CN108343841A - 基于水环输油的mhd稳流器 - Google Patents

基于水环输油的mhd稳流器 Download PDF

Info

Publication number
CN108343841A
CN108343841A CN201810361965.1A CN201810361965A CN108343841A CN 108343841 A CN108343841 A CN 108343841A CN 201810361965 A CN201810361965 A CN 201810361965A CN 108343841 A CN108343841 A CN 108343841A
Authority
CN
China
Prior art keywords
magnetic
magnet
oil pipe
water ring
magnetic conduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810361965.1A
Other languages
English (en)
Other versions
CN108343841B (zh
Inventor
张伟伟
李隆球
张广玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201810361965.1A priority Critical patent/CN108343841B/zh
Publication of CN108343841A publication Critical patent/CN108343841A/zh
Application granted granted Critical
Publication of CN108343841B publication Critical patent/CN108343841B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/20Arrangements or systems of devices for influencing or altering dynamic characteristics of the systems, e.g. for damping pulsations caused by opening or closing of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/16Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明提供一种基于水环输油的MHD稳流器,包括同轴设置的导磁套管和非导磁油管,所述导磁套管和所述非导磁油管之间环向设置有多个磁体,任意两个相邻磁体的磁场方向相反;所述非导磁油管和所述磁体之间还设置有电极,每个电极设置在两组相邻磁体之间,任意两个相邻电极的极性相反。

Description

基于水环输油的MHD稳流器
技术领域
本发明涉及一种MHD稳流器,具体的说,涉及了一种基于水环输油的MHD稳流器。
背景技术
随着近年来轻质原油的储量逐渐枯竭,稠油的重要性日益增加。据统计,全球稠油油藏的储量高达9-13万亿桶,占原油总储量的70%。然而,稠油的超高粘度使其无法通过传统方法实现高效经济的管道输送,尤其是在深海和高纬度油田中,环境温度较低在成稠油的管道输送成本急剧攀升,这一直是困扰稠油正常生产的重大难题。
水环输油是通过环形喷嘴向油管中注入水流,在管壁处形成连续的润滑层,使油流悬浮于管道中心实现水环输油,如图1所示。由于原油与管壁相脱离,水环输油被认为是一种能耗最低的输油方法,有报道称它能够将粘度为10P的稠油管输能耗降低500倍。研究人员在直径为28.4mm的管路上进行了水环输油实验,发现其管输阻力与相同流量的水流相当、甚至更低。早在1970年,壳牌石油公司就在位于美国加利福尼亚的一条长达38.4公里的输油管线上,利用水环输油方法成功实现了高粘原油的输送,但随后管道输送的压降出现了大幅波动现象,因而水环输油方法的输送稳定性一直是制约其实用性的最大障碍。
为了解决以上存在的问题,人们一直在寻求一种理想的技术解决方案。
发明内容
本发明的目的是针对现有技术的不足,从而提供了一种基于水环输油的MHD稳流器。
为了实现上述目的,本发明所采用的技术方案是:
一种基于水环输油的MHD稳流器,包括同轴设置的导磁套管和非导磁油管,所述导磁套管和所述非导磁油管之间环向设置有多个磁体,任意两个相邻磁体的磁场方向相反;所述非导磁油管和所述磁体之间还设置有电极,每个电极设置在两组相邻磁体之间,任意两个相邻电极的极性相反。
基于上述,所述非导磁油管设置在所述磁体内侧,所述导磁套管设置在所述磁体外侧。
基于上述,还包括导磁环管,所述导磁环管与所述导磁套管分别位于所述磁体两端,共同组成导磁通路。
基于上述,所述导磁套管设置在所述磁体外侧,所述非导磁油管设置在所述磁体内侧,所述导磁环管设置在所述非导磁油管内侧。
基于上述,所述导磁套管设置在所述磁体内侧,所述非导磁油管设置在所述磁体外侧,所述导磁环管设置在所述非导磁油管外侧。
基于上述,所述电极嵌设在所述非导磁油管内。
基于上述,所述电极嵌设在所述非导磁油管和/或所述导磁环管内。
基于上述,所述磁体为永磁铁和/或内设置有铁芯的电磁线圈。
本发明相对现有技术具有突出的实质性特点和显著的进步,具体的说,本发明基于稠油和油田水在电导率上的显著差异,采用磁流体(MHD)驱动方法原理,以非接触驱动的方式直接操控“失稳管段”的环状水流,在不影响“安全管段”稳定性的前提下,解决了油水环状流在“失稳管段”的界面稳定性问题,具有设计科学、实用性强和稳定性好的优点。
附图说明
图1是水平输油管中的油水环状流示意图。
图2是本发明实施例1的结构示意图。
图3是本发明实施例1的导磁回路示意图。
图4是本发明实施例1的工作原理示意图。
图5是本发明实施例2的结构示意图。
图6是本发明实施例3的结构示意图。
图7是本发明实施例4的结构示意图。
图8是本发明实施例4的导磁回路示意图。
图9是本发明实施例4的工作原理示意图。
图10是本发明实施例5的结构示意图。
图11是本发明实施例6的结构示意图。
图12是本发明实施例7的结构示意图。
图中,(1a,1b).电磁线圈/永磁铁;(2a,2b).电极;3.铁芯;4.导磁套管;5.非导磁油管;6.导磁环管。
具体实施方式
下面通过具体实施方式,对本发明的技术方案做进一步的详细描述。
实施例1
如图2所示,一种基于水环输油的MHD稳流器,包括同轴设置的导磁套管4和非导磁油管5,所述导磁套管4和所述非导磁油管5之间环向设置有8个磁体,其中,所述非导磁油管5设置在所述磁体内侧,所述导磁套管4设置在所述磁体外侧;具体的,所述磁体为内置有铁芯3的电磁线圈(1a,1b),任意两组相邻电磁线圈(1a,1b)通电后产生的磁场方向相反,具体可通过对相邻的绕向相同的电磁线圈(1a,1b)通以反相电流或者对相邻的绕向不同的电磁线圈(1a,1b)通以同相电流来实现。
当任意两组相邻电磁线圈(1a,1b)通电后,会产生磁性相反的磁场B,并与包裹在所述电磁线圈(1a,1b)中的所述铁芯3、所述导磁套管4一起构成导磁通路,此时,相邻两组电磁线圈(1a,1b)的磁场B会在每个铁芯3中相互叠加,从而在所述铁芯3表面的气隙中激发出更强的磁场B,如图3所示。
如图2所示,所述非导磁油管和所述磁体之间还设置有电极(2a,2b),所述电极(2a,2b)嵌设在所述非导磁油管5的内管壁之中,每个电极(2a,2b)位于任意两组相邻电磁线圈(1a,1b)之间,且所述电极(2a,2b)与所述非导磁油管5之间以及所述非导磁油管5内壁处均设置有绝缘材料;两个相邻电极(2a,2b)的极性相反,从而使得两个相邻电极(2a,2b)激发的电场J的方向也是相反的。
如图4所示,所述电场J、所述磁场B方向相互垂直,因此会在环形水流中产生轴向的洛伦兹力F,以驱动环形水流沿管道轴线方向加速流动。此时虽然两个相邻电极(2a,2b)激发的电场方向相反,但相邻磁体在铁芯3处叠加的磁场方向也同样发生了翻转,因此所述MHD稳流器在环形水流中产生的洛伦兹力F方向不变,从而驱动环形水流沿轴向以相同方向加速流动。
需要注意的是,所述磁体和所述电极的数量也不仅限于图2中所示的8个,可以根据需要进行扩展或缩减。
实施例2
本实施例与实施例1的区别之处仅在于:如图5所示,所述磁体为永磁铁(1a,1b),任意两个相邻的永磁铁(1a,1b)的磁场方向相反。
实施例3
本实施例与实施例1、实施例2的区别之处在于:如图6所示,所述磁体为交替设置的永磁铁1b和内置有铁芯3的电磁线圈1a,且所述电磁线圈1a与其相邻的两个永磁体1b的磁场方向均不相同。
实施例4
本实施例与实施例1的区别之处在于:如图7所示,所述MHD稳流器还包括导磁环管6,所述导磁环管6与所述导磁套管4分别设置在所述磁体两侧共同组成导磁通路;所述导磁套管4设置在所述磁体外侧,所述非导磁油管5设置在所述磁体内侧,所述导磁环管6设置在所述非导磁油管5的内侧。
当所述电磁线圈(1a,1b)通电后,任意两个相邻的电磁线圈(1a,1b)会产生磁性相反的磁场B,并与包裹在所述电磁线圈(1a,1b)中的所述铁芯3、所述导磁套管4、所述导磁环管6一起构成导磁通路,此时,相邻两组电磁线圈(1a,1b)的磁场B会在所述铁芯3中相互叠加,从而在所述铁芯3表面的气隙中激发出更强的磁场B,如图8所示。
如图9所示,所述电场J、所述磁场B方向相互垂直,因此当油水环状流流经所述MHD稳流器时,高导电的油田水由于受到洛伦兹力F的推动作用而形成高剪切的平行流场,驱动环形水流沿管道轴线方向加速流动。
需要注意的是,在水环输油过程中,管道配件(如弯头和突扩管等)会给油水环状流带来扰动,从而导致水膜破裂、甚至发生油水掺混。针对油水环状流在“管道突变处”的失效问题,可在管件后布置本实施例中所述的MHD稳流器,进而在油水环状流中建立高剪切的平行流场,当油水环状流因管件扰动而失效时,根据最小能量耗散原理,借助平行流场的剪切作用驱使水滴脱离油相,在管壁处聚集形成水膜并紧贴管壁加速推进,重建油水环状流。
需要注意的是,所述磁体和所述电极(2a,2b)的数量也不仅限于图7中所示的8个,可以根据需要进行扩展或缩减。
实施例5
本实施例与实施例4的区别之处在于:所述磁体为永磁铁(1a,1b),任意两个相邻永磁铁(1a,1b)的磁场方向相反。
事实上,所述磁体还可以同时为永磁铁1b和内置有铁芯3的电磁线圈1a,任意两个相邻的永磁铁1b和电磁线圈1a的磁场方向相反。
实施例6
本实施例与实施例4的区别之处在于:所述电极(2a,2b)嵌设在所述导磁环管6内。
实施例7
本实施例与实施例4的区别之处在于:所述导磁套管4设置在所述磁体内侧,所述非导磁油管5设置在所述磁体外侧,所述导磁环管6设置在所述非导磁油管5的外侧。
需要注意的是,所述电极(2a,2b)还可以同时嵌设在所述导磁环管6内和所述非导磁油管5内。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (9)

1.一种基于水环输油的MHD稳流器,其特征在于:包括同轴设置的导磁套管和非导磁油管,所述导磁套管和所述非导磁油管之间环向设置有多个磁体,任意两个相邻磁体的磁场方向相反;所述非导磁油管和所述磁体之间还设置有电极,每个电极设置在两组相邻磁体之间,任意两个相邻电极的极性相反。
2.根据权利要求1所述的基于水环输油的MHD稳流器,其特征在于:所述非导磁油管设置在所述磁体内侧,所述导磁套管设置在所述磁体外侧。
3.根据权利要求1所述的基于水环输油的MHD稳流器,其特征在于:还包括导磁环管,所述导磁环管与所述导磁套管分别位于所述磁体两侧,共同组成导磁通路。
4.根据权利要求3所述的基于水环输油的MHD稳流器,其特征在于:所述导磁套管设置在所述磁体外侧,所述非导磁油管设置在所述磁体内侧,所述导磁环管设置在所述非导磁油管内侧。
5.根据权利要求3所述的基于水环输油的MHD稳流器,其特征在于:所述导磁套管设置在所述磁体内侧,所述非导磁油管设置在所述磁体外侧,所述导磁环管设置在所述非导磁油管外侧。
6.根据权利要求1或2所述的基于水环输油的MHD稳流器,其特征在于:所述电极嵌设在所述非导磁油管内。
7.根据权利要求3-5任一项所述的基于水环输油的MHD稳流器,其特征在于:所述电极嵌设在所述非导磁油管和/或所述导磁环管内。
8.根据权利要求6所述的基于水环输油的MHD稳流器,其特征在于:所述磁体为永磁铁和/或内设置有铁芯的电磁线圈。
9.根据权利要求7所述的基于水环输油的MHD稳流器,其特征在于:所述磁体为永磁铁和/或内设置有铁芯的电磁线圈。
CN201810361965.1A 2018-04-20 2018-04-20 基于水环输油的mhd稳流器 Active CN108343841B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810361965.1A CN108343841B (zh) 2018-04-20 2018-04-20 基于水环输油的mhd稳流器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810361965.1A CN108343841B (zh) 2018-04-20 2018-04-20 基于水环输油的mhd稳流器

Publications (2)

Publication Number Publication Date
CN108343841A true CN108343841A (zh) 2018-07-31
CN108343841B CN108343841B (zh) 2023-11-10

Family

ID=62955987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810361965.1A Active CN108343841B (zh) 2018-04-20 2018-04-20 基于水环输油的mhd稳流器

Country Status (1)

Country Link
CN (1) CN108343841B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608369A (zh) * 2019-09-20 2019-12-24 华东理工大学 一种重油三层液的形成方法
CN112879688A (zh) * 2021-02-05 2021-06-01 黄红英 一种石油管道连接装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977469A (en) * 1975-02-03 1976-08-31 Shell Oil Company Conservation of water for core flow
US4753261A (en) * 1987-11-02 1988-06-28 Intevep, S.A. Core-annular flow process
CN2069064U (zh) * 1990-06-20 1991-01-09 石油工业部管道科学研究院 高粘液体液环输送的液环成型装置
CN1570460A (zh) * 2004-04-27 2005-01-26 浙江大学 高黏流体的旋转液环管道输送方法及其装置
CN202546272U (zh) * 2012-04-27 2012-11-21 西南石油大学 一种矿场稠油管道减阻用水环发生装置
CN102878430A (zh) * 2012-10-30 2013-01-16 中国石油天然气股份有限公司 原油低温水力悬浮输送工艺
CN104763877A (zh) * 2015-04-22 2015-07-08 中冶北方(大连)工程技术有限公司 尾砂浆体管道输送减阻装置
CN105351751A (zh) * 2015-11-10 2016-02-24 中国石油大学(华东) 高粘稠物质液环输送系统及方法
CN106322114A (zh) * 2016-10-17 2017-01-11 广汉市思科信达科技有限公司 一种输油管线降粘防垢装置
CN106439498A (zh) * 2016-09-28 2017-02-22 郑州大学 强磁型原油电磁防蜡降粘器
CN106640668A (zh) * 2016-11-09 2017-05-10 中国石油大学(华东) 磁悬浮水环输送泵
CN206247037U (zh) * 2016-10-26 2017-06-13 中国石油大学(华东) 螺旋流液环水膜合流器
CN206522112U (zh) * 2016-12-30 2017-09-26 种冬锋 油井流体电磁感应减阻振动仪
CN206753550U (zh) * 2017-05-12 2017-12-15 西南石油大学 一种油田生产用水环发生器装置
CN208431581U (zh) * 2018-04-20 2019-01-25 郑州大学 基于水环输油的mhd稳流器

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977469A (en) * 1975-02-03 1976-08-31 Shell Oil Company Conservation of water for core flow
US4753261A (en) * 1987-11-02 1988-06-28 Intevep, S.A. Core-annular flow process
CN2069064U (zh) * 1990-06-20 1991-01-09 石油工业部管道科学研究院 高粘液体液环输送的液环成型装置
CN1570460A (zh) * 2004-04-27 2005-01-26 浙江大学 高黏流体的旋转液环管道输送方法及其装置
CN202546272U (zh) * 2012-04-27 2012-11-21 西南石油大学 一种矿场稠油管道减阻用水环发生装置
CN102878430A (zh) * 2012-10-30 2013-01-16 中国石油天然气股份有限公司 原油低温水力悬浮输送工艺
CN104763877A (zh) * 2015-04-22 2015-07-08 中冶北方(大连)工程技术有限公司 尾砂浆体管道输送减阻装置
CN105351751A (zh) * 2015-11-10 2016-02-24 中国石油大学(华东) 高粘稠物质液环输送系统及方法
CN106439498A (zh) * 2016-09-28 2017-02-22 郑州大学 强磁型原油电磁防蜡降粘器
CN106322114A (zh) * 2016-10-17 2017-01-11 广汉市思科信达科技有限公司 一种输油管线降粘防垢装置
CN206247037U (zh) * 2016-10-26 2017-06-13 中国石油大学(华东) 螺旋流液环水膜合流器
CN106640668A (zh) * 2016-11-09 2017-05-10 中国石油大学(华东) 磁悬浮水环输送泵
CN206522112U (zh) * 2016-12-30 2017-09-26 种冬锋 油井流体电磁感应减阻振动仪
CN206753550U (zh) * 2017-05-12 2017-12-15 西南石油大学 一种油田生产用水环发生器装置
CN208431581U (zh) * 2018-04-20 2019-01-25 郑州大学 基于水环输油的mhd稳流器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608369A (zh) * 2019-09-20 2019-12-24 华东理工大学 一种重油三层液的形成方法
CN112879688A (zh) * 2021-02-05 2021-06-01 黄红英 一种石油管道连接装置

Also Published As

Publication number Publication date
CN108343841B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
US10873251B2 (en) Linear motor based on radial magnetic tubes
CN108343841A (zh) 基于水环输油的mhd稳流器
CN106763184B (zh) 一种六极径向-轴向混合磁轴承
CN105591521B (zh) 一种用于输送液态有色金属的电磁泵
EP3646452A1 (en) Systems and methods to harvest energy and determine water holdup using the magnetohydrodynamic principle
CN208431581U (zh) 基于水环输油的mhd稳流器
CN109346264B (zh) 一种基于环形超导片的导冷式超导磁体
US20160330867A1 (en) Electromagnetic heat transfer circuit
US20130076158A1 (en) Magnetic Fluid Power Generator Device
CN101908402B (zh) 一种可降低输油管道内石油粘度的磁化装置
CN208431576U (zh) 基于水环输油的mhd旋流器
CN109639095A (zh) 一种螺旋通道直流磁流体泵
CN103646757A (zh) 变压器、同步发电机以及同步电动机
CN106132551B (zh) 用于输送磁化材料的磁体装置
RU147076U1 (ru) Трубопроводный транспорт
CN108343839A (zh) 基于水环输油的mhd旋流器
CN208431580U (zh) 基于水环输油的行波式mhd旋流器
CN106961205A (zh) 一种液态金属磁力输送设备
KR101893603B1 (ko) 도전성 금속의 구동 방법 및 구동 장치
CN203608056U (zh) 励磁装置
CN105072728B (zh) 一种磁屏蔽管式电磁感应加热装置
CN109351504A (zh) 洛伦兹力液体喷嘴
JP6691233B2 (ja) 電磁ポンプ
CN218441841U (zh) 一种非对称型mhd原油稳流增输器
CN204887509U (zh) 一种磁屏蔽管式电磁感应加热装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant