CN108341980B - 一种增强玉米淀粉-聚乳酸双层膜界面粘附性的方法 - Google Patents

一种增强玉米淀粉-聚乳酸双层膜界面粘附性的方法 Download PDF

Info

Publication number
CN108341980B
CN108341980B CN201810238521.9A CN201810238521A CN108341980B CN 108341980 B CN108341980 B CN 108341980B CN 201810238521 A CN201810238521 A CN 201810238521A CN 108341980 B CN108341980 B CN 108341980B
Authority
CN
China
Prior art keywords
film
polylactic acid
corn starch
solution
starch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810238521.9A
Other languages
English (en)
Other versions
CN108341980A (zh
Inventor
李欣欣
姜冰雪
武媛媛
宋景新
孙慧敏
陈珊珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201810238521.9A priority Critical patent/CN108341980B/zh
Publication of CN108341980A publication Critical patent/CN108341980A/zh
Application granted granted Critical
Publication of CN108341980B publication Critical patent/CN108341980B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Mechanical Engineering (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种增强玉米淀粉‑聚乳酸双层膜界面粘附性的方法,发明采用溶液流延法,将蛋壳粉作为增强剂,甘油(丙三醇)和水作为增塑剂,添加到玉米淀粉基薄膜中,提高了淀粉膜的机械性能、阻隔性能和热稳定性;采用无毒环保的乙酰柠檬酸三丁酯(ATBC)作为增塑剂,对聚乳酸进行增塑改性;采用低温等离子体技术对聚乳酸膜进行表面改性处理,通过表面刻蚀作用以及活性基团的引入,增加聚乳酸薄膜表面的亲水性和生物相溶性;最后,分别以玉米淀粉和聚乳酸为主要成膜基质,制备玉米淀粉‑聚乳酸双层膜。经低温等离子处理的玉米淀粉和聚乳酸的双层膜具有较好的机械强度,阻隔性能,生物降解性,通过两种材料的互补特性而为食品包装提供了有用的替代物。

Description

一种增强玉米淀粉-聚乳酸双层膜界面粘附性的方法
技术领域
本发明涉及一种增强玉米淀粉-聚乳酸双层膜界面粘附性的方法,属于食品包装领域。
技术背景
玉米淀粉(CS)资源丰富,价格低廉,安全无毒,是制备可降解薄膜较为理想的高分子材料。玉米淀粉基薄膜具有较好的透明度和氧气阻隔性能,但是具有较差的机械强度和水蒸气阻隔性能。
聚乳酸(PLA)是一种可再生的生物高分子材料,具有良好的生物相容性和生物可降解性,可以完全降解成对环境无害的水和二氧化碳。因此,聚乳酸被认为是一种可以取代石油基塑料的包装材料。具有良好的机械强度、水蒸气阻隔性能、生物相容性和生物可降解性。由于聚乳酸薄膜的脆性大、氧气阻隔性差以及生产成本较高,影响了其在包装材料中的应用。
在现有技术中,采用单一的高聚物不能够对某种特定的食品表现出其所有需要的机械性能和阻隔性,所以经常会采用多层膜结构或共混处理来提高膜的性能。采用低温等离子体技术对聚乳酸膜进行表面改性处理,通过表面刻蚀作用以及活性基团的引入,使聚乳酸膜表面的亲水性、粘结性、生物相容性等得到改善,可以更好地与玉米淀粉膜复合。目前关于采用低温等离子体对玉米淀粉-聚乳酸双层膜处理的方法还未见报道。
发明内容
本发明的目的是采用低温等离子体技术对聚乳酸膜进行表面改性处理,通过表面刻蚀作用以及活性基团的引入,使聚乳酸膜表面的亲水性、粘结性、生物相容性等得到改善。
有益效果:
发明的技术方案采用溶液流延法,将蛋壳粉作为增强剂,甘油(丙三醇)和水作为增塑剂,添加到玉米淀粉基薄膜中,提高了淀粉膜的机械性能、阻隔性能和热稳定性;采用无毒环保的乙酰柠檬酸三丁酯(ATBC)作为增塑剂,对聚乳酸进行增塑改性;采用低温等离子体技术对聚乳酸膜进行表面改性处理,通过表面刻蚀作用以及活性基团的引入,增加聚乳酸薄膜表面的亲水性和生物相溶性;最后,分别以玉米淀粉和聚乳酸为主要成膜基质,制备玉米淀粉-聚乳酸双层膜。
蛋壳-玉米淀粉薄膜和聚乳酸薄膜的结合有助于调节生物基包装材料的功能特性。与玉米淀粉单层膜相比,玉米淀粉-聚乳酸双层膜具有更好的机械性能和水蒸气阻隔性能,并且与聚乳酸膜相比对氧气具有更好的阻隔性能。此外,低温等离子体显著增加了聚乳酸膜表面的粗糙度和亲水性,并增强了双层之间的界面相互作用。与单层膜及普通双层膜相比低温等离子处理的双层膜的热性能,机械性能和阻隔性能增加。低温等离子处理后的双层膜的相容性和界面粘附性增加。为多层可降解包装材料的研究提供一种新的思路和途径,同时也对新型低成本可降解包装材料研发有一定的参考价值。
实施例
实施例1:
以如下步骤低温等离子体对玉米淀粉-聚乳酸薄膜表面处理:
步骤一:聚乳酸单层膜的制备
(1)按照乙酰柠檬酸三丁酯与聚乳酸质量比为1:20-3:10,即取1.2g乙酰柠檬酸三丁酯和6g聚乳酸溶于100mL氯仿(三氯甲烷)溶液中,将混合物恒温充分搅拌3h。
(2)取40ml成膜溶液流延在20cm*20cm玻璃板上,静置在通风橱内24h,再放置在50℃烘箱中干燥12h,使氯仿充分挥发。将干燥好的膜放在干燥器中保存备用。
(3)待膜干燥后揭膜,放置在23℃、相对湿度为55%的恒温恒湿箱中平衡48h,用于膜性能的检测。
步骤二:聚乳酸膜低温等离子体的表面改性处理(低温等离子对聚乳酸薄膜的表面改性处理)
取出在恒温恒湿箱保存24h的聚乳酸薄膜,将表面干净且平整的PLA薄膜放在LTP处理台上,在设计好的输出电压下设置低温等离子参数设置功率为300W,设置处理时间为4min。
步骤三:玉米淀粉膜液的制备
(1)0.0931g蛋壳粉溶解于蒸馏水中得到蛋壳粉分散液,用磁力搅拌器持续搅拌2h,使其充分润湿,备用。
(2)将4.9玉米淀粉溶解与100mL蒸馏水中,并加入2.401g丙三醇,在90℃下预先糊化5min。
(3)将蛋壳粉分散液逐滴添加到淀粉膜液中,继续加热搅拌25min。将上述配置好的溶液冷却到室温,放入真空干燥箱中,在-0.09MPa下真空脱气20min,然后静置1h,得到的成膜液备用。
步骤四:聚乳酸-玉米淀粉双层膜的制备
(1)把改性后的聚乳酸膜固定在成膜器中,等离子体改性面朝上。
(2)将制备好的98ml淀粉膜液流延在装有聚乳酸膜的成膜器中,置于干燥箱内,在50℃下干燥12h。
(3)待膜干燥冷却后揭膜,并放置在23℃、相对湿度为50%的恒温恒湿箱中平衡48h,用于膜性能的检测。
实施例2:
步骤一:聚乳酸单层膜的制备
(1)按照乙酰柠檬酸三丁酯与聚乳酸质量比为1:20-3:10,即取1.8g乙酰柠檬酸三丁酯和9g聚乳酸溶于150mL氯仿(三氯甲烷)溶液中,将混合物恒温充分搅拌3h。
(2)取40ml成膜溶液流延在20cm*20cm玻璃板上,静置在通风橱内24h,再放置在50℃烘箱中干燥12h,使氯仿充分挥发。将干燥好的膜放在干燥器中保存备用。
(3)待膜干燥后揭膜,放置在22℃、相对湿度为55%的恒温恒湿箱中平衡48h,用于膜性能的检测。
步骤二:聚乳酸膜低温等离子体的表面改性处理(低温等离子对聚乳酸薄膜的表面改性处理)
取出在恒温恒湿箱保存24h的聚乳酸薄膜,将表面干净且平整的PLA薄膜放在LTP处理台上,在设计好的输出电压下设置低温等离子参数设置功率为400W,设置处理时间为2min。
步骤三:玉米淀粉膜液的制备
(1)0.140g蛋壳粉溶解于蒸馏水中得到蛋壳粉分散液,用磁力搅拌器持续搅拌2h,使其充分润湿,备用。
(2)将7.35g玉米淀粉溶解与150mL蒸馏水中,并加入3.6g丙三醇,在88-92℃下预先糊化5min。
(3)将蛋壳粉分散液逐滴添加到淀粉膜液中,继续加热搅拌25min。将上述配置好的溶液冷却到室温,放入真空干燥箱中,在-0.09MPa下真空脱气20min,然后静置1h,得到的成膜液备用。
步骤四:聚乳酸-玉米淀粉双层膜的制备
(1)把改性后的聚乳酸膜固定在成膜器中,等离子体改性面朝上。
(2)将制备好的98ml淀粉膜液流延在装有聚乳酸膜的成膜器中,置于干燥箱内,在50℃下干燥12h。
(3)待膜干燥冷却后揭膜,并放置在23℃、相对湿度为50%的恒温恒湿箱中平衡48h,用于膜性能的检测。
实施例3:
步骤一:聚乳酸单层膜的制备
(1)按照乙酰柠檬酸三丁酯与聚乳酸质量比为1:20-3:10,即取6g乙酰柠檬酸三丁酯和30g聚乳酸溶于500mL氯仿(三氯甲烷)溶液中,将混合物恒温充分搅拌3h。
(2)取成膜溶液流延在有机玻璃板上,静置在通风橱内24h,再放置在50℃烘箱中干燥12h,使氯仿充分挥发。将干燥好的膜放在干燥器中保存备用。
(3)待膜干燥后揭膜,放置在23℃、相对湿度为55%的恒温恒湿箱中平衡48h,用于膜性能的检测。
步骤二:聚乳酸膜低温等离子体的表面改性处理(低温等离子对聚乳酸薄膜的表面改性处理):
取出在恒温恒湿箱保存24h的聚乳酸薄膜,将表面干净且平整的PLA薄膜放在LTP处理台上,在设计好的输出电压下设置低温等离子参数设置功率为500W,设置处理时间为3min。
步骤三:玉米淀粉膜液的制备
(1)0.4655g蛋壳粉溶解于蒸馏水中得到蛋壳粉分散液,用磁力搅拌器持续搅拌2h,使其充分润湿,备用。
(2)将24.5g玉米淀粉溶解与500mL蒸馏水中,并加入12.0g丙三醇,在90℃下预先糊化5min。
(3)将蛋壳粉分散液逐滴添加到淀粉膜液中,继续加热搅拌25min。将上述配置好的溶液冷却到室温,放入真空干燥箱中,在-0.09MPa下真空脱气20min,然后静置1h,得到的成膜液备用。
步骤四:聚乳酸-玉米淀粉双层膜的制备
(1)把改性后的聚乳酸膜固定在成膜器中,等离子体改性面朝上。
(2)将制备好的98ml淀粉膜液流延在装有聚乳酸膜的成膜器中,置于干燥箱内,在50℃下干燥12h。
(3)待膜干燥冷却后揭膜,并放置在23℃、相对湿度为50%的恒温恒湿箱中平衡48h,用于膜性能的检测。
实施例4:
聚乳酸单层膜的制备
(1)按照乙酰柠檬酸三丁酯与聚乳酸质量比为1:20-3:10,即取1.2g乙酰柠檬酸三丁酯和6g聚乳酸溶于100mL氯仿(三氯甲烷)溶液中,将混合物恒温充分搅拌3h。
(2)取成膜溶液流延在有机玻璃板上,静置在通风橱内24h,再放置在50℃烘箱中干燥12h,使氯仿充分挥发。将干燥好的膜放在干燥器中保存备用。
(3)待膜干燥后揭膜,放置在23℃、相对湿度为55%的恒温恒湿箱中平衡48h,用于膜性能的检测。
实施例5:
玉米淀粉单层膜制备:
(1)0.0931g蛋壳粉溶解于蒸馏水中得到蛋壳粉分散液,用磁力搅拌器持续搅拌2h,使其充分润湿,备用。
(2)将4.9玉米淀粉溶解与100mL蒸馏水中,并加入2.401g丙三醇,在90℃下预先糊化5min。
(3)将蛋壳粉分散液逐滴添加到淀粉膜液中,继续加热搅拌25min。将上述配置好的溶液冷却到室温,放入真空干燥箱中,在-0.09MPa下真空脱气20min,然后静置1h。
(4)取120mL膜液流延到自制的有机玻璃板中,置于干燥箱内,在50℃下干燥12h。
(5)待膜干燥冷却后揭膜,并放置在21℃-25℃,相对湿度为48%-52%的恒温恒湿箱中平衡。
将实施例1,2,3,4,5的产品进行性能测定,结果表明,其拉伸强度,断裂伸长率,剥离度PS(N)明显高于同厚度的单层共混膜,其阻湿阻气性能也得到较大的提高。
低温等离子体对玉米淀粉-聚乳酸薄膜表面处理与淀粉膜、聚乳酸膜以及普通双层膜之间进行相关性能
测试对比情况:
表一:
Figure BDA0001604622580000051
Figure BDA0001604622580000061

Claims (5)

1.一种增强玉米淀粉-聚乳酸双层膜界面粘附性的方法,其特征在于:至少包含以下步骤:
步骤一:聚乳酸单层膜的制备
(1)将聚乳酸加入到氯仿溶液中,聚乳酸氯仿溶液的质量浓度w/v为3%-9%w/v,加入乙酰柠檬酸三丁酯到聚乳酸氯仿溶液,乙酰柠檬酸三丁酯与聚乳酸质量比为1:20-3:10,将混合物恒温搅拌3h;
(2)取成膜溶液流延在玻璃板上,其中成膜液流延量为0.1ml/cm^2,静置在通风橱内24h,再放置在50℃烘箱中干燥12 h,使氯仿充分挥发,将干燥好的膜放在干燥器中保存备用;
(3)待膜干燥后揭膜,放置在20-25℃、相对湿度为55%的恒温恒湿箱中平衡48h,用于膜性能的检测;
步骤二:聚乳酸膜低温等离子体的表面改性处理
取出在恒温恒湿箱保存24h的聚乳酸薄膜,将表面干净且平整的PLA薄膜放在LTP处理台上,设置低温等离子参数功率为300-500W,设置处理时间为1-4min;
步骤三:玉米淀粉膜液的制备
(1)蛋壳粉溶解于蒸馏水中得到1wt.%- 3wt.%蛋壳粉分散液,用磁力搅拌器持续搅拌2h,使其充分润湿,备用;
(2)将玉米淀粉溶解于蒸馏水中获得淀粉水溶液质量浓度为4%-6%,并加入丙三醇,丙三醇与玉米淀粉质量比为49/100,在88-92℃下预先糊化5 min;
(3)将蛋壳粉分散液逐滴添加到淀粉膜液中,继续加热搅拌25min,将上述配置好的溶液冷却到室温,放入真空干燥箱中,在-0.09MPa下真空脱气20min,然后静置1h,得到的成膜液备用;
步骤四:聚乳酸-玉米淀粉双层膜的制备
(1)把改性后的聚乳酸膜固定在成膜器中,等离子体改性面朝上;
(2)将制备好的淀粉膜液流延在装有聚乳酸膜的成膜器中,其中淀粉膜液流延量为0.245ml/cm^2,置于干燥箱内,在50 ℃下干燥12 h;
(3)待膜干燥冷却后揭膜,并放置在23 ℃、相对湿度为50%的恒温恒湿箱中平衡48h,用于膜性能的检测。
2.根据权利要求1所述的一种增强玉米淀粉-聚乳酸双层膜界面粘附性的方法,其特征在于:步骤一(1)所述的乙酰柠檬酸三丁酯与聚乳酸质量比为1:5。
3.根据权利要求1所述的一种增强玉米淀粉-聚乳酸双层膜界面粘附性的方法,其特征在于:步骤一中(1)所述的聚乳酸氯仿溶液质量浓度w/v为6%。
4.根据权利要求1所述的一种增强玉米淀粉-聚乳酸双层膜界面粘附性的方法,其特征在于:步骤三中(1)所述的蛋壳粉添加量为1.9 wt.%分散在蒸馏水中。
5.根据权利要求1所述的一种增强玉米淀粉-聚乳酸双层膜界面粘附性的方法,其特征在于:步骤三中(2)所述的玉米淀粉质量浓度为4.9%。
CN201810238521.9A 2018-03-22 2018-03-22 一种增强玉米淀粉-聚乳酸双层膜界面粘附性的方法 Active CN108341980B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810238521.9A CN108341980B (zh) 2018-03-22 2018-03-22 一种增强玉米淀粉-聚乳酸双层膜界面粘附性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810238521.9A CN108341980B (zh) 2018-03-22 2018-03-22 一种增强玉米淀粉-聚乳酸双层膜界面粘附性的方法

Publications (2)

Publication Number Publication Date
CN108341980A CN108341980A (zh) 2018-07-31
CN108341980B true CN108341980B (zh) 2021-03-30

Family

ID=62958125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810238521.9A Active CN108341980B (zh) 2018-03-22 2018-03-22 一种增强玉米淀粉-聚乳酸双层膜界面粘附性的方法

Country Status (1)

Country Link
CN (1) CN108341980B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104194064A (zh) * 2014-09-09 2014-12-10 青岛农业大学 一种玉米淀粉复合膜及其制备方法及应用
CN107540879A (zh) * 2017-08-22 2018-01-05 华南理工大学 一种热塑性淀粉/聚乳酸双层膜及其制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104194064A (zh) * 2014-09-09 2014-12-10 青岛农业大学 一种玉米淀粉复合膜及其制备方法及应用
CN107540879A (zh) * 2017-08-22 2018-01-05 华南理工大学 一种热塑性淀粉/聚乳酸双层膜及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Using atmospheric plasma to design multilayer film from polylactic acid and thermoplastic starch: a screening Life Cycle Assessment,Journal of Cleaner Production;Enrico Benetto etal.;《Journal of Cleaner Production》;20141027;953-960 *
无机物对淀粉塑料力学性能影响的研究进展;薛灿,银鹏 等;《高分子通报》;20170515;53-61 *

Also Published As

Publication number Publication date
CN108341980A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
Vartiainen et al. Biopolymer films and coatings in packaging applications—a review of recent developments
Oliveira de Castro et al. “Green polyethylene” and curauá cellulose nanocrystal based nanocomposites: Effect of vegetable oils as coupling agent and processing technique
Fabra et al. Tailoring barrier properties of thermoplastic corn starch-based films (TPCS) by means of a multilayer design
Lin et al. Physical, mechanical, structural and antibacterial properties of polyvinyl alcohol/oregano oil/graphene oxide composite films
CN112334531B (zh) 水性乙烯-乙烯醇共聚物分散体和涂覆有所述分散体的氧阻隔多层膜
Lim et al. Preparation and characterization of composites based on polylactic acid and beeswax with improved water vapor barrier properties
JP2012041489A (ja) ガスバリア性成形体
CN107686640A (zh) 一种改性生物聚合物基包装材料及其制备方法
CN103073738A (zh) 聚乙烯醇/木聚糖可生物降解复合膜及其制备方法与应用
JP2005281678A (ja) 脂肪族ポリエステル系樹脂組成物及びその成形体
CN110358273B (zh) 一种具有高抗穿刺性能的生物质抗菌膜
Durmaz et al. Poly (vinyl alcohol) and casein films: The effects of glycerol amount on the properties of films
CN108341980B (zh) 一种增强玉米淀粉-聚乳酸双层膜界面粘附性的方法
US9745699B2 (en) Copolymers of starch and cellulose
JP4848891B2 (ja) 生分解性ガスバリア材
JP4162489B2 (ja) ガスバリア性成形体、その製造方法、ガスバリア性フィルム、その製造方法
Medina‐Jaramillo et al. A Biodegradable and Active Bilayer Nanocomposite Obtained from Starch‐Yerba Mate Extract and Starch‐TiO2 Nanoparticles Films for Packaging Applications
Aladejana et al. Dual crosslinked soybean protein adhesives with high strength, mold resistance, and extended shelf-life via dynamic covalent bonds
Koshy et al. Soy protein-and starch-based green composites/nanocomposites: preparation, properties, and applications
Hashim et al. The effect of nanofillers on the functional properties of PLA and chitosan based film
CN114350125A (zh) 一种疏水环保降解复合包装膜
Yan et al. Preparation and properties of vegetable-oil-based thioether polyol and ethyl cellulose supramolecular composite films
Anjali et al. Cellulose and Cellulose Derivative-Based Films
JP2004263159A (ja) 帯電防止性ポリ乳酸系樹脂組成物
CA2765936A1 (fr) Composition, procede de preparation et utilisation pour ameliorer la fluidite et la resistance a la temperature de materiaux composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant