CN108339976A - 激光熔覆原位自生碳化钒增强铁基合金用粉料及制备方法 - Google Patents

激光熔覆原位自生碳化钒增强铁基合金用粉料及制备方法 Download PDF

Info

Publication number
CN108339976A
CN108339976A CN201810172593.8A CN201810172593A CN108339976A CN 108339976 A CN108339976 A CN 108339976A CN 201810172593 A CN201810172593 A CN 201810172593A CN 108339976 A CN108339976 A CN 108339976A
Authority
CN
China
Prior art keywords
laser
powder
situ
cladding
vanadium carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810172593.8A
Other languages
English (en)
Other versions
CN108339976B (zh
Inventor
张春华
王冲
韩雨柔
徐韵华
崔雪
张瀚方
张松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Technology
Original Assignee
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology filed Critical Shenyang University of Technology
Priority to CN201810172593.8A priority Critical patent/CN108339976B/zh
Publication of CN108339976A publication Critical patent/CN108339976A/zh
Application granted granted Critical
Publication of CN108339976B publication Critical patent/CN108339976B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种激光熔覆原位自生碳化钒增强铁基合金用粉料及制备方法,通过真空气雾化法制备的合金粉料各元素质量百分比为C 4.00%~4.40%,V 16.00%~18.00%,Cr 8.00%~10.00%,Si 0.90%~1.30%,Mo 1.00%~2.00%,Mn 0.90%~1.20%,Ni 0.40%~0.70%,Al 0.30%~0.50%,P和S的总质量分数≤0.03%,O≤300ppm,其余为Fe。采用CO2激光加工系统同步送粉方式将合金粉末激光熔覆于低碳合金钢基材表面,熔覆层粉末吸收激光能量在基材表面形成熔池,熔池中的C元素和V元素发生反应生成原位自生V8C7陶瓷增强相,同时,熔覆层与基材形成良好的冶金结合。制备原位自生V8C7颗粒增强铁基合金激光熔覆层,可显著提高了低合金钢构件表面的硬度及耐磨性,可广泛应用于工业领域摩擦磨损工况条件下机械部件的激光制造及再制造,具有显著的经济效益和社会效益。

Description

激光熔覆原位自生碳化钒增强铁基合金用粉料及制备方法
技术领域
本发明涉及表面工程新材料制备领域,具体涉及到一种激光熔覆原位自生碳化钒增强铁基合金用粉料及制备方法。
背景技术
在全球范围内,铁矿产地下资源非常丰富,铁元素的储量仅次于氧、硅和铝元素,位列第四位。因其价格低廉,在工、农业及国民经济支柱产业各领域机械零部件和日常生活中应用极其广泛,但大部分铁基合金或铁制品硬度较低、耐磨性差,为了适应社会不断发展对材料性能要求的逐渐提高,特别是在机械设备摩擦磨损工况条件下,一种途径是寻找更耐磨的材料,这也意味着对有限资源的挑战及成本的增加;另一种途径便是通过表面强化技术在廉价材料表面制备一层功能性硬化层,以缓解对有限资源(如贵金属、稀有金属)需求量大的压力。因此发展一种切实可行的、通过引入陶瓷硬质相颗粒来增加铁基合金的硬度及耐磨性,进一步改善其性能的方法势在必行。
已有文献表明,可以在铁基合金基体中添加WC、TiC、Cr7C3等增强相以达到改善涂层性能的目的。碳化钒因其高硬度、高熔点的特征,也可用作增强相添加到涂层中。虽然直接向涂层中添加增强相颗粒具有简单方便、增强相含量可控的优点,但也存在一些不可避免的缺点:首先,无法保证增强相颗粒在制备、包装、运输、添加的过程中不受污染,容易在涂层中引进杂质,导致增强相颗粒与基体的结合界面结合不佳,甚至容易引发界面裂纹的产生,达不到预期的强化效果;其次,难以控制增强相颗粒与涂层粉末充分均匀地混合,这主要由粉末粒度不同和粉末密度存在差异所致,由此将会产生增强相颗粒在涂层中分布不均的现象,强化效果大打折扣。
激光辐照原位自生增强相是一种新型的金属基复合材料制备方法,即增强相与基体同时形成两相或多相复合材料,与直接向涂层粉末中添加增强相颗粒的方法相比,其具有以下特点:
1)增强相是从合金熔体中原位形核、长大的热力学稳定相,因此,增强相表面无污染,避免了与基体相容性不良的问题,且界面结合强度高;
2)通过合理选择反应元素或化合物的类型、成分及其反应性,可有效地控制原位自生增强相的种类、大小、分布和数量,能制备各种体积分数的复合材料,不易出现增强相的团聚或偏析,反应生成的颗粒相组织细小;
3)省去了增强相单独合成、处理和加入等工序,因此其工艺简单、成本较低;
4)通过激光辐照反应合成的工艺特点,可在熔覆层内生成弥散细小增强相呈梯度分布的改性层;
5)激光辐照原位自生颗粒增强金属基复合材料表面改性技术,可实现连续生产和近净成形工艺,直接制造出近终形产品。
发明内容
发明目的:
为解决现有技术存在的问题,本发明所用粉料含有优化比例的C、V、Cr等合金元素,通过激光辐照采用同步送粉的方式在一种低碳合金钢基材表面制备原位自生V8C7颗粒增强铁基合金梯度改性层,显著提高铁基合金的表面硬度及耐磨损性能。
技术方案:
激光熔覆原位自生碳化钒增强铁基合金用粉料,其特征在于:通过真空雾化法得到的合金粉末各元素质量百分比为C 4.00%~4.40%,V 16.00%~18.00%,Cr 8.00%~10.00%,Si 0.90%~1.30%,Mo 1.00%~2.00%,Mn 0.90%~1.20%,Ni 0.40%~0.70%,Al 0.30%~0.50%,其余为Fe。
所述真空气雾化法得到的合金粉末中P和S的总质量分数≤0.03%,O≤300ppm。
所述粉料的粒径为45~100μm。
一种如所述粉料激光辐照原位自生碳化钒颗粒增强铁基合金梯度涂层的制备方法,其特征在于:采用激光辐照原位合成方法,通过同步送粉将合金粉料激光熔覆于低碳合金钢基材表面,粉料吸收激光束辐照能量在基材表面形成熔池,熔池中的C、V元素发生反应原位自生V8C7增强相颗粒,同时,熔覆层与基材形成冶金结合。
所述粉料在进行激光熔覆前需将粉料在120℃的干燥箱中烘干2~5小时。
所述激光熔覆使用CO2激光加工系统,激光器输出功率4.0kW,激光束波长10.64μm,光斑直径4mm,扫描速度400mm/min~700mm/min,大面积激光束扫描搭接率为50%,激光熔覆过程保护气Ar流量为10L/min~20L/min,Ar气的纯度为99.95%。
所述预置粉末的供料方式为同轴送粉方式。
优点及效果:
本发明工艺简单可控,方便可行。真空气雾化法制备的合金粉料中所含的C、V元素在激光辐照过程中发生原位反应生成V8C7颗粒增强相,显著提高了铁基合金的硬度及耐磨性;原位自生V8C7增强相避免了人工机械添加陶瓷增强相带来的粉料污染及分布不均匀问题,且增强相与基体界面干净、无杂质,以圆球状和花瓣状弥散分布于基体中,因此与基体结合牢固,不易脱落;V8C7的密度小于铁水的密度,在熔池中,V8C7增强相有上浮的趋势,再加上激光熔覆快速熔凝的工艺特点,导致V8C7增强相在熔覆层中呈梯度分布;由于金属铁资源丰富、价格低廉、应用广泛,故以铁基合金为熔覆层基体相;与碳化钛等相比,V8C7增强相与熔融铁的润湿性增强,熔融铁在V8C7表面的扩散成分,所以V8C7增强相与铁基体的结合强度更强。
附图说明:
图1是本发明的单道熔覆层截面宏观形貌;
图2是本发明实施例1的熔覆层截面表面微观组织形貌;
图3是本发明实施例1的熔覆层截面中部微观组织形貌;
图4是本发明实施例1的熔覆层截面界面微观组织形貌;
图5是本发明实施例2的熔覆层截面表面微观组织形貌;
图6是本发明实施例2的熔覆层截面中部微观组织形貌;
图7是本发明实施例2的熔覆层截面界面微观组织形貌;
图8是本发明实施例2的熔覆层中部微观组织形貌;
图9是本发明图8实施例2的熔覆层中部显微组织A区域能谱分析结果;
图10是本发明图8实施例2的熔覆层中部显微组织B区域能谱分析结果;
图11是本发明实施例3的熔覆层截面表面微观组织形貌;
图12是本发明实施例3的熔覆层截面中部微观组织形貌;
图13是本发明实施例3的熔覆层截面界面微观组织形貌;
图14是本发明实施例2的熔覆层XRD分析结果;
图15是本发明实施例4的熔覆层截面显微硬度分布曲线;
图16是本发明实施例5的磨损30min激光熔覆层表面磨痕形貌。
具体实施方式
下面结合附图和具体实施例对本发明做进一步的描述:
通过真空气雾化法得到的铁基合金粉料各元素质量百分比为C 4.00%~4.40%,V 16.00%~18.00%,Cr 8.00%~10.00%,Si 0.90%~1.30%,Mo 1.00%~2.00%,Mn0.90%~1.20%,Ni 0.40%~0.70%,Al 0.30%~0.50%,P和S的总质量分数≤0.03%,O≤300ppm,其余为Fe。所述铁基合金粉料的粒径为45~100μm。
合金粉末在进行激光熔覆前在120℃的真空干燥箱中烘干2~5小时,之后将合金粉料倒入送粉器中,采用同步送粉激光辐照原位合成方法将合金粉料熔覆于低碳合金钢基材上。熔覆层粉末吸收激光束能量在基材表面形成熔池,熔池中的C元素和V元素发生反应生成原位自生V8C7增强铁基梯度涂层,同时,熔覆层与基材形成了冶金结合。
所述激光熔覆为使用CO2激光器进行加工,CO2激光器输出功率为4.0kW,激光波长10.64μm,光斑直径4mm,扫描速度400mm/min~700mm/min,大面积激光束扫描搭接率为50%,激光熔覆过程保护气Ar流量为10L/min~20L/min,Ar气的纯度为99.95%。
真空气雾化的原理是用高速气流将液态金属流破碎成小液滴并凝固成粉末的过程。真空气雾化法制备的粉体材料具有球形度高、粉末粒度可控、氧含量低、生产成本低,以及适应多种金属粉末的生产等优点。
以下结合实施例详述本发明,但本发明不局限于下述实施例。
实施例1
采用合金粉末I在低碳合金钢基材表面制备V8C7颗粒增强铁基合金激光熔覆层。
将成分(质量分数)为C 4.00%,V 16.00%,Cr 8.00%,Si 0.90%,Mo 1.00%,Mn0.90%,Ni 0.40%,Al 0.30%,P和S的总质量分数≤0.03%,O≤300ppm,其余为Fe,合金粉末I放入120℃的真空干燥箱中烘干2~5小时,然后进行激光熔覆试验。采用CO2激光器进行激光熔覆,激光束波长10.64μm,激光功率4.0kW,扫描速度400mm/min~700mm/min,大面积加工进行多道次激光熔覆搭接率为50%。同步送粉法的送粉器转速为600r/min,保护气Ar气的纯度为99.95%,保护气流速10~20L/min。所获得的激光熔覆层厚度在0.6~0.9mm。
实施例2
采用合金粉末II在低碳合金钢基材表面制备V8C7颗粒增强铁基合金激光熔覆层。
将成分(质量分数)为C 4.20%,V 17.00%,Cr 9.00%,Si 1.10%,Mo 1.50%,Mn1.10%,Ni 0.50%,Al 0.40%,P和S的总质量分数≤0.03%,O≤300ppm,其余为Fe的待熔覆合金粉末II放入真空干燥箱中,在120℃的温度下干燥2~5小时,然后进行激光熔覆试验。采用CO2激光器进行激光熔覆试验,激光波长10.64μm,激光功率4.0kW,扫描速度400mm/min~700mm/min,进行多道熔覆的搭接率为50%。同步送粉法的送粉器转速为600r/min,保护气Ar气的纯度为99.95%,保护气流速10~20L/min。所获得的激光熔覆层厚度在0.6~0.9mm。
实施例3
采用合金粉末III在低碳合金钢基材表面制备V8C7颗粒增强相铁基合金激光熔覆层。
将成分(质量分数)为C 4.40%,V 18.00%,Cr 10.00%,Si 1.30%,Mo 2.00%,Mn 1.20%,Ni 0.70%,Al 0.50%,P和S的总质量分数≤0.03%%,O≤300ppm,其余为Fe的待熔覆合金粉末III放入120℃真空干燥箱烘干2~5小时,然后进行激光熔覆试验。采用CO2激光器进行激光熔覆,激光束波长10.64μm,激光功率4.0kW,扫描速度400mm/min~700mm/min,大面积熔覆多道次搭接率为50%。同步送粉法的送粉器转速为600r/min,保护气Ar气的纯度为99.95%,保护气流速10~20L/min。所获得的激光熔覆层厚度在0.6~0.9mm。
实施例4
V8C7增强铁基合金激光熔覆层截面显微硬度分布。
将成分(质量分数)为C 4.20%,V 17.00%,Cr 9.00%,Si 1.10%,Mo 1.50%,Mn1.10%,Ni 0.50%,Al 0.40%,P和S的总质量分数≤0.03%,O≤300ppm,其余为Fe的待熔覆合金粉末II放入120℃真空干燥箱烘干2~5小时,然后进行激光熔覆试验。采用CO2激光器进行激光熔覆,激光束波长10.64μm,激光输出功率4.0kW,扫描速度400mm/min~700mm/min,大面积多道次熔覆搭接率为50%。同步送粉送粉器转速为600r/min,保护气Ar气的纯度为99.95%,保护气流速10~20L/min。所获得的激光熔覆层厚度在0.6~0.9mm。
将制备的激光熔覆层截面进行显微硬度分布的检测。采用HVS-1000型维氏硬度计测试其显微硬度分布,法向载荷300g,加载时间15s。激光熔覆层界面由表面到基材的方向,每隔100μm测量一个点,为确保数据的准确性,同一深度测量3个点取平均值作为该深度下的熔覆层显微硬度值。
实施例5
V8C7颗粒增强铁基合金激光熔覆层的摩擦磨损性能。
将成分(质量分数)为C 4.20%,V 17.00%,Cr 9.00%,Si 1.10%,Mo 1.50%,Mn1.10%,Ni 0.50%,Al 0.40%,P和S的总质量分数≤0.03%,O≤300ppm,其余为Fe,合金粉末II放入120℃真空干燥箱中烘干2~5小时,然后进行激光熔覆。采用CO2激光器进行激光熔覆加工,激光束波长10.64μm,激光器输出功率4.0kW,扫描速度400mm/min~700mm/min,进行多道次熔覆的搭接率为50%。同步送粉送粉器转速为600r/min,保护气Ar气的纯度为99.95%,保护气流速10~20L/min。所获得的激光熔覆层厚度在0.6~0.9mm。
将制备的激光熔覆层采用线切割机加工成样块,然后用金相砂纸逐级打磨并抛光,经超声波清洗后吹干备用。利用多功能材料表面性能试验仪进行摩擦磨损性能评价,上摩擦副为直径5mm的Si3N4球,下摩擦副为V8C7颗粒增强铁基合金激光熔覆层,加载法向载荷为10N,往复速度为150mm/min,往复距离为8mm,磨损时间为30min。相对耐磨性(相对耐磨性系35CrMo钢基材与铁基合金激光熔覆样品磨损失重量的比值)大于26。
以下结合附图对本发明做进一步的说明:
图1是V8C7颗粒增强铁基合金激光熔覆层截面宏观形貌,可以看到,熔覆层与基材冶金结合良好。
图2、图3和图4为实施例1的激光熔覆层截面微观形貌。在图中界面处呈现良好冶金结合的熔合线,界面处组织均匀细密;中部组织较界面有所增大,但激光熔覆层表面的组织略有粗化。圆球状和花瓣状组织弥散分布于整个激光熔覆层中,这些弥散分布的V8C7增强相颗粒有助于激光熔覆层硬度及耐磨性的提高。
图5、图6和图7为本发明实施例2的激光熔覆层截面微观形貌。从图中可以清楚地观察到界面处的白亮带熔合区,说明激光熔覆层与基材冶金结合良好。激光熔覆层表面比较平整,无裂纹或气孔等缺陷,激光熔覆层内部组织均匀细密,熔覆层中的V8C7颗粒普遍以圆球状和由圆球状簇拥成的花瓣状形态弥散分布,这些弥散分部的V8C7增强相颗粒有助于激光熔覆层硬度及耐磨性的提高。而且,从激光熔覆层表面到中部、再到界面,V8C7增强相颗粒尺寸和数量逐渐减小,体现出V8C7颗粒增强相沿熔覆层深度方向呈梯度分布。
图8、图9和图10是本发明实施例2的熔覆层中部显微组织及能谱分析结果。从图中可以看出,深色组织(A区域)中V元素含量非常高,而Fe元素含量很低,结合XRD分析,可以判断圆球状和花瓣状颗粒为增强相V8C7。图中浅色组织(B区域)中富含Fe元素,V元素匮乏,因此可以断定该区域主要为基体相α-Fe。
图11、图12和图13是本发明实施例3的激光熔覆层截面微观组织形貌。从图中可以清楚地观察到,在该成分下,制备出的激光熔覆层与基材形成良好的冶金结合,其增强相组织形态主要为圆球状及花瓣状。
图14是本发明实施例2的激光熔覆层XRD分析结果,表明熔覆层中的增强相以V8C7的形式存在,基体相为α-Fe,其中还存在一定量的其他硬质相碳化物,激光熔覆层中V8C7增强相的存在对熔覆层硬度及耐磨性的提高产生显著影响。
图15是本发明实施例4的熔覆层截面显微硬度分布曲线。可以明显的看到,从熔覆层表面到界面,其硬度值基本呈缓慢下降的趋势,最高硬度为807HV0.3,而低碳合金钢基材的硬度值在200HV0.3左右,熔覆层硬度约为基材的4倍以上,激光熔覆层中V8C7增强相的存在显著提高了熔覆层的硬度。
图16是激光熔覆层在载荷10N的条件下,往复滑动磨损30min熔覆层样品表面磨痕形貌,摩擦副为直径5mm的Si3N4圆球。激光熔覆层的磨损表面只能观察到浅显的犁沟,且可以观察到弥散分布的增强相仍存在于样品表面,说明原位自生的增强相与铁合金基体结合牢固,熔覆层仅发生了轻微的磨粒磨损,并未观察到粘着磨损及氧化磨损现象,更没有出现磨屑剥落痕迹,体现出复合材料改性层优异的耐磨性。

Claims (7)

1.激光熔覆原位自生碳化钒增强铁基合金用粉料,其特征在于:通过真空雾化法得到的合金粉末各元素质量百分比为C 4.00%~4.40%,V 16.00%~18.00%,Cr 8.00%~10.00%,Si 0.90%~1.30%,Mo 1.00%~2.00%,Mn 0.90%~1.20%,Ni 0.40%~0.70%,Al 0.30%~0.50%,其余为Fe。
2.根据权利要求1所述激光熔覆原位自生碳化钒增强铁基合金用粉料,其特征在于:所述真空气雾化法得到的合金粉末中P和S的总质量分数≤0.03%,O≤300ppm。
3.根据权利要求1所述激光熔覆原位自生碳化钒增强铁基合金用粉料,其特征在于:所述粉料的粒径为45~100μm。
4.一种如权利要求1所述粉料激光辐照原位自生碳化钒颗粒增强铁基合金梯度涂层的制备方法,其特征在于:采用激光辐照原位合成方法,通过同步送粉将合金粉料激光熔覆于低碳合金钢基材表面,粉料吸收激光束辐照能量在基材表面形成熔池,熔池中的C、V元素发生反应原位自生V8C7增强相颗粒,同时,熔覆层与基材形成冶金结合。
5.根据权利要求3所述粉料激光辐照原位自生碳化钒颗粒增强铁基合金梯度涂层的制备方法,其特征在于:所述粉料在进行激光熔覆前需将粉料在120℃的干燥箱中烘干2~5小时。
6.根据权利要求4所述粉料激光辐照原位自生碳化钒颗粒增强铁基合金梯度涂层的制备方法,其特征在于:所述激光熔覆使用CO2激光加工系统,激光器输出功率4.0kW,激光束波长10.64μm,光斑直径4mm,扫描速度400mm/min~700mm/min,大面积激光束扫描搭接率为50%,激光熔覆过程保护气Ar流量为10L/min~20L/min,Ar气的纯度为99.95%。
7.根据权利要求4所述粉料激光辐照原位自生碳化钒颗粒增强铁基合金梯度涂层的制备方法,其特征在于:所述预置粉末的供料方式为同轴送粉方式。
CN201810172593.8A 2018-03-01 2018-03-01 激光熔覆原位自生碳化钒增强铁基合金用粉料及制备方法 Active CN108339976B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810172593.8A CN108339976B (zh) 2018-03-01 2018-03-01 激光熔覆原位自生碳化钒增强铁基合金用粉料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810172593.8A CN108339976B (zh) 2018-03-01 2018-03-01 激光熔覆原位自生碳化钒增强铁基合金用粉料及制备方法

Publications (2)

Publication Number Publication Date
CN108339976A true CN108339976A (zh) 2018-07-31
CN108339976B CN108339976B (zh) 2019-12-27

Family

ID=62959653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810172593.8A Active CN108339976B (zh) 2018-03-01 2018-03-01 激光熔覆原位自生碳化钒增强铁基合金用粉料及制备方法

Country Status (1)

Country Link
CN (1) CN108339976B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055685A (zh) * 2018-09-29 2018-12-21 西安文理学院 一种碳化钒梯度复合涂层及其制备方法
CN111607789A (zh) * 2020-04-27 2020-09-01 北京矿冶科技集团有限公司 激光熔覆原位自生碳化物颗粒增强铁基熔覆层及其制备方法
CN114406287A (zh) * 2022-01-27 2022-04-29 恒普(宁波)激光科技有限公司 高密度纳米析出相原位增强材料
CN116083901A (zh) * 2023-01-07 2023-05-09 矿冶科技集团有限公司 一种增强相分布状态可调控的激光熔覆复合层及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290405A (zh) * 2013-05-22 2013-09-11 东北大学 一种在球墨铸铁表面激光熔覆制取高速钢涂层的方法
CN106399863A (zh) * 2016-12-03 2017-02-15 东北大学 激光增材24CrNiMoRe合金钢粉末及制备方法
CN106480450A (zh) * 2015-09-02 2017-03-08 沈阳大陆激光工程技术有限公司 一种激光熔覆石油钻具耐磨合金粉末材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290405A (zh) * 2013-05-22 2013-09-11 东北大学 一种在球墨铸铁表面激光熔覆制取高速钢涂层的方法
CN106480450A (zh) * 2015-09-02 2017-03-08 沈阳大陆激光工程技术有限公司 一种激光熔覆石油钻具耐磨合金粉末材料
CN106399863A (zh) * 2016-12-03 2017-02-15 东北大学 激光增材24CrNiMoRe合金钢粉末及制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055685A (zh) * 2018-09-29 2018-12-21 西安文理学院 一种碳化钒梯度复合涂层及其制备方法
CN111607789A (zh) * 2020-04-27 2020-09-01 北京矿冶科技集团有限公司 激光熔覆原位自生碳化物颗粒增强铁基熔覆层及其制备方法
CN114406287A (zh) * 2022-01-27 2022-04-29 恒普(宁波)激光科技有限公司 高密度纳米析出相原位增强材料
CN114406287B (zh) * 2022-01-27 2024-04-09 恒普(宁波)激光科技有限公司 高密度纳米析出相原位增强材料
CN116083901A (zh) * 2023-01-07 2023-05-09 矿冶科技集团有限公司 一种增强相分布状态可调控的激光熔覆复合层及其制备方法

Also Published As

Publication number Publication date
CN108339976B (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
Weng et al. Wear resistance of diode laser-clad Ni/WC composite coatings at different temperatures
CN108339976A (zh) 激光熔覆原位自生碳化钒增强铁基合金用粉料及制备方法
Lu et al. Wear behavior of brazed WC/NiCrBSi (Co) composite coatings
Barmouz et al. On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: investigating microstructure, microhardness, wear and tensile behavior
Chen et al. Repair of spline shaft by laser-cladding coarse TiC reinforced Ni-based coating: Process, microstructure and properties
CN103361642B (zh) 一种等离子熔覆梯度耐磨层及制备工艺
Jiang et al. On enhancing wear resistance of titanium alloys by laser cladded WC-Co composite coatings
Zhang et al. Effect of Ti on microstructure characteristics, carbide precipitation mechanism and tribological behavior of different WC types reinforced Ni-based gradient coating
CN102618866B (zh) 一种增强钛合金表面激光熔覆层的方法
Zhao et al. Microstructure and mechanical properties of Ti–C–TiN-reinforced Ni204-based laser-cladding composite coating
Zhao et al. WC-Fe metal-matrix composite coatings fabricated by laser wire cladding
Xiong et al. The influence of working distance on laser deposited WC–Co
CN113416952A (zh) 一种球墨铸铁件激光熔覆用TiC增强金属基复合合金粉末及其制备方法
Shalnova et al. Direct energy deposition of SiC reinforced Ti–6Al–4V metal matrix composites: Structure and mechanical properties
Chao et al. Effect of TiO2-doping on the microstructure and the wear properties of laser-clad nickel-based coatings
Hong et al. In-situ reinforced phase evolution and wear resistance of nickel-based composite coatings fabricated by wide-band laser cladding with Nb addition
Abbas et al. Two-body abrasive wear studies of laser produced stainless steel and stainless steel+ SiC composite clads
Wei et al. Preparation of TA15 powder reinforced 45CrNiMoY alloy steel with high mechanical property by pre-laid laser cladding technology
CN109652795A (zh) 一种激光熔覆法制备的WC-Ni基硬质合金
Sharma et al. Surface hardening characteristics of microalloyed steel during ex-situ and in-situ Al2O3 reinforcement under TIG arcing
CN115976390B (zh) 镍基碳化钨复合合金粉及其应用以及镍基碳化钨复合涂层的制备方法
Gao et al. Effect of Co on microstructure and interfacial properties of Fe-based laser cladding
CN104264151B (zh) 一种反应等离子熔覆原位合成TiN涂层的制备方法
Popoola et al. Three body abrasive wear of X12CrNiMo martensitic stainless steel laser alloyed with TiC
Matula et al. Comparison of structure and properties of hard coatings on commercial tool materials manufactured with the pressureless forming method or laser treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant