CN108328620B - 疏水型发泡水泥复合硅气凝胶材料的制备方法 - Google Patents

疏水型发泡水泥复合硅气凝胶材料的制备方法 Download PDF

Info

Publication number
CN108328620B
CN108328620B CN201810145136.XA CN201810145136A CN108328620B CN 108328620 B CN108328620 B CN 108328620B CN 201810145136 A CN201810145136 A CN 201810145136A CN 108328620 B CN108328620 B CN 108328620B
Authority
CN
China
Prior art keywords
hydrophobic
temperature
preparation
sol
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810145136.XA
Other languages
English (en)
Other versions
CN108328620A (zh
Inventor
沈晓冬
朱昆萌
刘思佳
崔升
彭长鑫
毛圣楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201810145136.XA priority Critical patent/CN108328620B/zh
Publication of CN108328620A publication Critical patent/CN108328620A/zh
Application granted granted Critical
Publication of CN108328620B publication Critical patent/CN108328620B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/16Preparation of silica xerogels
    • C01B33/163Preparation of silica xerogels by hydrolysis of organosilicon compounds, e.g. ethyl orthosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/65Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明属于纳米多孔材料的制备工艺领域,尤其涉及一种疏水型发泡水泥复合硅气凝胶材料的制备方法。以正硅酸乙酯为前驱体,有机硅烷为改性剂,发泡水泥为硬质增强基体,采用溶胶‑凝胶法,原位聚合法以及真空浸渍工艺,并结合快速乙醇超临界干燥制备而成。制得的疏水型发泡水泥复合硅气凝胶材料密度为0.40‑0.73g/cm3,抗压强度为0.8‑2.1MPa,常温热导率为0.054‑0.186W·m‑1·K‑1,疏水角为118°‑146°。该工艺用料低廉,制备方法简捷,生产周期由传统方法的5‑7天压缩至10h以内,在缩短制备周期的同时还节省了大量乙醇,具备大规模工业化生产意义。

Description

疏水型发泡水泥复合硅气凝胶材料的制备方法
技术领域
本发明属于纳米多孔材料的制备工艺领域,涉及一种耐高温,低热导率,疏水性好及高强度的疏水型发泡水泥复合硅气凝胶材料的制备方法。
背景技术
SiO2气凝胶是具有纳米多孔网络结构的固体材料。作为迄今为止绝热性能最好的材料,SiO2气凝胶具有高比表面积、高孔隙率、低密度和低热导率等优异性能,在航空航天、建筑、化工等领域作为保温、隔热材料具有较为广阔的应用前景。但是二氧化硅气凝胶脆性大、强度低,制约了其作为隔热材料在很多领域的工程化应用。而且常规方法制备的SiO2气凝胶表面都含有一定的亲水性基团硅羟基,在高温潮湿环境下使用时易吸潮后造成孔结构收缩和骨架坍塌,从而导致其隔热效果下降及使用寿命缩短。
目前,玻璃纤维作为一种低成本增强相被广泛应用于气凝胶产业化,但其柔软、易弯曲的特性无法承受剪切应力,不适宜作为承重结构直接使用。而且在潮湿环境中,气凝胶组分性能有所降低。
发泡水泥因其廉价、质轻的特性被应用于建筑保温领域,但其热导率相对较高、使用温度低导致其无法在高温热工设备中得到使用。
发明内容
本发明的目的是为了改进现有技术的不足而提供一种疏水型发泡水泥复合硅气凝胶材料的制备方法。
本发明的技术方案为:使用发泡水泥作为基体,疏水性硅气凝胶均匀填充在其孔洞中,在避免了因气凝胶亲水性导致其孔结构破坏的同时,提高了气凝胶材料的机械强度,使其具备抗压抗折能力,并且根据使用环境要求的不同可进行后期机械加工,有一定承重能力,可作为特定部位的结构材料使用。其中疏水改性二氧化硅气凝胶组分采用快速制备法,将时间从5-7天缩短至10h以内,省去了凝胶、溶剂置换和老化过程,节省大量乙醇溶剂的用量同时也大大缩短了制备时间。
本发明的具体技术方案为:一种疏水型发泡水泥复合硅气凝胶材料的制备方法,其具体步骤如下:
(1)溶胶的制备
将前驱体与原位改性剂、水和乙醇按一定比例混合并加入容器搅拌一段时间,通过加入碱试剂调节pH值,得到疏水性硅溶胶;
(2)与发泡水泥基体的复合
将硬质发泡水泥材料放在容器(或者模具)中,将步骤(1)制得的疏水性硅溶胶倾倒入容器中,以没过基体材料为准,使用真空干燥箱进行真空浸渍复合发泡水泥,抽真空2-3次并及时添加溶胶,使发泡水泥基体得到充分浸润,得到发泡水泥增强疏水SiO2溶胶;此过程之后省去了凝胶和老化过程,直接进行干燥;
(3)乙醇超临界干燥
将步骤(2)得到的发泡水泥增强疏水SiO2溶胶连带容器放入超临界反应釜中,干燥介质为乙醇,气氛为氮气,干燥温度为250℃~290℃,压力为8~12MPa,恒温恒压状态下维持2-4个小时,放出气体后待反应釜温度降温(一般至室温)后即得到疏水型发泡水泥复合硅气凝胶材料。
优选步骤(1)中所使用的前驱体原料为正硅酸四乙酯(TEOS),原位改性剂为甲基三乙氧基硅烷(MTES)、苯基三乙氧基硅烷(PTES)或乙烯基三乙氧基硅烷(VTES)中的一种。
优选步骤(1)中前驱体、水、乙醇、原位改性剂按1:(0.14~0.28):(3.12~4.17):(0.17~0.53)的体积比进行配制。
优选步骤(1)中搅拌时间在0.5-2h之间。
优选步骤(1)中所使用的碱性试剂为NH3.H2O浓度在8-13mol/L之间的氨水溶液。
优选步骤(1)中pH值为7.0~9.0。
优选步骤(2)中硬质发泡水泥材料的密度为0.32~0.68g/cm3,常温热导率在0.098~0.210W·m-1·K-1之间。
优选步骤(2)中所述的真空干燥箱温度设置为20℃~40℃,真空度设置为10~30KPa。
本发明所制得的疏水型发泡水泥复合硅气凝胶材料的密度为0.40-0.73g/cm3,抗压强度为0.8-2.1MPa,常温热导率为0.054-0.186W·m-1·K-1,疏水角为118°-146°。
本发明采用原位聚合法对气凝胶进行疏水改性并与硬质发泡水泥复合,制得疏水性好、高强度、低热导的疏水型发泡水泥复合硅气凝胶材料,同时采用快速制备法,将制备周期从5-7天缩短至10h以内。所制备的复合材料既能起到良好的疏水隔热效果又能在某些特定结构中承受一定的重力。
有益效果:
(1)相比较于传统的玻璃纤维增强SiO2气凝胶样品,本发明制备得到的疏水型发泡水泥复合硅气凝胶样品力学性能优异、具备一定抗压强度,可用于结构材料直接承重。
(2)相比较于发泡水泥,硅钙板等硬质隔热材料,本发明所制备得疏水型发泡水泥复合硅气凝胶材料具有更好得隔热性能,热导率更低。
(3)相比较于传统的复合气凝胶制品,本发明在保证产品性能的基础上采用原位聚合法对气凝胶进行疏水改性,避免了因气凝胶亲水性而导致其孔结构的破坏。
(4)相比较于传统的复合气凝胶制品,本发明采用快速制备法省去了凝胶、溶剂置换和老化过程,将时间从5-7天缩短至10h以内,极大提高了效率,适合工业化生产。
附图说明
图1是实例1中所制备的疏水型发泡水泥复合硅气凝胶材料的扫描电子显微镜照片。
图2是实例2中所制备的疏水型发泡水泥复合硅气凝胶材料的傅里叶红外光谱分析图。
图3是实例2中所制备的疏水型发泡水泥复合硅气凝胶材料的接触角测试图。
图4是实例3中所制备样品的热失重-差热分析图。
具体实施方式
下面结合实例对本发明作进一步说明,但保护范围并不限于此。
实例1
在烧杯中加入44.7ml正硅酸四乙酯,12.5ml去离子水,186.3ml乙醇与20mlMTES,将混合溶液搅拌1h30min后,逐滴加入8mol/L的氨水溶液,调节溶液pH至8后搅拌均匀。将密度为0.47g/cm3,常温热导率为0.152W·m-1·K-1硬质发泡水泥材料放在模具中,将刚制得的疏水性硅溶胶倾倒入容器中,以没过基体材料为准。使用真空干燥箱进行真空浸渍复合发发泡水泥,真空干燥箱温度设置为20℃,真空度设置为10KPa。抽真空2次并及时添加溶胶,使发泡水泥基体得到充分浸润。无需等待其凝胶,直接将样品连带容器放入反应釜中进行乙醇超临界干燥,干燥温度设置为270℃,温度升上去之后,压力维持在10MPa,恒温恒压状态下维持3h,然后保持匀速在30min内将气体放出,等反应釜温度降下之后取出容器,将水泥基体外部的气凝胶剥掉后得到疏水型发泡水泥复合硅气凝胶材料。所制备材料密度为0.52g/cm3,抗压强度为1.5MPa,常温热导率为0.122W·m-1·K-1,疏水角为134°。
图1为疏水型发泡水泥复合硅气凝胶材料的扫描电子显微镜照片,气凝胶组分均匀且充分填充于基体的孔结构之中,且保持三维纳米多孔的特征结构,通过限制了空气分子热运动提高了材料的隔热性能。
实例2
在烧杯中加入53.7ml正硅酸四乙酯,9.7ml去离子水,183.7ml乙醇与19.9mlMTES,将混合溶液搅拌1h后,逐滴加入9mol/L的氨水溶液,调节溶液pH至8后搅拌均匀。将密度为0.52g/cm3,常温热导率为0.183W·m-1·K-1的硬质发泡水泥材料放在模具中,将刚制得的疏水性硅溶胶倾倒入容器中,以没过基体材料为准。使用真空干燥箱进行真空浸渍复合发泡水泥,真空干燥箱温度设置为40℃,真空度设置为30KPa。抽真空3次并及时添加溶胶,使发泡水泥基体得到充分浸润。无需等待其凝胶,直接将样品连带容器放入反应釜中进行乙醇超临界干燥,干燥温度设置为260℃,温度升上去之后,压力维持在9MPa,恒温恒压状态下维持2.5h,然后保持匀速在25min内将气体放出,等反应釜温度降下之后取出容器,将水泥基体外部的气凝胶剥掉后得到疏水型发泡水泥复合硅气凝胶材料。所制备材料密度为0.6g/cm3,抗压强度为1.8MPa,常温热导率为0.152W·m-1·K-1,疏水角为128.1°。
图2和图3分别为所制备的发泡水泥复合SiO2气凝胶材料的红外光谱和接触角测试图像,在2980cm-1附近出现了较强的甲基伸缩振动峰,同时128.1°的接触角表明材料具有良好的疏水性能。
实例3
在烧杯中加入39.3ml正硅酸四乙酯,11.0ml去离子水,163.8ml乙醇与20.8mlMTES,将混合溶液搅拌2h后,逐滴加入13mol/L的氨水溶液,调节溶液pH至9后搅拌均匀。将密度为0.32g/cm3,常温热导率为0.098W·m-1·K-1的硬质发泡水泥材料放在模具中,将刚制得的疏水性硅溶胶倾倒入容器中,以没过基体材料为准。使用真空干燥箱进行真空浸渍复合发泡水泥,真空干燥箱温度设置为30℃,真空度设置为20KPa。抽真空2次并及时添加溶胶,使发泡水泥基体得到充分浸润。无需等待其凝胶,直接将样品连带容器放入反应釜中进行乙醇超临界干燥,干燥温度设置为290℃,温度升上去之后,压力维持在12MPa,恒温恒压状态下维持4h,然后保持匀速在40min内将气体放出,等反应釜温度降下之后取出容器,将水泥基体外部的气凝胶剥掉后得到疏水型发泡水泥复合硅气凝胶材料。所制备材料密度为0.40g/cm3,抗压强度为0.8MPa,常温热导率为0.054W·m-1·K-1,疏水角为146°。
图4为所制备材料的热重-比热分析,30-100℃的阶段性失重是由于吸附水和乙醇蒸发导致的,而在280℃伴随着质量下降,出现气凝胶表面基团氧化的特征吸热峰,该材料在1000℃内热失重不到15%,热稳定性良好。
实例4
在烧杯中加入58.2ml正硅酸四乙酯,8.2ml去离子水,181.6ml乙醇与9.9ml MTES,将混合溶液搅拌0.5h后,逐滴加入8mol/L的氨水溶液,调节溶液pH至8后搅拌均匀,将密度为0.68g/cm3,常温热导率为0.210W·m-1·K-1的硬质发泡水泥材料放在模具中,将刚制得的疏水性硅溶胶倾倒入容器中,以没过基体材料为准。使用真空干燥箱进行真空浸渍复合发泡水泥,真空干燥箱温度设置为25℃,真空度设置为15KPa。抽真空3次并及时添加溶胶,使发泡水泥基体得到充分浸润。无需等待其凝胶,直接将样品连带容器放入反应釜中进行乙醇超临界干燥,干燥温度设置为250℃,温度升上去之后,压力维持在8MPa,恒温恒压状态下维持2h,然后保持匀速在20min内将气体放出,等反应釜温度降下之后取出容器,将水泥基体外部的气凝胶剥掉后得到疏水型发泡水泥复合硅气凝胶材料。所制备材料密度为0.73g/cm3,抗压强度为2.1MPa,常温热导率为0.186W·m-1·K-1,疏水角为118°。
实例5
在烧杯中加入42.5ml正硅酸四乙酯,9.8ml去离子水,159.4ml乙醇与20.4mlMTES,将混合溶液搅拌1.5h后,逐滴加入10mol/L的氨水溶液,调节溶液pH至9后搅拌均匀。将密度为0.41g/cm3,常温热导率为0.114W·m-1·K-1的硬质发泡水泥材料放在模具中,将刚制得的疏水性硅溶胶倾倒入容器中,以没过基体材料为准。使用真空干燥箱进行真空浸渍复合发泡水泥,真空干燥箱温度设置为35℃,真空度设置为25KPa。抽真空2次并及时添加溶胶,使发泡水泥基体得到充分浸润。无需等待其凝胶,直接将样品连带容器放入反应釜中进行乙醇超临界干燥,干燥温度设置为280℃,温度升上去之后,压力维持在11MPa,恒温恒压状态下维持3.5h,然后保持匀速在35min内将气体放出,等反应釜温度降下之后取出容器,将水泥基体外部的气凝胶剥掉后得到疏水型发泡水泥复合硅气凝胶材料。所制备材料密度为0.46g/cm3,抗压强度为1.2MPa,常温热导率为0.083W·m-1·K-1,疏水角为141°。

Claims (5)

1.一种疏水型发泡水泥复合硅气凝胶材料的制备方法,其具体步骤如下:
(1)溶胶的制备
将前驱体与原位改性剂、水和乙醇按一定比例混合并加入容器搅拌一段时间,通过加入碱试剂调节pH值,得到疏水性硅溶胶;其中前驱体、水、乙醇、原位改性剂按1:(0.14~0.28):(3.12~4.17):(0.17~0.53)的体积比进行配制;其中所使用的前驱体原料为正硅酸四乙酯,原位改性剂为甲基三乙氧基硅烷、苯基三乙氧基硅烷或乙烯基三乙氧基硅烷中的一种;
(2)与发泡水泥基体的复合
将硬质发泡水泥材料放在容器中,将步骤(1)制得的疏水性硅溶胶倾倒入容器中,以没过基体材料为准,使用真空干燥箱进行真空浸渍复合发泡水泥,抽真空2-3次并及时添加溶胶,使发泡水泥基体得到充分浸润,得到发泡水泥增强疏水SiO2溶胶;其中硬质发泡水泥材料的密度为0.32~0.68 g/cm3,常温热导率在0.098~0.210 W·m-1·K-1之间;所述的真空干燥箱温度设置为20℃~40℃,真空度设置为10~30KPa;
(3)乙醇超临界干燥
将步骤(2)得到的发泡水泥增强疏水SiO2溶胶连带容器放入超临界反应釜中,干燥介质为乙醇,气氛为氮气,干燥温度为250℃~290℃,压力为8~12MPa,恒温恒压状态下维持2-4个小时,放出气体后待反应釜温度降温后即得到疏水型发泡水泥复合硅气凝胶材料。
2.根据权利要求1所述的制备方法,其特征在于步骤(1)中搅拌时间在0.5-2h之间。
3.根据权利要求1所述的制备方法,其特征在于步骤(1)中所使用的碱性试剂为碱性试剂为NH3.H2O浓度在8-13mol/L之间的氨水溶液。
4.根据权利要求1所述的制备方法,其特征在于步骤(1)中pH值为7.0~9.0。
5.根据权利要求1所述的制备方法,其特征在于制得的疏水型发泡水泥复合硅气凝胶材料的密度为0.40-0.73g/cm3,抗压强度为0.8-2.1MPa,常温热导率为0.054-0.186W·m-1·K-1,疏水角为118°-146°。
CN201810145136.XA 2018-02-12 2018-02-12 疏水型发泡水泥复合硅气凝胶材料的制备方法 Active CN108328620B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810145136.XA CN108328620B (zh) 2018-02-12 2018-02-12 疏水型发泡水泥复合硅气凝胶材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810145136.XA CN108328620B (zh) 2018-02-12 2018-02-12 疏水型发泡水泥复合硅气凝胶材料的制备方法

Publications (2)

Publication Number Publication Date
CN108328620A CN108328620A (zh) 2018-07-27
CN108328620B true CN108328620B (zh) 2021-08-24

Family

ID=62929135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810145136.XA Active CN108328620B (zh) 2018-02-12 2018-02-12 疏水型发泡水泥复合硅气凝胶材料的制备方法

Country Status (1)

Country Link
CN (1) CN108328620B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111233379B (zh) * 2020-02-11 2021-06-08 中南大学 一种发泡地质聚合物/气凝胶复合隔热材料及其制备方法
CN114620736B (zh) * 2021-12-15 2023-04-18 航天海鹰(镇江)特种材料有限公司 一种压缩可控的SiO2气凝胶复合材料制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130454A (zh) * 2011-11-29 2013-06-05 航天特种材料及工艺技术研究所 一种低热导率硅橡胶泡沫材料及其制备方法
CN103360019A (zh) * 2013-07-18 2013-10-23 厦门大学 碳化硅纤维毡增强的二氧化硅气凝胶复合材料的制备方法
CN105622021A (zh) * 2015-12-31 2016-06-01 卓达新材料科技集团有限公司 一种二氧化硅气凝胶发泡水泥
CN105837100A (zh) * 2016-03-25 2016-08-10 江西中科新建材有限公司 一种微细二氧化硅气凝胶改性发泡水泥保温板的制备方法
KR101745501B1 (ko) * 2016-02-05 2017-06-09 (주)청우산업개발 콘크리트 구조물의 보수·보강재

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105669101A (zh) * 2009-11-25 2016-06-15 卡博特公司 气凝胶复合材料及其制造和使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130454A (zh) * 2011-11-29 2013-06-05 航天特种材料及工艺技术研究所 一种低热导率硅橡胶泡沫材料及其制备方法
CN103360019A (zh) * 2013-07-18 2013-10-23 厦门大学 碳化硅纤维毡增强的二氧化硅气凝胶复合材料的制备方法
CN105622021A (zh) * 2015-12-31 2016-06-01 卓达新材料科技集团有限公司 一种二氧化硅气凝胶发泡水泥
KR101745501B1 (ko) * 2016-02-05 2017-06-09 (주)청우산업개발 콘크리트 구조물의 보수·보강재
CN105837100A (zh) * 2016-03-25 2016-08-10 江西中科新建材有限公司 一种微细二氧化硅气凝胶改性发泡水泥保温板的制备方法

Also Published As

Publication number Publication date
CN108328620A (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
CN109403022B (zh) 具有亲水性或疏水性的气凝胶/非织物复合材料的制备方法及其产品
CN105198375B (zh) 一种绝热二氧化硅气凝胶/羟基化玻璃纤维毡复合材料及其制备方法
CN108328620B (zh) 疏水型发泡水泥复合硅气凝胶材料的制备方法
JP2008208019A (ja) 多孔質材及びその調製方法
CN104528741B (zh) 一种有机改性纳米孔二氧化硅气凝胶及其制备方法
CN112079585B (zh) 一种利用微孔发泡制备的超疏水地聚合物及其制备方法
CN113135732A (zh) 一种短切玻璃纤维二氧化硅气凝胶复合材料及其制备方法
CN103754886A (zh) 一种超高强度、高比表面积复合二氧化硅气凝胶的制备方法
CN105883828A (zh) 一种块状疏水柔性二氧化硅气凝胶及其制备方法
JP2010047710A (ja) 柔軟性、成形性を有する発泡ポリマー−シリカ複合体およびそれを用いた断熱材料
CN111333394A (zh) 一种疏水型泡沫混凝土及其制备方法
CN112625288A (zh) 一种基于mof/气凝胶复合改性的有机-无机杂化隔热膜及其制备方法
CN112062515B (zh) 一种利用碳化硅制备的高强地聚合物闭孔发泡材料及其制备方法
CN111607253A (zh) 一种二氧化硅气凝胶保温填料的制备方法
CN114180581B (zh) 一种二氧化硅气凝胶的合成方法
CN110092939B (zh) 聚有机烷氧基硅烷增强杂化氧化硅气凝胶及其制备方法
CN112265998B (zh) 超低密度、低热导的大尺寸氧化硅气凝胶及其制备方法
CN112940451B (zh) 一种密胺泡沫架构的气凝胶
CN116003039B (zh) 一种包含改性聚丙烯纤维的透水混凝土及其制备方法
CN115043408B (zh) 一种柔韧性二氧化硅气凝胶、气凝胶毡及其制备方法
CN112408876A (zh) 基于二氧化硅的水泥基多孔材料及其制备方法
CN110902690A (zh) 利用反复升降压快速制备疏水型二氧化硅气凝胶的方法
CN113603924B (zh) 一种吸声多级孔分布的pi气凝胶及其制备方法
US9315632B1 (en) Process for preparing epoxy-reinforced silica aerogels
CN114591101A (zh) 一种混凝土防水材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant