等)。Wherein, the horizontal projection of the microwell can be various topological structures, such as circle, ellipse or polygon (rhombus, trapezoid, triangle, square, rectangle, parallelogram, etc.).
其中,所述微流体腔体及微井的制作材料至少包括但不限于以下其一:透明有机聚合物、玻璃、二氧化硅、塑料等。由上,所述微流体腔体及微井的制作材料可以是一切的透明材料。以有利于后续的图像采集。微流体腔体与微井通过键合或者机械装卡组合在一起。加工微米尺度的微流体腔体和微井的主要方式有湿法刻蚀、干法刻蚀、激光刻蚀、机械铣削等方法。Wherein, the fabrication materials of the microfluidic cavity and the microwell include, but are not limited to, at least one of the following: transparent organic polymers, glass, silicon dioxide, plastic, and the like. From the above, the fabrication materials of the microfluidic cavity and the microwell can be all transparent materials. to facilitate subsequent image acquisition. The microfluidic cavity and the microwell are combined by bonding or mechanical clamping. The main methods of processing micron-scale microfluidic chambers and microwells include wet etching, dry etching, laser etching, and mechanical milling.
其中,所述导入导管和导出导管的制作材料至少包括但不限于以下其一:塑料管,Teflon管,玻璃导管、金属导管。Wherein, the materials for making the introduction conduit and the outflow conduit at least include but are not limited to one of the following: a plastic tube, a Teflon tube, a glass conduit, and a metal conduit.
为了更清楚的说明本申请的技术方案,现将本申请的微流控芯片检测系统的各种方案下的工作原理说明如下:In order to illustrate the technical solutions of the present application more clearly, the working principles of the various solutions of the microfluidic chip detection system of the present application are now described as follows:
一、1、如图1-4所示,将待测样品置于设置有微球的样品反应室400中,使待测样品中的待测分子与所述微球31表面的分子探针33反应形成二聚体37;1. 1. As shown in Figures 1-4, the sample to be tested is placed in the
2、通过所述微流体操作装置200(气压流体泵或注射泵或者其他原理诸如电学驱动的流体泵)使反应后的样品通过样品导入导管102进入微流体腔体,且通过控制流速以使所述二聚体沉积到所述微井101中;2. Make the reacted sample enter the microfluidic chamber through the
3、通过所述微流体操作装置使缓冲液通过样品导入导管进入微流体腔体(单个),且通过控制缓冲液的流速将未沉积到所述微井中的样品进行冲洗,使其通过样品导出导管103流出。由于微井的存在,使得在其中的二聚体不会被冲走。3. Through the microfluidic operating device, the buffer solution enters the microfluidic chamber (single) through the sample introduction conduit, and the sample that is not deposited in the microwell is washed by controlling the flow rate of the buffer solution, so that it is exported through the
4、通过图像采集装置300采集沉积于所述微井101中的所述二聚体37的信息;其中,上述的微流控检测芯片固定于便携式显微镜(图像采集装置300)上,通过在所述显微镜上设置一部手机,该手机的摄像头通过显微镜的目镜对微流控检测芯片进行图像采集。如图10所示为采集后的图像。4. The information of the
5、通过数据分析装置分析所述图像采集装置采集的二聚体的信息,利用图片处理技术,例如Matlab程序、深度学习对图片进行处理提取微球聚合体形状、尺寸、数量与比例信息,从而进一步地据此获取待测目标分子的浓度。5. Analyze the information of the dimer collected by the image acquisition device through the data analysis device, and use the image processing technology, such as Matlab program, deep learning to process the image to extract the shape, size, quantity and proportion information of the microsphere aggregate, thereby Further obtain the concentration of the target molecule to be detected according to this.
实验结果Experimental results
如图11所示是利用本发明专利的一个实施例,对血清中的PSA蛋白分子进行检测的结果。在血清实验中,浓度为0,3.67pM,36.7pM,和367pM的PSA血清溶液与浓度为2*106个/mL,直径为5.1微米的聚苯乙烯微球溶液反应。在聚苯乙微球表面修饰有特异性捕捉PSA的anti-PSA分子探针。微球溶液与血清样品充分混合后在1mL离心管中反应了30分钟后通入微井微流控芯片进行检测,以微球二聚体的数量以及比例作为检测指标。其检测结果如图11所示。图11实验结果所示实验结果不仅验证了微球聚合法的可行性,也验证了所属实施例的实用性。Figure 11 shows the result of detecting PSA protein molecules in serum using an embodiment of the patent of the present invention. In serum experiments, PSA serum solutions at concentrations of 0, 3.67pM, 36.7pM, and 367pM were reacted with a solution of polystyrene microspheres with a concentration of 2 *106/mL and a diameter of 5.1 microns. Anti-PSA molecular probes that specifically capture PSA are modified on the surface of polystyrene microspheres. The microsphere solution and the serum sample were thoroughly mixed, reacted in a 1 mL centrifuge tube for 30 minutes, and then passed into a microwell microfluidic chip for detection. The number and ratio of microsphere dimers were used as detection indicators. The detection results are shown in Figure 11. The experimental results shown in FIG. 11 not only verify the feasibility of the microsphere polymerization method, but also verify the practicability of the embodiments.
二、其中,如图5所示,为当样品反应室为样品导入导管时的情形,其与上述一中的原理的不同之处在于,将上述的1替换为:将微球与含有待测分子以及其他分子的被测样品溶液充分混合后导入样品导入导管102。其余与前述方案一中的2-5一致。2. Among them, as shown in FIG. 5, it is the situation when the sample reaction chamber is the sample introduction conduit. The difference between it and the principle in the above one is that the above 1 is replaced by: Molecules and other molecules in the sample solution to be tested are thoroughly mixed and then introduced into the
三、其中,如图6所示,为当样品反应室为微流体腔体时的情形,其与上述一中原理的不同之处在于,将上述的1、2替换为:将微球与含有待测分子以及其他分子的被测样品溶液充分混合后通过样品导入导管102导入至微流体腔体中,使其在其中反应。其余与前述方案一中的2-5一致。3. Among them, as shown in Figure 6, it is the case when the sample reaction chamber is a microfluidic cavity. The difference from the above-mentioned principle is that the above 1 and 2 are replaced by: The molecules to be tested and the tested sample solutions of other molecules are thoroughly mixed and then introduced into the microfluidic chamber through the
四、其中,如图7所示,与前述一至三不同的是图7所示的微流控检测芯片是有两个或者两个以上的微流体腔体组成。微球与被测样品溶液反应后,将反应溶液通过样品导入导管102导入至微流体腔体中。被测样品依次通过一级微流体腔体71,二级微流体腔体72,三级微流体腔体73。多级微流体腔体通过流道74连通。多级微流体腔体内的微井阵列711,721,731中的微井尺寸依次增大。例如微井阵列711尺寸为所用微球尺寸的一倍到两倍,用以捕捉单个微球;微井阵列721尺寸为所用微球尺寸的两倍到四倍,用以捕捉两个微球形成的微球聚合体;微井阵列731尺寸为所用微球尺寸的四倍到十倍,用以捕捉多个微球形成的微球聚合体。入口与出口分别与导管联通用于导入和引出样品溶液。利用此实施例中的分级式微井芯片,可以实现对微球的逐级分类捕捉:第一级微流体腔体用于捕捉反应后微球溶液中的单个微球,第二级微流体腔体主要用于捕捉由两个微球组成的二聚体,第三级微流体腔体用于捕捉三个或者三个以上微球组成的聚合体。其中,通过在流道74上设置阀门741,可以更好的分级实现对不同聚合程度的微球的捕捉。例如,当第一级的微流控检测芯片的微流体腔体捕捉反应后微球溶液中的单个微球时,关闭第一级和第二级微流体腔体之间的管道;当通入缓冲液对未沉积到第一级的微流体腔体的微井中的样品进行冲洗时,打开第一级和第二级微流体腔体之间的管道;同时关闭第二级和第三级微流体腔体之间的管道;将未沉积到第一级的微流体腔体的微井中的样品重新悬浮冲洗至第二级微流体腔体中,使其中的由两个微球组成的二聚体被捕捉到微井中;当通入缓冲液对未沉积到第二级的微流体腔体的微井中的样品进行冲洗时,打开第二级和第三级微流体腔体之间的管道;将未沉积到第二级的微流体腔体的微井中的样品重新悬浮冲洗至第三级微流体腔体中,使其中的由三个或者三个以上微球组成的聚合体被捕捉到微井中。这样分级处理,可以降低微球的检测与计数难度,进而降低检测误差。4. Among them, as shown in FIG. 7 , what is different from the aforementioned 1 to 3 is that the microfluidic detection chip shown in FIG. 7 is composed of two or more microfluidic chambers. After the microspheres react with the sample solution to be tested, the reaction solution is introduced into the microfluidic chamber through the
五、其中,如图8所示,与前述一至四不同的是,修饰有不同的分子探针的不同大小的微球84,85,86同时与含有被检测样品87混合分别形成二聚体88,89,810,其中的目标被测物81,82,83同时进行检测。微球与被测样品溶液反应后,将反应溶液导入微流控检测芯片之中。后续操作与一致。特别需要指出的是,本实施例提出的多种尺寸的微球检测不同目标检测物的方法,可以与四、图8中提出的方案相结合。具体的方式是,多级微流体腔体,其功能设计分别是:一级微流体腔体用于捕捉最小尺寸的微球,然后所捕捉微球尺寸在下游的微流体腔体中逐级增大,实现了对不同大小微球的分类捕捉,也就是实现了对不同目标检测物检测结果的空间区别检测。5. Among them, as shown in FIG. 8 , the difference from the above-mentioned 1 to 4 is that the
六、其中,如图9所示,与前述一至四不同的是,本方案用将微流控检测芯片集成到一个便携式黑盒子94,包括:固定微流控检测芯片97的装载平台96,可聚焦在微流控检测芯片97中的观测物镜98。在实际操作中,只需将微流体控制装置91,通过导入导管92与便携式黑盒子94中的微流控检测芯片97连同,并连通引出导管95,即可进行微球样品的导入与捕捉。最后,将手机93(也可以为其他图像采集设备)放在黑盒子94的观测物镜98上进行图像提取即可。6. Among them, as shown in FIG. 9, the difference from the above-mentioned 1 to 4 is that this scheme integrates the microfluidic detection chip into a portable
综上所述,本申请的微流控芯片检测系统通过将微球反应后的样品分散沉积到所述微流控检测芯片的微井中,并进一步通过便携式的图像采集装置(例如手机)采集微井中的信息进行分析,克服了现有技术中由于样品不分散、叠加导致的通量低、易堵塞,以及分辨率低的缺陷,实现了对待测样品高通量、无阻塞、便携式、高分辨率的检测。并且本申请的微流体腔体的高度、宽度,微井的直径和高度设置一合适的范围,更加有效地消除了阻塞问题。To sum up, the microfluidic chip detection system of the present application disperses and deposits the reacted samples of the microspheres into the microwells of the microfluidic detection chip, and further collects the microfluidic detection chips through a portable image acquisition device (such as a mobile phone). The information in the well is analyzed, which overcomes the defects of low throughput, easy clogging and low resolution caused by non-dispersion and superposition of samples in the prior art, and realizes high throughput, non-clogging, portable, high-resolution samples to be tested. rate detection. In addition, the height and width of the microfluidic cavity of the present application, and the diameter and height of the microwell are set to a suitable range, which more effectively eliminates the blocking problem.
并且本申请还可以实现对不同的类型的聚合体的分级捕捉,从而降低了检测与计数的难度,进而降低了检测误差。In addition, the present application can also realize the hierarchical capture of different types of polymers, thereby reducing the difficulty of detection and counting, thereby reducing detection errors.
并且本发明所实现的装置,相较于传统的光学、库勒计数器原理的检测系统,无需复杂的光学和电学检测设备。本发明中的所使用的微流控芯片体积较小,成本非常低廉,每个芯片成本可以控制在几十元人民币以内,而且可以重复使用。后续的检测系统是基于手机拍照与手机APP实现的图像检测法,一部手机就可以解决传统技术中复杂的检测模块所要实现的任务。显微放大装置采用便携式显微镜或者小型物镜实现。微流体导入系统,通过一个注射泵实现即可。相较于现有的检测技术,本发明所提供的技术方案大大降低了检测装置门槛,各个模块均可采用便携式的装置,方便地组装完成,在医院、家中、野外均可操作。在微球检测中,表面修饰有特异性分子探针的微球与目标分子结合,使得相邻的两个微球可以形成三明治结构,进而形成了二聚体,乃至多聚体。这些微球聚合体的数目或者是浓度与目标分子的浓度存在着对应的关系。本申请通过单个目标分子即可以连接两个微球形成一个微球二聚体,因此微球聚合的方法在理论上可以检测极低的分子浓度。本发明的微流控芯片检测系统,可以最低限度地降低检测手段对微球聚合体本身的影响。如图11所示,通过对PSA的检测,最低检测极限为3.67pM,即,本申请可以检测极低浓度的样品,可以充分满足临床所关注的30pM~3 00pM PSA诊断浓度范围的检测需求。In addition, the device realized by the present invention does not need complicated optical and electrical detection equipment compared with the traditional detection system based on optics and the principle of the Kühler counter. The microfluidic chip used in the present invention is small in size and very low in cost, and the cost of each chip can be controlled within tens of RMB, and can be reused. The subsequent detection system is an image detection method based on mobile phone photography and mobile phone APP. A mobile phone can solve the tasks to be achieved by the complex detection module in the traditional technology. The microscopic magnification device is realized by a portable microscope or a small objective lens. The microfluidic introduction system can be realized by a syringe pump. Compared with the existing detection technology, the technical solution provided by the present invention greatly reduces the threshold of the detection device, and each module can be easily assembled by using a portable device, and can be operated in hospitals, at home and in the field. In microsphere detection, the surface-modified microspheres with specific molecular probes are combined with target molecules, so that two adjacent microspheres can form a sandwich structure, thereby forming dimers or even multimers. The number or concentration of these microsphere aggregates has a corresponding relationship with the concentration of target molecules. In the present application, two microspheres can be connected to form a microsphere dimer through a single target molecule, so the method of microsphere polymerization can theoretically detect extremely low molecular concentrations. The microfluidic chip detection system of the present invention can minimize the influence of the detection means on the microsphere aggregate itself. As shown in FIG. 11 , through the detection of PSA, the minimum detection limit is 3.67pM, that is, the present application can detect extremely low concentration samples, which can fully meet the detection requirements of the clinically concerned PSA diagnostic concentration range of 30pM to 300pM.
实施例二
如图12所示,基于实施例一种的微流控芯片检测系统,本申请还提供一种基于上述的微流控芯片检测系统的检测方法,包括:As shown in FIG. 12 , based on the microfluidic chip detection system of
S121,将待测样品置于设置有微球的所述样品反应室中,使待测样品中的待测分子与所述微球反应形成二聚体;S121, placing the sample to be tested in the sample reaction chamber provided with microspheres, so that the molecules to be tested in the sample to be tested react with the microspheres to form dimers;
S122,通过所述微流体操作装置使反应后的样品通过样品导入导管进入微流体腔体,且通过控制流速以使所述二聚体沉积到所述微井中;S122, using the microfluidic operating device to make the reacted sample enter the microfluidic cavity through the sample introduction conduit, and control the flow rate to deposit the dimer into the microwell;
S123,通过所述微流体操作装置使缓冲液通过样品导入导管进入微流体腔体,且通过控制缓冲液的流速将未沉积到所述微井中的样品进行冲洗,使其通过样品导出导管流出;S123, through the microfluidic operating device, the buffer solution enters the microfluidic chamber through the sample introduction conduit, and by controlling the flow rate of the buffer solution, the sample that is not deposited in the microwell is washed so that it flows out through the sample export conduit;
S124,通过图像采集装置采集沉积于所述微井中的所述二聚体的信息;S124, collecting information of the dimer deposited in the microwell by using an image collecting device;
S125,通过数据分析装置分析所述图像采集装置采集的二聚体的信息,以获取待测分子在待测样品中的浓度。S125 , analyze the dimer information collected by the image acquisition device by the data analysis device to obtain the concentration of the molecule to be tested in the sample to be tested.
综上所述,本申请的微流控芯片检测系统通过将与微球反应后的样品沉积到所述微井中,并进一步通过图像采集装置采集微井中的信息,并进行分析,实现了对待测样品高通量、无阻塞、便携式、低检测极限的检测。To sum up, the microfluidic chip detection system of the present application realizes the detection method by depositing the sample reacted with the microspheres into the microwell, and further collecting the information in the microwell through the image acquisition device and analyzing it. High-throughput, non-blocking, portable, low detection limit detection of samples.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the scope of the present invention. within the scope of protection.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810031266.0A CN108344866B (en) | 2018-01-12 | 2018-01-12 | Micro-fluidic chip detection system and method for detecting sample based on same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810031266.0A CN108344866B (en) | 2018-01-12 | 2018-01-12 | Micro-fluidic chip detection system and method for detecting sample based on same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108344866A CN108344866A (en) | 2018-07-31 |
CN108344866B true CN108344866B (en) | 2020-07-28 |
Family
ID=62960719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810031266.0A Active CN108344866B (en) | 2018-01-12 | 2018-01-12 | Micro-fluidic chip detection system and method for detecting sample based on same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108344866B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109520993B (en) * | 2018-11-12 | 2020-06-19 | 华南理工大学 | Micro-fluidic detection device and method for food surface residues based on Raman spectrum |
CN109406813A (en) * | 2018-12-14 | 2019-03-01 | 贵州大学 | A kind of microfluidic control device for high-throughput droplet array microfluid point sample |
CN110095316A (en) * | 2019-04-04 | 2019-08-06 | 天津大学 | A kind of particle acquisition device, detection system and detection method |
CN110068528A (en) * | 2019-04-23 | 2019-07-30 | 中国石油大学(华东) | Particle detection technique in detection device and suspension |
CN110395688B (en) * | 2019-06-24 | 2024-06-25 | 金华职业技术学院 | Micro-nano particle deposition device |
CN112387316B (en) * | 2019-08-19 | 2021-09-21 | 中国科学院亚热带农业生态研究所 | 3D micro-fluidic chip model, 3D micro-fluidic chip, and preparation method and application thereof |
CN112268886A (en) * | 2020-09-04 | 2021-01-26 | 武汉光谷航天三江激光产业技术研究院有限公司 | Laser rapid detection and disinfection integrated device and method for virus and bacteria |
CN113834808A (en) * | 2021-08-10 | 2021-12-24 | 南京师范大学 | Three-dimensional photonic crystal microsphere for detecting Escherichia coli O157H 7, detection platform and non-labeling detection method thereof |
CN116338159B (en) * | 2022-12-13 | 2024-02-09 | 西交利物浦大学 | A fully automatic paper-based microfluidic system based on local detection on smartphones |
CN118393159B (en) * | 2024-06-27 | 2024-09-17 | 天津海关工业产品安全技术中心 | Biological sample detection platform based on biosensor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1595149A (en) * | 2004-07-13 | 2005-03-16 | 东南大学 | Micro fluidic biological chip based on micro balls |
CN102884431A (en) * | 2010-03-01 | 2013-01-16 | 匡特里克斯公司 | Ultra-sensitive detection of molecules or particles using beads or other capture objects |
WO2017185098A1 (en) * | 2016-04-22 | 2017-10-26 | Purdue Research Foundation | High-throughput particle capture and analysis |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110195396A1 (en) * | 2010-02-10 | 2011-08-11 | Selinfreund Richard H | Chewable compositions for the stabilization of diagnostic biomarkers |
US9927432B2 (en) * | 2014-06-13 | 2018-03-27 | Konica Minolta Laboratory U.S.A., Inc. | Biosensor having decoupled capture chamber and detection chamber, using particle aggregation and size-separation |
-
2018
- 2018-01-12 CN CN201810031266.0A patent/CN108344866B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1595149A (en) * | 2004-07-13 | 2005-03-16 | 东南大学 | Micro fluidic biological chip based on micro balls |
CN102884431A (en) * | 2010-03-01 | 2013-01-16 | 匡特里克斯公司 | Ultra-sensitive detection of molecules or particles using beads or other capture objects |
WO2017185098A1 (en) * | 2016-04-22 | 2017-10-26 | Purdue Research Foundation | High-throughput particle capture and analysis |
Also Published As
Publication number | Publication date |
---|---|
CN108344866A (en) | 2018-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108344866B (en) | Micro-fluidic chip detection system and method for detecting sample based on same | |
US20220016630A1 (en) | Micro-Fluidic System Using Micro-Apertures for High Throughput Detection of Cells | |
US10024849B2 (en) | Systems, devices, and methods for agglutination assays using sedimentation | |
CN108686721A (en) | Micro-fluidic chip and its detection method for whole blood sample separation detection | |
KR100695743B1 (en) | Magnetic force-based microfluidic chip using magnetic nanoparticles and microbeads, biomolecule analysis device and biomolecule analysis method using the same | |
US20090201504A1 (en) | Hydrodynamic focusing for analyzing rectangular microbeads | |
JP2002503334A (en) | Microflow system for particle separation and analysis | |
CN114258321B (en) | Instant Concentration Analyzer | |
CA2622745A1 (en) | Systems and methods for enrichment of analytes | |
US20090051372A1 (en) | 3D fluid confined sample stream coulter flow cytometry | |
US9719991B2 (en) | Devices for detecting a particle in a sample and methods for use thereof | |
Yang et al. | Dielectrophoresis assisted high-throughput detection system for multiplexed immunoassays | |
CN101158697B (en) | Magnetic sensor biological chip sample boat capable of testing multiple samples simultaneously | |
US20090162944A1 (en) | Method of Measuring Biomolecular Reaction at Ultrahigh Speed | |
Khajvand et al. | Interfacing droplet microfluidics with antibody barcodes for multiplexed single-cell protein secretion profiling | |
Chícharo et al. | Enhanced magnetic microcytometer with 3D flow focusing for cell enumeration | |
US20200147611A1 (en) | Microchip for analyzing fluids | |
KR20150107231A (en) | A microplate having well with membrane | |
CN109482249A (en) | Micro fluidic device and method for macromolecule content detection in non-newtonian fluid | |
US20210394182A1 (en) | Microfluidic antibody microarray with an electronic sensor array | |
CN100480702C (en) | Microfluid analytical system using magnetic microsphere as medium and investigating method thereof | |
Shao et al. | Design, fabrication and test of a pneumatically controlled, renewable, microfluidic bead trapping device for sequential injection analysis applications | |
CN103267749B (en) | A kind of multielement biomarker assay kit-type chip based on photon coding microball | |
CN209311335U (en) | A microfluidic chip for surface-enhanced Raman immunoassay | |
US11529628B2 (en) | Automated immunoassay device and method using large magnetic particle complex |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |