CN108339581A - 基于介电泳的表面微液滴配发结构、制备方法及配发方法 - Google Patents

基于介电泳的表面微液滴配发结构、制备方法及配发方法 Download PDF

Info

Publication number
CN108339581A
CN108339581A CN201810297219.0A CN201810297219A CN108339581A CN 108339581 A CN108339581 A CN 108339581A CN 201810297219 A CN201810297219 A CN 201810297219A CN 108339581 A CN108339581 A CN 108339581A
Authority
CN
China
Prior art keywords
electrode
allots
electrodes
microlayer model
dielectrophoresis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810297219.0A
Other languages
English (en)
Inventor
王伟强
赵伟炳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201810297219.0A priority Critical patent/CN108339581A/zh
Publication of CN108339581A publication Critical patent/CN108339581A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0421Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electrophoretic flow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrostatic Separation (AREA)

Abstract

本发明公开了一种基于介电泳的表面微液滴配发结构、制备方法及配发方法,自下而上依次为绝缘基底、两个电极、两个连接片、绝缘层以及疏水层。将母液滴滴于电极的长条形电极的一端,对两个电极施加交流电压,母液滴在介电泳力作用下沿着电极的长条形电极延伸,延伸至长条形电极的另一端;此时去除电压,流体平衡被打破,于是沿长条形电极延伸的液柱在半圆柱形电极处分别形成一个个独立的微液滴。本发明的优点在于:配发装置结构简单,制作工艺成熟,成本低;液滴配发操作简单,能耗低;在开放型器件实现微液滴的配发及位置的精确控制。

Description

基于介电泳的表面微液滴配发结构、制备方法及配发方法
技术领域
本发明属于微流控技术领域,具体涉及一种基于介电泳的表面微液滴配发结构、制备方法及配发方法。
背景技术
微流控指的是使用微管道(尺寸为数十到数百微米)处理或操纵微小流体(体积为纳升到阿升)的系统所涉及的科学和技术。近年来,基于微流控的生化检测芯片得到了广泛的研究。在片上实验室(Lab-on-a-Chip)的应用中,芯片上的液滴被用作功能性的媒介并实现多种流体操控,包括液滴的运输、分裂、合并和配发等。微流控技术中,使用电场力驱动、运输或处理微流体,其主要优点包括结构简单性, 制备工艺简单,无运动部件以及灵活的电压控制。利用电场力驱动液滴的驱动机理主要是介电润湿(EWOD)和液体介电泳(DEP)。介电润湿和介电泳适用于以微液滴分配和运动作为基本单位的运输分析。
微液滴操控包括微液滴生成和微液滴驱动,按生成方式可以将操控微液滴的方法分为两大类。一类是被动法,即通过对微通道结构的特别设计使液流局部产生速度梯度来对微液滴进行操控,主要为多相流法。该法的主要特点是可以快速批量生成微液滴;另一类是主动法,即通过电场力、热能量等外力使液流局部产生能量梯度来对微液滴进行操控,主要包括电润湿法、介电电泳法、气动法和热毛细管法。
目前利用电场力驱动液滴配发都是在封闭的器件内进行,典型的器件结构如利用介电润湿实现液滴配发的平行双基板器件,例如2005年吴建刚等人制备的介质上电润湿液滴驱动器,该驱动器采用“三明治”结构:下极板由Ti/Pt微电极阵列、Si3N4介质薄膜、碳氟聚合物疏水薄膜组成,上极板是覆盖有疏水薄膜的透明电极,液滴被夹在上下电极之间。
发明内容
本发明的目的在于提供一种基于介电泳的表面微液滴配发结构、制备方法及配发方法,解决了在开放型器件无法配发的问题。
实现本发明目的的技术解决方案为:一种基于介电泳的表面微液滴配发结构,包括绝缘基底、绝缘层、疏水层、两个电极和两个连接片;所述电极包括长条形电极和若干个半圆柱形电极,若干个半圆柱形电极等间隔固定在长条形电极外侧壁,长条形电极和半圆柱形电极高度相等,两个电极的长条形电极内壁相对,平行设置在绝缘基底上,在设有电极的绝缘基底上设置绝缘层,绝缘层上设置疏水层,两个连接片通过分别与两个电极的端部相连,连接片用于连接外部电源。
一种基于介电泳的表面微液滴配发结构的制备方法,方法步骤如下:
步骤1、在绝缘基底上采用PECVD、蒸镀、溅射工艺制备导电薄膜,通过光刻及其后的金属刻蚀方法形成连接电源的两个连接片和两个电极;
步骤2、通过旋涂、物理溅射、化学气相沉积方法在设有连接片和电极的绝缘基底上制备绝缘介质层;
步骤3、通过旋涂方法制备绝缘介质层上表面的疏水层;
步骤4、通过刻蚀将连接电源的连接片暴露出来。
一种基于介电泳的表面微液滴配发结构的配发方法,方法步骤如下:
步骤a、将母液滴滴于电极的长条形电极的一端;
步骤b、对两个电极施加交流电压,电压频率大于10k Hz,电压大于60V;
步骤c、母液滴在介电泳力作用下沿着电极的长条形电极延伸,延伸至长条形电极的另一端;
步骤d、此时去除电压,流体平衡被打破,于是沿长条形电极延伸的液柱在半圆柱形电极处分别形成一个个独立的微液滴。
本发明与现有技术相比,其显著优点在于:(1)本配发装置结构简单,制作工艺成熟,成本低;(2)液滴配发操作简单,能耗低;(3)在开放型器件实现微液滴的配发及位置的精确控制。
附图说明
图1为本发明的基于介电泳的表面微液滴配发结构通上电压后母液滴沿着电极爬伸示意图(俯视图)。
图2为本发明的基于介电泳的表面微液滴配发结构去除电压后形成微液滴的示意图。
图3为本发明的基于介电泳的表面微液滴配发结构的A-A剖面图。
具体实施方式
下面结合附图对本发明作进一步详细描述。
结合图1至图3,一种基于介电泳的表面微液滴配发结构,包括绝缘基底3、绝缘层4、疏水层5、两个电极2和两个连接片1。所述电极2包括长条形电极和若干个半圆柱形电极,若干个半圆柱形电极等间隔固定在长条形电极外侧壁,长条形电极和半圆柱形电极高度相等,两个电极2的长条形电极内壁相对,平行设置在绝缘基底3上,在设有电极2的绝缘基底3上设置绝缘层4,绝缘层4上设置疏水层5,两个连接片1通过分别与两个电极2的端部相连,连接片1用于连接外部电源。
两个连接片1位于两个电极2的同侧端部。
根据Rayleigh不稳定理论,对于半圆柱形电极间距的周期λ,有如下的计算公式:
λ=9.016(w + g/2)
其中w是长条形电极的宽度,g是两个长条形电极的间距。
所述绝缘基底3采用绝缘材料,例如为玻璃基片。
一种基于介电泳的表面微液滴配发结构的制备方法,方法步骤如下:
步骤1、在绝缘基底3(材料可为玻璃基片或其他绝缘材料)上采用PECVD(等离子体增强化学气相沉积)、蒸镀、溅射等工艺制备导电薄膜,可为铬、铝等金属层或氧化铟锡等化合物,通过光刻及其后的金属刻蚀等方法形成连接电源的两个连接片1以及两个电极2。
步骤2、通过旋涂、物理溅射、化学气相沉积等方法在设有连接片1和电极2的绝缘基底3上制备绝缘介质层4,优选为介电常数高、抗击穿能力强的绝缘材料,如氧化铝等。
步骤3、通过旋涂方法制备绝缘介质层4上表面的疏水层5,材料选用Teflon-AF或Cytop。
步骤4、通过刻蚀将连接电源的连接片1暴露出来。
一种基于介电泳的表面微液滴配发结构的配发方法,方法步骤如下:
步骤a、将母液滴6滴于电极2的长条形电极的一端,优选滴于设有连接片1的一端。
步骤b、对两个电极2施加交流电压,电压频率大于10k Hz,电压大于60V。
步骤c、母液滴6在介电泳力作用下沿着电极2的长条形电极延伸,延伸至长条形电极的另一端。
步骤d、此时去除电压,流体平衡被打破,于是沿长条形电极延伸的液柱在半圆柱形电极处分别形成一个个独立的微液滴7。

Claims (8)

1.一种基于介电泳的表面微液滴配发结构,其特征在于:包括绝缘基底(3)、绝缘层(4)、疏水层(5)、两个电极(2)和两个连接片(1);所述电极(2)包括长条形电极和若干个半圆柱形电极,若干个半圆柱形电极等间隔固定在长条形电极外侧壁,长条形电极和半圆柱形电极高度相等,两个电极(2)的长条形电极内壁相对,平行设置在绝缘基底(3)上,在设有电极(2)的绝缘基底(3)上设置绝缘层(4),绝缘层(4)上设置疏水层(5),两个连接片(1)通过分别与两个电极(2)的端部相连,连接片(1)用于连接外部电源。
2.根据权利要求1所述的基于介电泳的表面微液滴配发结构,其特征在于:所述两个连接片(1)位于两个电极(2)的同侧端部。
3.根据权利要求1所述的基于介电泳的表面微液滴配发结构,其特征在于:根据Rayleigh不稳定理论,对于半圆柱形电极间距的周期λ,有如下的计算公式:
λ=9.016(w + g/2)
其中w是长条形电极的宽度,g是两个长条形电极的间距。
4.根据权利要求1所述的基于介电泳的表面微液滴配发结构,其特征在于:所述绝缘基底(3)采用绝缘材料。
5.一种基于上述权利要求1-4中任意一项所述的基于介电泳的表面微液滴配发结构的制备方法,其特征在于,方法步骤如下:
步骤1、在绝缘基底(3)上采用PECVD、蒸镀、溅射工艺制备导电薄膜,通过光刻及其后的金属刻蚀方法形成连接电源的两个连接片(1)和两个电极(2);
步骤2、通过旋涂、物理溅射、化学气相沉积方法在设有连接片(1)和电极(2)的绝缘基底(3)上制备绝缘介质层(4);
步骤3、通过旋涂方法制备绝缘介质层(4)上表面的疏水层(5);
步骤4、通过刻蚀将连接电源的连接片(1)暴露出来。
6.根据权利要求5所述的基于介电泳的表面微液滴配发结构的制备方法,其特征在于:上述绝缘基底(3)材料采用绝缘材料,导电薄膜为铬或铝的金属层或氧化铟锡化合物;绝缘介质层(4)采用介电常数高、抗击穿能力强的绝缘材料,疏水层(5)材料选用Teflon-AF或Cytop 。
7.一种基于上述权利要求1-4中任意一项所述的基于介电泳的表面微液滴配发结构的配发方法,其特征在于,方法步骤如下:
步骤a、将母液滴(6)滴于电极(2)的长条形电极的一端;
步骤b、对两个电极(2)施加交流电压,电压频率大于10k Hz,电压大于60V;
步骤c、母液滴(6)在介电泳力作用下沿着电极(2)的长条形电极延伸,延伸至长条形电极的另一端;
步骤d、此时去除电压,流体平衡被打破,于是沿长条形电极延伸的液柱在半圆柱形电极处分别形成一个个独立的微液滴(7)。
8.根据权利要求7所述的基于介电泳的表面微液滴配发结构的配发方法,其特征在于:上述步骤a中,滴于设有连接片(1)的一端。
CN201810297219.0A 2018-03-30 2018-03-30 基于介电泳的表面微液滴配发结构、制备方法及配发方法 Pending CN108339581A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810297219.0A CN108339581A (zh) 2018-03-30 2018-03-30 基于介电泳的表面微液滴配发结构、制备方法及配发方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810297219.0A CN108339581A (zh) 2018-03-30 2018-03-30 基于介电泳的表面微液滴配发结构、制备方法及配发方法

Publications (1)

Publication Number Publication Date
CN108339581A true CN108339581A (zh) 2018-07-31

Family

ID=62958252

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810297219.0A Pending CN108339581A (zh) 2018-03-30 2018-03-30 基于介电泳的表面微液滴配发结构、制备方法及配发方法

Country Status (1)

Country Link
CN (1) CN108339581A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109530158A (zh) * 2018-11-23 2019-03-29 大连理工大学 一种电场驱动的微量高粘度胶液转移的装置及方法
CN109647549A (zh) * 2018-12-17 2019-04-19 南方科技大学 一种易替换的疏水介电薄膜和一种微流控芯片
CN110314713A (zh) * 2019-06-11 2019-10-11 南京理工大学 一种基于介电泳的生物分子富集装置及其控制方法
WO2023103136A1 (zh) * 2021-12-07 2023-06-15 澳门大学 一种基于电润湿现象的液滴生成方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060226012A1 (en) * 2005-04-08 2006-10-12 Kanagasabapathi Thirukumaran T Integrated microfluidic transport and sorting system
CN105854117A (zh) * 2016-03-28 2016-08-17 南京理工大学 一种基于介质上电润湿的精确给药输液装置
CN208494260U (zh) * 2018-03-30 2019-02-15 南京理工大学 基于介电泳的表面微液滴配发结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060226012A1 (en) * 2005-04-08 2006-10-12 Kanagasabapathi Thirukumaran T Integrated microfluidic transport and sorting system
CN105854117A (zh) * 2016-03-28 2016-08-17 南京理工大学 一种基于介质上电润湿的精确给药输液装置
CN208494260U (zh) * 2018-03-30 2019-02-15 南京理工大学 基于介电泳的表面微液滴配发结构

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109530158A (zh) * 2018-11-23 2019-03-29 大连理工大学 一种电场驱动的微量高粘度胶液转移的装置及方法
CN109647549A (zh) * 2018-12-17 2019-04-19 南方科技大学 一种易替换的疏水介电薄膜和一种微流控芯片
CN110314713A (zh) * 2019-06-11 2019-10-11 南京理工大学 一种基于介电泳的生物分子富集装置及其控制方法
WO2023103136A1 (zh) * 2021-12-07 2023-06-15 澳门大学 一种基于电润湿现象的液滴生成方法及应用

Similar Documents

Publication Publication Date Title
CN108339581A (zh) 基于介电泳的表面微液滴配发结构、制备方法及配发方法
CN208494260U (zh) 基于介电泳的表面微液滴配发结构
JP4963859B2 (ja) マイクロ流体の方法および質量を二種の不混和性相間で移送する装置
Zhao et al. Fundamentals and applications of electrowetting: a critical review
CN105797792B (zh) 一种数字微流控芯片上的低电压介质液滴驱动方法
WO2006003293A3 (fr) Dispositif de manipulation de gouttes destine a l'analyse biochimique, procede de fabrication du dispositif, et systeme d'analyse microfluidique
Pei et al. Light-actuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets
CN103386332A (zh) 微流控芯片输运液滴的方法
CN108465493A (zh) 微流控芯片的制造方法
Lathia et al. Advances in microscale droplet generation and manipulation
Shen et al. Improving the dielectric properties of an electrowetting-on-dielectric microfluidic device with a low-pressure chemical vapor deposited Si3N4 dielectric layer
Xue-Feng et al. Actuation and control of droplets by using electrowetting-on-dielectric
CN103406161A (zh) 一种能产生精确液滴的数字微流芯片
CN107790203A (zh) 基于电频率控制的微液滴驱动装置及其驱动方法
CN1278921C (zh) 基于介质层上电润湿的微液滴驱动器
CN110170341B (zh) 利用声表面波技术实现粒子高通量分选的数字微流控器件
Wang et al. Numerical and experimental investigation of bubble dynamics via electrowetting-on-dielectric (EWOD)
Geng et al. Dielectrowetting for digital microfluidics
KR100811543B1 (ko) 직접 전극접촉에 의하여 전하의 충전을 통한 전도성 액적의이동방법
Rui-Feng et al. Demonstration of four fundamental operations of liquid droplets for digital microfluidic systems based on an electrowetting-on-dielectric actuator
Das et al. Effect of electrode geometry on voltage reduction in EWOD based devices
Salari et al. A novel AC electrothermal micropump consisting of two opposing parallel coplanar asymmetric microelectrode arrays
CN107790204A (zh) 一种基于电频率控制的微液滴驱动装置及其驱动方法
Chen et al. Droplet creation using liquid dielectrophoresis
CN107803228A (zh) 一种自动分离水油混合液滴的装置及其分离方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180731

RJ01 Rejection of invention patent application after publication