CN108342313A - 光合细菌的培养装置及培养方法 - Google Patents

光合细菌的培养装置及培养方法 Download PDF

Info

Publication number
CN108342313A
CN108342313A CN201810378659.9A CN201810378659A CN108342313A CN 108342313 A CN108342313 A CN 108342313A CN 201810378659 A CN201810378659 A CN 201810378659A CN 108342313 A CN108342313 A CN 108342313A
Authority
CN
China
Prior art keywords
fermentation tank
photosynthetic bacteria
unit
input unit
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810378659.9A
Other languages
English (en)
Inventor
庄英萍
王泽建
王志华
王永红
储炬
张嗣良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201810378659.9A priority Critical patent/CN108342313A/zh
Publication of CN108342313A publication Critical patent/CN108342313A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/26Means for regulation, monitoring, measurement or control, e.g. flow regulation of pH
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明涉及工业生物技术领域,公开了一种光合细菌的培养装置,包括发酵罐、空气输入单元、氮气输入单元、氧化还原电位电极单元、pH值控制单元和主控单元,所述发酵罐内注有光合细菌菌液,所述空气输入单元和氮气输入单元通过管道连接至发酵罐内,所述氧化还原电位电极单元连接至发酵罐内,所述pH值控制单元通过管路连接至发酵罐,所述主控单元根据发酵罐中的参数信息,控制所述空气输入单元、氮气输入单元和pH值控制单元,使发酵罐中的光合细菌达到最高生长速率。本发明还公开了光合细菌的培养方法。本发明利用氧化还原电位电极在线监测光合细菌的培养过程,提高菌体的生长速率和对底物的利用。

Description

光合细菌的培养装置及培养方法
技术领域
本发明涉及工业生物技术领域,具体涉及的是一种光合细菌的培养装置及培养方法。
背景技术
目前光合细菌,如深红红螺菌的培养粗犷,工艺落后,无法实时在线监测光合细菌的培养情况,无法对光合细菌的生长过程做出及时调控。因此,导致最终的菌体生长速率较低,对底物的利用低,生产成本偏高。
发明内容
本发明的目的是为了解决上述问题,提供一种光合细菌的培养装置及培养方法,利用氧化还原电位电极在线监测光合细菌的培养过程,提高菌体的生长速率和对底物的利用。
本发明采取的技术方案是:
一种光合细菌的培养装置,其特征是,包括发酵罐、空气输入单元、氮气输入单元、氧化还原电位电极单元、pH值控制单元和主控单元,所述发酵罐内注有光合细菌菌液,所述空气输入单元和氮气输入单元通过管道连接至发酵罐内,所述氧化还原电位电极单元连接至发酵罐内,所述pH值控制单元通过管路连接至发酵罐,所述主控单元根据发酵罐中的参数信息,控制所述空气输入单元、氮气输入单元和pH值控制单元,使发酵罐中的光合细菌达到最高生长速率。
进一步,所述空气输入单元和氮气输入单元连接至混合单元,所述混合单元通过管道连接至所述发酵罐内。
进一步,所述培养装置还包括尾气单元,所述尾气单元连接至发酵罐内,接收发酵罐的排气。
进一步,所述pH值控制单元通过盐酸调节发酵罐内菌液的pH值。
进一步,在所述发酵罐中安装搅拌器。
进一步,所述发酵罐上方设置照明单元。
进一步,所述光合细菌为深红红螺菌。
一种应用上述的光合细菌的培养装置进行光合细菌培养的方法,其特征是,包括如下步骤:
(1)将光合细菌种子液接种至发酵罐;
(2)通过pH值控制单元控制发酵罐内菌液的pH值为6.8至7.5;
(3)调节空气输入单元的空气输入流量为1.8至3.2L/min,氮气输入单元的氮气输入流量为0.8至2.2L/min。
(4)培养菌种12至24小时。
进一步,培养过程中的照明单元的光源波长为660nm,搅拌器的转速为80-120rpm。
进一步,所述氧化还原电位电极单元的电位为-130mV。
本发明的有益效果是:
(1)利用氧化还原电位电极在线监测深红红螺菌的培养过程,对深红红螺菌的生长过程实施在线调控,促进深红红螺菌的生长和底物的代谢;
(2)改进了深红红螺菌粗放的培养工艺,实现了深红红螺菌培养过程的在线控制;
(3)将深红红螺菌培养密度OD由1.52提高到2.59,在生长周期内对琥珀酸利用提高了13.95%,对铵离子的利用提高了14.29%;
(4)适用于对深红红螺菌的大规模生产。
附图说明
附图1是本发明的培养装置的结构示意图。
附图中的标号分别为:
1.发酵罐; 2.空气输入单元;
3.氮气输入单元; 4.氧化还原电位电极单元;
5.pH值控制单元; 6.主控单元;
7.混合单元; 8.混合单元;
9.搅拌器; 10.照明单元。
具体实施方式
下面结合附图对本发明光合细菌的培养装置及培养方法的具体实施方式作详细说明。
参见附图1,光合细菌的培养装置,包括发酵罐1、空气输入单元2、氮气输入单元3、氧化还原电位电极单元4、pH值控制单元5和主控单元6,发酵罐1内注有光合细菌菌液,空气输入单元2和氮气输入单元3通过管道连接至发酵罐1内,氧化还原电位电极单元4连接至发酵罐1内,pH值控制单元5通过管路连接至发酵罐1,主控单元6根据发酵罐1中的参数信息,控制空气输入单元2、氮气输入单元3和pH值控制单元5,使发酵罐1中的光合细菌达到最高生长速率。
空气输入单元2和氮气输入单元3连接至混合单元7,混合单元7通过管道连接至发酵罐1内。培养装置的后方尾气单元8,尾气单元8连接至发酵罐1内,接收发酵罐1的排气。在发酵罐1中安装搅拌器9,用于对菌液的搅拌,以促进菌体的生产。在发酵罐1上方设置照明单元10,补充自然光照的不足,为菌体提供充足的光照,利于菌体进行光合作用。pH值控制单元5通过盐酸调节发酵罐1内菌液的pH值。
以下以光合细菌为深红红螺菌为例,进行详细说明。
一组:深红红螺菌的培养基配方为酵母提取物0.3g/L、乙醇0.5ml/L、琥珀酸钠1g/L、乙酸铵0.5g/L、柠檬酸铁(0.1%)5ml/L,磷酸二氢钾0.5g/L、硫酸镁0.02g/L、氯化钠0.4g/L、氯化铵0.4g/L、二水氯化钙0.05g/L、维生素B12组分(0.01%)0.4ml/L和微量元素SL-6 1ml/L。微量元素SL-6包含七水硫酸锌0.1g/L、四水氯化锰0.03g/L、硼酸0.03g/L、六水氯化钴0.2g/L、二水氯化铜0.01g/L、六水氯化镍0.02g/L、二水钼酸钠0.03g/L,pH为7.5,培养温度为25-30℃,40w钨丝灯微好氧光照。对发酵罐的搅拌转速为100rpm,空气流量为1.8~3.2L/min,氮气流量为0.8~2.2L/min;保持微好氧环境。氧化还原电位的测得使用的是氧化还原电位(ORP)电极值。得到较佳菌体生产效果。
另一组:酵母提取物0.3g/L、乙醇0.5ml/L、琥珀酸钠1g/L、乙酸铵0.5g/L、柠檬酸铁(0.1%)5ml/L,磷酸二氢钾0.5g/L、硫酸镁0.02g/L、氯化钠0.4g/L、氯化铵0.4g/L、二水氯化钙0.05g/L、维生素B12组分(0.01%)0.4ml/L和微量元素SL-6 1ml/L。微量元素SL-6包含七水硫酸锌0.1g/L、四水氯化锰0.03g/L、硼酸0.03g/L、六水氯化钴0.2g/L、二水氯化铜0.01g/L、六水氯化镍0.02g/L、二水钼酸钠0.03g/L,pH6.8。发酵罐中搅拌转速为100rpm,空气流量为1.8~3.2L/min,氮气流量为0.8~2.2L/min;保持微好氧环境。也取得较佳菌体生产效果。
本发明中,使用722型紫外—可见光分光光度计;5L发酵罐为上海国强生化装备有限责任公司生产,发酵控制系统为国佳生化工程中心NCBbiostar发酵控制系统。
在培养的方法中,各步骤分别如下:
菌浓测定:将菌液适当稀释后于波长660nm处测定吸光值,以去离子水为对照。菌体的光密度值(OD660)=OD读数×稀释倍数。
铵离子测定:利用苯-次氯酸盐反应测定。
有机酸测定:Agilent 1100 HPLC系统(Agilent公司),色谱柱:AquaSeq公司C8柱。样品采集:取10mL发酵液,7500rpm 4℃离心10min,取1.5mL上清液4℃12000rpm离心15min,再取上清液用0.22μm的膜过滤,滤液于-20℃保存待用。流动相:0.05M磷酸二氢钾(pH2.5):甲醇=95:5;流速:0.6mL/min。进样量:20μL。柱温:30℃。检测波长:210nm。
实验方案
初步的实验结果告诉我们随着菌体生长过程的进行,ORP会快速下降,而比生长速率会降低,pH值随着乙酸铵和琥珀酸钠的消耗会上升,当ORP值下降到-190mV时菌体的比生长速率接近0,一段时间后ORP开始缓慢回升。而我们通过测定相关底物的浓度,发现底物浓度并不是限制菌体生长的因素。而微好氧情况下ORP所表征的氧痕量很可能是限制菌体生长的关键。
所以从12h时就开始调控ORP,使ORP值维持在一个稳定值,发现当ORP在-130时,菌体24h的比生长速率高于其余值,此时琥珀酸和铵离子的比消耗速率也高于其余组。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种光合细菌的培养装置,其特征在于:包括发酵罐、空气输入单元、氮气输入单元、氧化还原电位电极单元、pH值控制单元和主控单元,所述发酵罐内注有光合细菌菌液,所述空气输入单元和氮气输入单元通过管道连接至发酵罐内,所述氧化还原电位电极单元连接至发酵罐内,所述pH值控制单元通过管路连接至发酵罐,所述主控单元根据发酵罐中的参数信息,控制所述空气输入单元、氮气输入单元和pH值控制单元,使发酵罐中的光合细菌达到最高生长速率。
2.根据权利要求1所述的光合细菌的培养装置,其特征在于:所述空气输入单元和氮气输入单元连接至混合单元,所述混合单元通过管道连接至所述发酵罐内。
3.根据权利要求1所述的光合细菌的培养装置,其特征在于:所述培养装置还包括尾气单元,所述尾气单元连接至发酵罐内,接收发酵罐的排气。
4.根据权利要求1所述的光合细菌的培养装置,其特征在于:所述pH值控制单元通过盐酸调节发酵罐内菌液的pH值。
5.根据权利要求1至4中任一项所述的光合细菌的培养装置,其特征在于:在所述发酵罐中安装搅拌器。
6.根据权利要求1至4中任一项所述的光合细菌的培养装置,其特征在于:所述发酵罐上方设置照明单元。
7.根据权利要求1至4中任一项所述的光合细菌的培养装置,其特征在于:所述光合细菌为深红红螺菌。
8.一种应用如权利要求1至7中任一项所述的光合细菌的培养装置进行光合细菌培养的方法,其特征在于:包括如下步骤:
(1)将光合细菌种子液接种至发酵罐;
(2)通过pH值控制单元控制发酵罐内菌液的pH值为6.8至7.5;
(3)调节空气输入单元的空气输入流量为1.8至3.2L/min,氮气输入单元的氮气输入流量为0.8至2.2L/min。
(4)培养菌种12至24小时。
9.根据权利要求8所述的光合细菌的培养方法,其特征在于:培养过程中的照明单元的光源波长为660nm,搅拌器的转速为80-120rpm。
10.根据权利要求8所述的光合细菌的培养方法,其特征在于:所述氧化还原电位电极单元的电位为-130mV。
CN201810378659.9A 2018-04-25 2018-04-25 光合细菌的培养装置及培养方法 Pending CN108342313A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810378659.9A CN108342313A (zh) 2018-04-25 2018-04-25 光合细菌的培养装置及培养方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810378659.9A CN108342313A (zh) 2018-04-25 2018-04-25 光合细菌的培养装置及培养方法

Publications (1)

Publication Number Publication Date
CN108342313A true CN108342313A (zh) 2018-07-31

Family

ID=62955217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810378659.9A Pending CN108342313A (zh) 2018-04-25 2018-04-25 光合细菌的培养装置及培养方法

Country Status (1)

Country Link
CN (1) CN108342313A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109678255A (zh) * 2018-12-29 2019-04-26 中国地质大学(武汉) 一种基于氮氧调节的模拟氧化还原波动的培养实验装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070231886A1 (en) * 2006-03-28 2007-10-04 Sartorius Ag Reactor plant and process for culturing phototropic microorganisms
CN101235397A (zh) * 2008-03-04 2008-08-06 华东理工大学 利用氧化还原电位调控乳酸发酵
CN101358210A (zh) * 2008-09-26 2009-02-04 华东理工大学 基于氧化还原电位自动反馈调控厌氧发酵生产乙醇的方法
CN102154097A (zh) * 2010-12-09 2011-08-17 中国科学院微生物研究所 自动调控氧化还原电位的装置及其应用
CN102296093A (zh) * 2011-09-08 2011-12-28 南京工业大学 一种氧化还原电位调控厌氧发酵生产丁醇的方法
WO2012050390A2 (ko) * 2010-10-15 2012-04-19 한국에너지기술연구원 알콜 및 광합성 박테리아를 이용한 수소 생산방법
CN103427102A (zh) * 2013-08-30 2013-12-04 华南理工大学 一种藻菌微生物燃料电池及其制备方法和应用
CN208328019U (zh) * 2018-04-25 2019-01-04 华东理工大学 光合细菌的培养装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070231886A1 (en) * 2006-03-28 2007-10-04 Sartorius Ag Reactor plant and process for culturing phototropic microorganisms
CN101235397A (zh) * 2008-03-04 2008-08-06 华东理工大学 利用氧化还原电位调控乳酸发酵
CN101358210A (zh) * 2008-09-26 2009-02-04 华东理工大学 基于氧化还原电位自动反馈调控厌氧发酵生产乙醇的方法
WO2012050390A2 (ko) * 2010-10-15 2012-04-19 한국에너지기술연구원 알콜 및 광합성 박테리아를 이용한 수소 생산방법
CN102154097A (zh) * 2010-12-09 2011-08-17 中国科学院微生物研究所 自动调控氧化还原电位的装置及其应用
CN102296093A (zh) * 2011-09-08 2011-12-28 南京工业大学 一种氧化还原电位调控厌氧发酵生产丁醇的方法
CN103427102A (zh) * 2013-08-30 2013-12-04 华南理工大学 一种藻菌微生物燃料电池及其制备方法和应用
CN208328019U (zh) * 2018-04-25 2019-01-04 华东理工大学 光合细菌的培养装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李旭: "光合细菌(Rhodobacter sphaeroides)生物制氢及其光生物反应器研究", 《中国博士学位论文全文数据库-工程科技Ⅰ辑》, vol. 2013, no. 09, pages 66 - 76 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109678255A (zh) * 2018-12-29 2019-04-26 中国地质大学(武汉) 一种基于氮氧调节的模拟氧化还原波动的培养实验装置

Similar Documents

Publication Publication Date Title
Cheng et al. Auto-flocculation microalgae species Tribonema sp. and Synechocystis sp. with T-IPL pretreatment to improve swine wastewater nutrient removal
Vázquez-Romero et al. Techno-economic assessment of microalgae production, harvesting and drying for food, feed, cosmetics, and agriculture
Zhang et al. Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria
Cruz et al. Cultivation systems of microalgae for the production of biofuels
CN106929422B (zh) 一种小球藻和酵母共培养净化酵母废水的方法
Huang et al. Cultivation of a thermo-tolerant microalga in an outdoor photobioreactor: influences of CO2 and nitrogen sources on the accelerated growth
Zhai et al. Seawater supplemented with bicarbonate for efficient marine microalgae production in floating photobioreactor on ocean: A case study of Chlorella sp.
Zheng et al. Simultaneous fixation of carbon dioxide and purification of undiluted swine slurry by culturing Chlorella vulgaris MBFJNU-1
CN102863115A (zh) 一种利用微藻处理发酵工业废水并生产藻粉的方法
Sabeti et al. Enhanced removal of nitrate and phosphate from wastewater by Chlorella vulgaris: Multi-objective optimization and CFD simulation
Gonzalez-Camejo et al. On-line monitoring of photosynthetic activity based on pH data to assess microalgae cultivation
CN103663715A (zh) 一种利用微藻高效净化沼液的生物处理方法
CN208328019U (zh) 光合细菌的培养装置
CN101748177B (zh) 优化的脱氮假单胞菌发酵生产维生素b12方法与合成培养基
Cai et al. Mechanisms of promotion in the heterotrophic growth of Chlorella vulgaris by the combination of sodium acetate and hydrolysate of broken rice
Zou et al. Cultivation of Chlorella vulgaris in a light-receiving-plate (LRP)-enhanced raceway pond for ammonium and phosphorus removal from pretreated pig urine
CN113307377A (zh) 一种利用活性微藻耦合处理发酵排放废气与废水的方法
Molitor et al. Sustainably cultivating and harvesting microalgae through sedimentation and forward osmosis using wastes
Barzee et al. Pilot microalgae cultivation using food waste digestate with minimal resource inputs
Wang et al. Mass transfer characteristics and effect of flue gas used in microalgae culture
CN108342313A (zh) 光合细菌的培养装置及培养方法
Trentin et al. Fixing N2 into cyanophycin: continuous cultivation of Nostoc sp. PCC 7120
Hou et al. Potential contribution of chlorella vulgaris to carbon–nitrogen turnover in freshwater ecosystems after a great sandstorm event
CN205011566U (zh) 一种节水环保处理养殖粪类系统
Pastore et al. Application of photorespirometry to unravel algal kinetic parameters of nitrogen consumption in complex media

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180731