CN108324277A - 用于分类借助磁共振指纹法采集的磁共振测量数据的方法 - Google Patents

用于分类借助磁共振指纹法采集的磁共振测量数据的方法 Download PDF

Info

Publication number
CN108324277A
CN108324277A CN201810047867.0A CN201810047867A CN108324277A CN 108324277 A CN108324277 A CN 108324277A CN 201810047867 A CN201810047867 A CN 201810047867A CN 108324277 A CN108324277 A CN 108324277A
Authority
CN
China
Prior art keywords
magnetic resonance
measurement data
resonance measurement
parametric texture
texture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810047867.0A
Other languages
English (en)
Other versions
CN108324277B (zh
Inventor
T.费韦尔
S.哈沃
M.尼塔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN108324277A publication Critical patent/CN108324277A/zh
Application granted granted Critical
Publication of CN108324277B publication Critical patent/CN108324277B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1382Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger
    • G06V40/1388Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger using image processing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4818MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/50NMR imaging systems based on the determination of relaxation times, e.g. T1 measurement by IR sequences; T2 measurement by multiple-echo sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Artificial Intelligence (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Evolutionary Computation (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明涉及一种用于对借助磁共振指纹法从检查对象采集的磁共振测量数据进行分类的方法、一种分类单元、一种磁共振设备和一种计算机程序产品。用于对借助磁共振指纹法从检查对象采集的磁共振测量数据进行分类的方法包括以下方法步骤:‑采集检查对象的磁共振测量数据,其中磁共振测量数据包括借助磁共振指纹法采集的多个磁共振信号走向,‑从磁共振测量数据推导出至少一个纹理参数,‑利用至少一个纹理参数将磁共振测量数据分类为至少一个组织类别,和‑提供分类后的磁共振测量数据。

Description

用于分类借助磁共振指纹法采集的磁共振测量数据的方法
技术领域
本发明涉及一种用于对借助磁共振指纹法从检查对象采集的磁共振测量数据进行分类的方法、一种分类单元、一种磁共振设备和一种计算机程序产品。
背景技术
在磁共振设备、也称为磁共振断层成像系统中,通常将检查对象(例如患者、健康的受试者、动物或模体)的待检查的身体借助主磁体置于相对高的、例如1.5或3或7特斯拉的主磁场中。附加地还借助梯度线圈单元完成梯度切换。然后经由高频天线单元借助合适的天线装置发送高频脉冲、例如激励脉冲,这导致,特定的、通过该高频脉冲共振地激励的原子的核自旋以定义的翻转角相对于主磁场的磁力线翻转。在核自旋弛豫(Relaxation)时通过其进动发射高频信号、即所谓的磁共振信号,其借助合适的高频天线接收并且然后被进一步处理。最后,从这样获取的原始数据中可以重建期望的图像数据。
对于特定的测量因此发射特定的磁共振序列、也称为脉冲序列,其由一系列高频脉冲(例如激励脉冲和重聚焦脉冲)以及合适地与之协调地待发射的、沿着不同的空间方向在不同的梯度轴上的梯度切换组成。时间上与此相适应地设置读取窗,其预先给定采集感应的磁共振信号的时间段。
对借助磁共振设备获取的磁共振测量数据的解释、特别是对组织类别的分类或对病变的定位,以及由此导出的鉴别诊断通常要求进行报告的放射科医生的专业知识和丰富经验。以允许直接推断出组织类型的形式的磁共振测量数据的可用性是值得期望的。
通常以加权图像形式呈现磁共振测量数据。利用不同的测量技术可以产生例如T1加权的、T2加权的或弥散加权的磁共振测量数据。在磁共振测量数据的该形式下,强度值具有未精确规定的、与T1弛豫时间、T2弛豫时间或扩散的关联。特别地,强度值可以依据使用的测量协议或磁共振设备的类型而变化。从加权图像中直接导出组织类别由此通常是不可行的。
一段时间以来公知一种能够用以记录定量的组织参数图的定量的磁共振方法。由此例如从具有不同的回波时间(TE)的多个测量中可以计算定量的T2弛豫图。从具有不同的翻转角的测量中可以计算T1弛豫图。具有不同的b值的测量可以生成ADC图(apparentdiffusion coefficient Karten,表观扩散系数图)。在此通常地,对于待确定的组织参数图进行单独的测量。这会导致长的测量时间并且例如在患者运动时带来空间上错误配准的风险。
由Ma等人的文章“Magnetic Resonance Fingerprinting(磁共振指纹)”Nature,495,187-192(2013年3月14日)公知一种可能的磁共振指纹法。例如由专利申请公知磁共振指纹法的不同应用。例如由US 2015/0366484 A1公知标记物质的空间分辨的分布的确定;由US 2016/0097830 A1公知共振指纹测量数据的运动校正;由US 2016/0033604 A1公知一种用于确定温度的方法;由US 2016/0059041 A1公知一种用于确定放射治疗的效果的方法;或由US 2016/0061922 A1公知一种为特定物质量身定做的磁共振指纹法。
磁共振指纹法表示借助其可以确定检查对象的组织参数的定量的值、并且由此确定组织参数图的定量的磁共振方法。磁共振指纹法的优点在此是,可以在单个测量中同时获取多个组织参数、例如T1弛豫时间和T2弛豫时间。由此,磁共振指纹法不必使用多个不同的记录序列就能采集多个组织参数,并且由此减小了磁共振检查的复杂性和/或记录时间。
典型地,多参数的磁共振测量数据被逐像素地整理并解释。对于每个组织参数例如可以生成个性化的组织参数图,例如T1弛豫图、T2弛豫图和ADC图。然后放射科医生可以并排地或以图像叠加的形式(“融合地”)可视地解释不同的组织参数图。虽然代替加权图像给出组织参数图易化了组织类别的识别,尽管如此对每个像素的组织参数值的解释却需要丰富经验。尤其示出了,通常所采集的每个单个的组织参数不足以进行稳健的组织分类。
替换地,多参数的磁共振测量数据逐体素地彼此关联并且相应地被整理。通过这种方式例如可以对处于预定的T1间隔中以及预定的T2间隔中的体素进行分类。相应的关联图可以逐体素地计算并显示。但是发现了,体素关联图也不足以将磁共振测量数据稳健地分类为组织类别。
发明内容
因此,本发明要解决的技术问题是,能够实现对借助磁共振指纹法从检查对象采集的磁共振测量数据进行改善的分类。上述技术问题通过本发明的特征来解决。在本发明中描述了优选的实施。
根据本发明的用于对借助磁共振指纹法从检查对象采集的磁共振测量数据进行分类的方法包括以下方法步骤:
-采集检查对象的磁共振测量数据,其中磁共振测量数据包括借助磁共振指纹法采集的多个磁共振信号走向,
-从磁共振测量数据推导出至少一个纹理参数,
-利用至少一个纹理参数将磁共振测量数据分类为至少一个组织类别,和
-提供分类后的磁共振测量数据。
磁共振测量数据的采集可以包括借助磁共振设备获取磁共振测量数据或从数据库加载已经获取的磁共振测量数据。
借助磁共振指纹法采集磁共振测量数据尤其包括采集来自于检查对象的检查区域的不同体素的多个磁共振信号走向。然后通常将多个磁共振信号走向与信号模型比较。在此通常借助伪随机化的或不相干的记录方案来获取多个磁共振信号走向。替换地还可以想到有规律的或相干的和/或完整采样的记录方案来获取多个磁共振信号走向。在此原则上,在非平衡状态下测量多个磁共振信号走向是有意义的。多个磁共振信号走向的所采集的磁共振信号走向尤其说明了,在相应的体素中记录的磁共振信号的信号值在采集磁共振信号走向期间怎样变化。体素在此说明了从其采集磁共振信号走向的区域。
在典型的应用情况下,同时从多个体素采集多个磁共振信号走向。为此例如可以借助磁共振指纹法按照时间顺序获取多个原始图像,其中然后可以在多个原始图像的各个体素上形成多个磁共振信号走向。在此尤其通过记录不同的磁共振信号或多个原始图像的时间间隔形成磁共振信号走向的时间分辨率。
磁共振指纹法尤其包括,对于不同的磁共振信号的记录设置不同的记录参数。记录参数在此可以在获取磁共振信号走向的时间段上以伪随机化的或不相干的方式变化。在获取磁共振信号走向时变化的可能的记录参数例如是回波时间、重复时间、高频脉冲的构造和/或数量、梯度脉冲的构造和/或数量、扩散编码等。还可以想到,通过合适的准备模块、特别是包括饱和脉冲和/或反转脉冲的准备模块,形成在获取多个信号走向时的非平衡状态。由此借助磁共振指纹法可以采集对于体素特有的磁共振信号走向,即所谓的体素的指纹(Fingerprint)。
特别地,借助推导算法从磁共振测量数据推导出至少一个纹理参数。也就是,磁共振测量数据尤其作为输入数据输入到推导算法中,该推导算法具有至少一个纹理参数作为输出数据。在此可以直接从磁共振测量数据、特别是直接从多个磁共振信号走向推导出至少一个纹理参数。还可以想到,磁共振测量数据仅间接地输入推导算法中,也就是特别是首先对磁共振信号走向进行进一步处理,然后将磁共振信号走向的进一步处理的产品输入推导算法中。在以下方案和实施方式中描述了怎样将磁共振测量数据输入推导算法中的不同可能性。
纹理通常可以描述图像内容或测量数据内容的特定结构、特别是组织结构。由此,至少一个纹理参数可以表征特定结构、特别是组织结构。至少一个纹理参数由此可以用于量化磁共振测量数据中的空间特征。由此,至少一个纹理参数例如可以包括关于磁共振测量数据中的所测量的强度的空间布置的信息。替换地或附加地,至少一个纹理参数还可以表征磁共振测量数据中的时间模式,例如多个磁共振信号走向中的磁共振信号如何随时间发展。
可以从磁共振测量数据推导出一个或多个纹理参数。用于推导纹理参数的不同可能性在此对于图像处理领域的专业人员是公知的。例如可以借助统计学方法获得至少一个纹理参数,并且由此包括统计学的纹理参数。例如对于这样的统计学的纹理参数是:平均值、方差、斜度、马尔可夫随机场、共生矩阵。还可能的是,至少一个纹理参数包括结构上的纹理参数。在此,结构上的纹理参数例如可以表征磁共振测量数据中的能量分布、熵、对比度、均匀性。当然还可以想到对于专业人员视为合理的另外的纹理参数的推导。
特别地,借助分类算法对磁共振测量数据进行分类,该分类算法具有至少一个纹理参数作为输入数据并且具有分类后的磁共振测量数据作为输出数据。除了至少一个纹理参数之外附加地将磁共振测量数据本身作为输入数据输入分类算法,以便例如形成在分类为至少一个组织类型时的大致取向。但是通常不使用磁共振测量数据而使用至少一个纹理参数对磁共振测量数据进行分类。至少一个纹理参数由此可以表示磁共振测量数据的内容的新的表达。
磁共振测量数据可以被分类为一个或多个组织类别。对磁共振测量数据进行分类尤其可以包括,直接对磁共振测量数据、也就是多个磁共振信号走向进行分类,或对由磁共振测量数据重建的磁共振图像数据进行分类。在分类之后,合适的至少一个组织类别特别是对应磁共振测量数据的不同部分或与由磁共振测量数据重建的磁共振图像数据。相应地,分类后的磁共振测量数据可以包括如下信息:从检查对象的哪个组织类别采集了磁共振测量数据的特定部分或由磁共振测量数据重建的磁共振图像数据。
至少一个组织类别可以表征从其采集了磁共振图像数据的组织类型或组织种类。由此,至少一个组织类别例如可以包括脂肪组织、软组织、骨组织、软骨组织、肌肉组织等。至少一个组织类别还可以包括特定器官类型的组织,例如肝组织、肺组织、脑白质、脑灰质等。至少一个组织类别附加地还可以包括空气或背景。还可以想到,至少一个组织类别包括检查对象体内的异物,例如植入物。在特别重要的应用情况下,至少一个组织类别可以包括确定是正常的或生理学的组织还是明显的或病变的组织的组织分型。由此,例如可以分类为正常组织和肿瘤组织。当然还可以分类为其它病变组织种类,诸如疤痕组织等。当然还可以想到本领域技术人员视为合理的、磁共振测量数据能够分类的其它组织类别。
对于磁共振测量数据的分类、特别是在推导至少一个纹理参数时获得的特征向量的分类可以采用不同的方法。例如可以使用k最近邻法、统计贝叶斯分类法、支持向量机等。当然还可以想到本领域技术人员视为合理的其它分类方法。通常地,待实现的分类器的品质与至少一个纹理参数关于不同组织类别的可分性的适宜性相关联。
除了提到的方法还可以考虑使用用于分类磁共振测量数据的自学习方法。在这样的方法中通常直接通过足够大的训练样本学习从一部分磁共振测量数据至组织类别的映射。这类分类器的可能的合适的代表是深度卷积神经网络(Deep Convolutional NeuralNetworks)。在此特别地,待推导的纹理参数不再被明确描述,而是在自动分类一部分磁共振测量数据的方法中隐含学习。
分类后的磁共振测量数据的提供可以包括在显示单元上显示分类后的磁共振测量数据。在此,磁共振测量数据例如可以利用其所属的分类、例如以分割和/或色彩叠加的形式显示。分类后的磁共振测量数据的提供还可以包括将分类后的磁共振测量数据存储在数据库中和/或将分类后的磁共振测量数据传送到进一步处理单元来进一步处理。分类后的磁共振测量数据的提供、也就是例如显示和/或存储尤其可以包括,以分类形式提供由磁共振测量数据重建的磁共振图像数据。
所建议的过程基于如下考虑,即,将组织类别简单地逐体素地分配或分类为重建的磁共振图像数据通常是困难的,因为待分类的组织典型地是空间结构化的。由此例如病变组织如下地不同于健康组织,即,磁共振测量数据或由磁共振测量数据重建的磁共振图像数据以特有的方式空间地改变。这样的特有的变化例如可以包括局部有界波动(“斑点”)或渐变(“扩散”)。放射科医生的训练有素的眼睛可以识别这样的结构,但是基于像素的分类是不切实际的。
根据所建议的过程,应当使用至少一个纹理参数来改善地分类借助磁共振指纹法采集的磁共振测量数据。由此,在对磁共振测量数据进行分类时可以使用空间和/或时间的特征。由此可以合理地扩展磁共振指纹法,使得特别地不再仅彼此分开地观察各个体素的磁共振信号走向。而是可以借助考察磁共振信号走向的空间相邻关系来改善磁共振指纹法的磁共振测量数据的分类。
磁共振指纹法在此尤其适用于对磁共振测量数据进行的分类,因为借助磁共振指纹法本身可以确定多参数的定量的组织参数。因为由此磁共振指纹法可以关于不同测量提供绝对或类似的测量结果,所以借助磁共振指纹法获得的磁共振测量数据尤其适用于到至少一个组织类别的分类。
恰好使用至少一个纹理参数可以有利地进一步扩展对借助磁共振指纹法获得的磁共振测量数据进行的分类,因为考虑磁共振测量数据中的空间和/或时间的结构可以实现组织类别的更稳健的区分。由此与借助磁共振指纹法获得的磁共振测量数据的通常纯基于体素的评估相比,可以更有效地定位标准偏差。也就是,例如在肿瘤中的组织组成通常太复杂而不能基于在各个体素中测量的组织参数、如T1弛豫时间和T2弛豫时间来可靠地与特定的组织类型或甚至是病变相关联。出于该原因,定量的磁共振指纹法与考察空间和/或时间的特征的组合可以是对于磁共振测量数据的分类的极大优点。
一种实施方式在于,
-磁共振测量数据包括由多个磁共振信号走向重建的多个位置分辨的组织参数图,
-至少一个纹理参数的推导包括从多个位置分辨的组织参数图推导出多个纹理参数图,和
-利用多个纹理参数图进行磁共振测量数据的分类。
如果从数据库加载磁共振测量数据,则可以从数据库加载已经完成重建的位置分辨的组织参数图作为一部分磁共振测量数据。在该情况下还可以想到,从数据库仅加载位置分辨的组织参数图,而不加载多个磁共振信号走向。
如果作为根据本发明的方法的一部分借助磁共振设备获取磁共振测量数据,则由磁共振信号走向特别是逐体素地重建位置分辨的组织参数图。在这样的磁共振指纹重建中尤其进行多个磁共振信号走向与多个数据库信号走向的信号比较。与多个磁共振信号走向进行比较的多个数据库信号走向在此存储在数据库中。不同的数据库信号走向在此尤其分别对应多个组织参数的不同的数据库值。当其材料特征相应于多个组织参数的所属的数据库值的样本被检查时,特定的数据库信号走向由此分别表示在磁共振指纹法中预计的信号走向。例如可以在校准测量中确定和/或仿真数据库信号走向。磁共振指纹法通常设置为,使得多个数据库信号走向中的一个数据库信号走向对应根据信号比较的结果采集的磁共振信号走向。信号比较在此可以包括确定所采集的磁共振信号走向与多个数据库信号走向的相似性,其中多个数据库信号走向中的与磁共振信号走向具有最大相似性的那个数据库信号走向与体素相关联。属于相关的数据库信号走向的多个组织参数的数据库值然后可以被设置为对于多个组织参数的测量值。作为磁共振指纹重建的结果可以存在多个位置分辨的组织参数图,因为也位置分辨地采集多个磁共振信号走向。
多个组织参数图尤其表示多个组织参数的分布。由此,多个组织参数图可以被视为多参数的磁共振测量数据。能够借助磁共振指纹法量化的可能的组织参数的选择是:T1弛豫时间、T2弛豫时间、扩散值(例如表观扩散系数,ADC)、磁矩、质子密度、共振频率、物质的浓度等。当然还可以想到本领域技术人员视为合理的其它组织参数。多个组织参数图在此可以量化提到的组织参数的任意组合。通常借助磁共振指纹法确定量化两个、三个或四个不同的组织参数的两个、三个或四个组织参数图。磁共振指纹法的优点在此是,可以在单个测量中同时测量多个组织参数图。由此,磁共振指纹法不必使用多个不同的记录序列来采集多个组织参数图,并且由此降低了磁共振检查的复杂性和/或记录时间。
特别地,由每个采集的位置分辨的组织参数图确定至少一个纹理参数图。还可以想到,对于每个采集的位置分辨的组织参数图确定表示不同纹理特征的多个纹理参数图。当然还可以想到,仅对于一部分位置分辨的组织参数图确定纹理参数图。在此,纹理参数图尤其说明了基于所属的组织参数图确定的纹理参数的位置分辨的分布。
此外可以想到,对于多个组织参数图的组合建立纹理参数图。在此,在建立纹理参数图时可以组合地考虑多个组织参数图的条目。在此可以与彩色图像的不同色彩通道类似地处理多个组织参数图,其中不同的组织参数存储在不同的色彩通道中。
作为结果,除了多个位置分辨的组织参数图之外还存在多个纹理参数图。多个纹理参数图现在可以特别有利地替代多个位置分辨的组织参数图被用于磁共振测量数据的分类。还可以想到,附加地还将来自于多个位置分辨的组织参数图的信息引入到磁共振测量数据的分类中。由此优选地不再如在通常的方法中那样在对磁共振测量数据进行分类时逐体素地评估多个组织参数图。而是优选地在对借助磁共振指纹法采集的多参数的磁共振测量数据进行分类时使用空间和/或时间的特征。
一种实施方式在于,
-至少一个纹理参数的推导包括重建至少一个纹理参数图,其中多个磁共振信号走向被直接引入到至少一个纹理参数图的重建中,和
-利用至少一个纹理参数图进行磁共振测量数据的分类。
在上述实施方式中,多个磁共振信号走向特别地通过重建多个组织参数图而仅间接地被引入到至少一个纹理参数的推导中,而在该实施方式中,尤其直接由多个磁共振信号走向推导出至少一个纹理参数。为此尤其组合地时间和空间地分析多个磁共振信号走向,以提取至少一个纹理参数。由此可以取消在通常的磁共振指纹重建中常见的多个组织参数图的确定。
对于由多个磁共振信号走向直接推导出至少一个纹理参数优选地不是仅进行磁共振信号走向与数据库信号走向的通常的基于体素的比较。而是磁共振指纹重建优选扩展了对包含特有的纹理特征的空间部分的考虑。
也就是根据一种实施方式,对于重建至少一个纹理参数图所使用的磁共振指纹模型考虑多个磁共振信号走向的空间关联。由此在对多个磁共振信号走向的时间上的信号演变建模时就可以考虑检查对象的组织的局部空间的结构化。可以通过合适的压缩方法、例如PCA(Principal Component Analysis,主成分分析)降低该磁共振指纹模型的较高复杂性。通过考虑多个磁共振信号走向的空间关联可以直接由磁共振指纹信号走向推导出至少一个纹理参数图。由此可以特别简单地基于至少一个纹理参数图、特别是基于不同纹理参数的组合进行磁共振测量数据的分类。
一种实施方式在于,在采集多个磁共振信号走向的时间间隔上时间分辨地推导出至少一个纹理参数。
由此特别地不仅是关于在整个时间间隔期间采集的磁共振测量数据确定至少一个统计学的纹理参数。而是至少一个纹理参数特别地关于采集多个磁共振信号走向的时间间隔而变化。在此,特别地通过采集多个磁共振信号走向的起始时间点和结束时间点来定义采集多个磁共振信号走向的时间间隔。至少一个纹理参数还可以仅关于采集多个磁共振信号走向的时间间隔的一部分而变化。
在一种优选的应用情况下,在此,至少一个时间分辨的纹理参数的推导包括关于采集多个磁共振信号走向的时间间隔的不同的时间片段重建多个时间分辨的纹理参数图。然后可以利用多个时间分辨的纹理参数图进行磁共振测量数据的分类。为此可以对于每个借助磁共振指纹法采集的原始图像分别确定纹理参数图。替换地还可以分别对于多个相继采集的原始图像的序列确定纹理参数图。由此特别地存在不同的纹理参数图的时间序列作为中间结果。其然后可以被引入到磁共振测量数据的分类中,其中时间分量可以提供对于分类的特别有利的附加信息。
一种实施方式在于,利用数据库对来自于至少一个时间分辨的纹理参数的磁共振测量数据进行分类,其中数据库包括关于至少一个纹理参数在采集多个磁共振信号走向的时间间隔上的时间演变与至少一个组织类别的依赖关系的信息。
替代特别是通过振幅和相位将磁共振信号走向与数据库信号走向相比较的传统的磁共振指纹重建,特别地利用至少一个时间分辨的纹理参数进行磁共振指纹重建。为此特别地比较时间分辨的纹理参数与时间分辨的纹理参数的数据库走向,该时间分辨的纹理参数的数据库走向描述了至少一个纹理参数在采集多个磁共振信号走向的时间间隔上的时间演变与至少一个组织类别的依赖关系。在数据库中在此尤其存储了多个数据库走向,其描述了对于多个不同的组织类别的至少一个纹理参数的时间演变。但是在此也可以对于不同的组织类型基于组织特征或组织特性(例如“正常的”和“明显的”纹理演变)确定数据库走向。
也就是,对于多个数据库走向尤其存储磁共振测量数据应当被分类的不同的组织类别。对于分类可以确定与至少一个纹理参数的所测量的时间演变最好一致的数据库走向。为此例如可以确定两个向量的内部乘积的最大值。然后可以选择与最好一致的数据库走向对应的组织类别作为分类结果。由此可以存在期望的类别,优选地直接作为重建磁共振指纹测量数据的结果。
一种实施方式在于,利用至少一个滤波操作对来自于至少一个时间分辨的纹理参数的磁共振测量数据进行分类。
作为查找至少一个纹理参数的所测量的时间演变与数据库走向的最好一致的替换,可以进行至少一个纹理参数的所测量的时间演变的基于模型或基于滤波器的分析。在此,至少一个专用的滤波操作被用于提取组织特征,用于分类为来自于至少一个纹理参数的所测量的时间演变的组织类别。在此卡尔曼滤波操作例如是合适的。非线性状态模型例如通过扩展的卡尔曼滤波操作或通过序列蒙特卡罗法被模型化。对于滤波操作的另外的可能性是例如使用基于神经元网络的自学习滤波器(也称为“深度学习”)。在该情况下,利用训练数据组的训练是有意义的。在该情况下优选地可以省去建立专用的滤波操作或专用的模型。
一种实施方式在于,在以其为基础推导出至少一个纹理参数的位置空间中基于至少一个以下元素确定至少一个长度标尺:从其采集了磁共振测量数据的解剖区域、用于采集磁共振测量数据的临床问题、在检查对象中预计的病变、事先从检查对象采集的医学图像数据。
如果应当由磁共振测量数据推导出空间的纹理参数,则在以其为基础推导出至少一个纹理参数的位置空间中合适地定义长度标准是有意义的。由此,可以推导出特别适用于磁共振测量数据的分类的至少一个纹理参数。关于检查对象或关于临床问题的信息在此可以是用于定义长度标尺的合适基础。同样可以想到,利用来自于解剖图集的信息来确定长度标尺。
长度标尺对于整个磁共振检查是恒定的。长度标尺也可以与采集磁共振测量数据的位置相关地变化。替换地或附加地,在分层的分析中不同的长度标尺(例如从粗略至细微)连续地被用于推导至少一个纹理参数,由此可以获得用于稳健地分类为至少一个组织类别的另外的信息。
根据本发明的分类单元包括计算单元,其中分类单元构造为用于执行根据本发明的方法。
在此,根据本发明的分类单元构造为用于执行对借助磁共振指纹法从检查对象采集的磁共振测量数据进行分类的方法。为此,根据本发明的分类单元尤其包括用于采集检查对象的磁共振测量数据的测量数据采集单元,其中磁共振测量数据包括借助磁共振指纹法采集的多个磁共振信号走向。根据本发明的分类单元特别地还包括用于从磁共振测量数据推导出至少一个纹理参数的推导单元。根据本发明的分类单元特别地还包括用于利用至少一个纹理参数将磁共振测量数据分类为至少一个组织类别的分类器。根据本发明的分类单元特别地还包括用于提供分类后的磁共振测量数据的提供单元。
根据本发明的分类单元的计算单元的组件大部分可以以软件组件的形式构造。但是原则上这些组件还可以部分地、特别是当涉及特别快速的计算时以软件支持的硬件组件、例如FPGA等的形式实现。同样,所需的接口,例如当仅涉及从另外的软件组件接收数据时,可以构造为软件接口。但是其也可以构造为通过合适的软件控制的按照硬件构造的接口。当然还可以想到,多个提到的组件以单独的软件组件或软件支持的硬件组件的形式综合地实现。
根据本发明的磁共振设备包括根据本发明的分类单元。
分类单元为此可以构造为,将控制信号发送到磁共振设备和/或接收和/或处理控制信号,以实施根据本发明的方法。分类单元可以集成在磁共振设备中。分类单元也可以与磁共振设备分开地安装。分类单元可以与磁共振设备连接。
磁共振测量数据的采集可以包括借助磁共振设备的记录单元记录磁共振测量数据。磁共振测量数据然后可以被传输到分类单元进行进一步处理。分类单元然后可以借助测量数据采集单元采集磁共振测量数据。
根据本发明的计算机程序产品可以直接加载到可编程的计算单元的存储器中并且具有程序代码装置,用于当计算机程序产品在计算单元中运行时执行根据本发明的方法。计算机程序产品可以是计算机程序或包括计算机程序。由此,根据本发明的方法可以快速地、相同地重复并且稳健地实施。由此配置计算机程序产品,使得借助计算单元可以实施根据本发明的方法步骤。计算单元在此必须分别具有诸如相应的系统内存、相应的显卡或相应的逻辑单元的前提条件,从而可以有效执行各个方法步骤。计算机程序产品例如存储在从那里能够加载到本地计算单元的处理器中的计算机可读的介质或网络或服务器上。此外,计算机程序产品的控制信息可以存储在电子可读的数据载体上。电子可读的数据载体的控制信息可以构造为,在计算单元中使用数据载体时其执行根据本发明的方法。由此,计算机程序产品也可以表示电子可读的数据载体。对于电子可读的数据载体的示例是在其上存储电子可读的控制信息、特别是软件(参数上文)的DVD、磁带、硬盘或USB棒。当该控制信息(软件)从数据载体中读取并且存储在控制器和/或计算单元中时,可以执行前面描述的方法的所有根据本发明的实施方式。由此,本发明还涉及上述的计算机可读的介质和/或上述的电子可读的数据载体。
根据本发明的分类单元、根据本发明的磁共振设备和根据本发明的计算机程序产品的优点基本上相应于前面详细描述的根据本发明的方法的优点。在此提到的特征、优点或替换的实施方式同样可以转用到其它要求保护的对象,并且反之亦然。换言之,具体的权利要求还可以结合方法描述或要求保护的特征来扩展。方法的相应功能性特征在此通过相应的具体的模块、特别是通过硬件模块来构造。
附图说明
下面对照附图所示的实施例对本发明作进一步的描述和说明。
附图中:
图1以示意图示出了具有根据本发明的分类单元的根据本发明的磁共振设备,
图2示出了根据本发明的方法的第一实施方式的流程图,
图3示出了根据本发明的方法的第二实施方式的流程图,
图4示出了根据本发明的方法的第三实施方式的流程图,
图5示出了根据本发明的方法的第四实施方式的流程图。
具体实施方式
图1示意性示出了具有根据本发明的分类单元33的根据本发明的磁共振设备11。
磁共振设备11包括由磁体单元13构成的检测器单元,具有用于产生强的且特别是恒定的主磁场18的主磁体17。磁共振设备11还具有圆柱形的患者容纳区域14,用于容纳检查对像15、在该情况下是患者,其中患者容纳区域14在圆周方向上由磁体单元13圆柱形包围。可以借助磁共振设备11的患者安置装置16将患者15移入患者容纳空间14。患者安置装置16为此具有卧榻板,其可移动地布置在磁共振设备11内。磁体单元13借助磁共振设备的壳体外罩向外屏蔽。
磁体单元13还具有梯度线圈单元19,用于产生在成像期间用于位置编码的磁场梯度。梯度线圈单元19借助梯度控制单元28来控制。此外,磁体单元13具有高频天线单元20,其在所示的情况下构造为固定地集成在磁共振设备11中的身体线圈,和高频天线控制单元29,用于激励在由主磁体17产生的主磁场18中出现的极化。高频天线单元20由高频天线控制单元29来控制并且将高频的磁共振序列入射到基本上由患者容纳区域14构成的检查空间中。高频天线单元20还构造为用于接收特别是来自于患者15的磁共振信号。
为了控制主磁体17、磁度控制单元28和高频天线控制单元29,磁共振设备11具有控制单元24。控制单元24中央地控制磁共振设备11,例如执行预定的成像的梯度回波序列。可以在磁共振设备11的显示单元25上向使用者提供例如成像参数的控制信息以及重建的磁共振图像。磁共振设备11还具有输入单元26,借助其使用者可以在测量过程期间输入信息和/或参数。控制单元24可以包括梯度控制单元28和/高频天线控制单元29和/或显示单元25和/或输入单元26。
磁共振设备11还具有获取单元32。获取单元32在该情况下由磁体单元13结合高频天线控制单元29和梯度控制单元28构成。
所示的磁共振设备11当然可以包括磁共振设备11通常具有的其它组件。此外,磁共振设备11的一般功能对于本领域技术人员来说是已知的,由此不对其它组件进行详细描述。
所示的分类单元33包括计算单元34。该计算单元34可以包括不同的组件,诸如测量数据采集单元、推导单元、分类器或提供单元,以执行根据本发明的方法。
磁共振设备11由此结合分类单元33设计为用于执行根据本发明的方法。然后,分类单元33的计算单元34从磁共振设备11的控制单元24采集磁共振测量数据。为此,计算单元34优选与磁共振设备11的控制单元24关于数据交换而连接。然后可以将分类后的磁共振测量数据从计算单元34传输到磁共振设备11的显示单元25用于显示。
作为图示的替换,分类单元33还可以单独设计为用于执行根据本发明的方法。为此,计算单元34典型地由数据库加载和/或从磁共振设备11调用磁共振测量数据。
图2示出了根据本发明的用于对借助磁共振指纹法从检查对象15采集的磁共振测量数据进行分类的方法的第一实施方式的流程图。
在第一方法步骤40中采集检查对象的磁共振测量数据,其中磁共振测量数据包括借助磁共振指纹法采集的多个磁共振信号走向。
在另外的方法步骤41中从磁共振测量数据推导出至少一个纹理参数。
在另外的方法步骤42中利用至少一个纹理参数将磁共振测量数据分类为至少一个组织类别。
在另外的方法步骤43中提供分类后的磁共振测量数据。
随后的描述基本上限于与图2的实施例的差异,其中关于保持相同的方法步骤参见图2中实施例的描述。基本上保持相同的方法步骤原则上具有相同的附图标记。
图3至图5中示出的根据本发明的方法的实施方式基本上包括根据图2的根据本发明的方法的第一实施方式的方法步骤40、41、42、43。附加地,图3至图5中示出的根据本发明的方法的实施方式包括附加的方法步骤和子步骤。可以想到作为图3至图5的替换的、仅具有图3至图5中所示的附加的方法步骤和/或子步骤的一部分的方法流程。当然,作为图3至图5的替换的方法流程还可以具有附加的方法步骤和/或子步骤。
图3示出了根据本发明的用于对借助磁共振指纹法从检查对象15采集的磁共振测量数据进行分类的方法的第二实施方式的流程图。
在图3所示的情况下,磁共振测量数据包括由多个磁共振信号走向重建的多个位置分辨的组织参数图PM1、PM2。在此示例性地示出了第一组织参数图PM1和第二组织参数图PM2。当然,磁共振测量数据还可以包括多个组织参数图PM1、PM2。第一组织参数图PM1和第二组织参数图PM2在此量化不同的组织参数。第一组织参数图PM1例如可以表示T1弛豫时间的位置分辨的分布,而第二组织参数图PM2可以表示T2弛豫时间的位置分辨的分布。当然还可以想到在组织参数图中量化的组织参数的其它组合。
在另外的方法步骤41中,至少一个纹理参数的推导现在包括在两个子步骤41-1、41-2中从多个位置分辨的组织参数图推导出多个纹理参数图。在另外的方法步骤41的第一子步骤41-1中,在此在图3所示的情况下从第一组织参数图PM1推导出第一纹理参数图。在另外的方法步骤41的第二子步骤41-2中,在图3所示的情况下从第二组织参数图PM2推导出第二纹理参数图。两个纹理参数图可以包含各个所属的组织参数图PM1、PM2中关于空间和/或时间的结构的信息。当然还可以从组织参数图PM1、PM2推导出更多纹理参数图。例如可以在第一子步骤41-1中对于第一组织参数图PM1确定两个或多于两个不同的纹理参数图,其表征第一组织参数图PM1中的不同的模式。然后可以类似于第一组织参数图PM1地分析第二组织参数图PM2。
然后利用多个纹理参数图、在图3所示的情况下利用第一纹理参数图和第二纹理参数图,在另外的方法步骤42中进行磁共振测量数据的分类。
在图3中示出了另外的方法步骤44,其中在以其为基础推导出至少一个纹理参数的位置空间中基于至少一个以下元素确定至少一个长度标尺:从其采集了磁共振测量数据的解剖区域、用于采集磁共振测量数据的临床问题、在检查对象中待预计的病变、事先从检查对象采集的医学图像数据。该另外的方法步骤44替换地当然也可以在图4或图5中描述的实施方式中执行。
图4示出了根据本发明的用于对借助磁共振指纹法从检查对象15采集的磁共振测量数据进行分类的方法的第三实施方式的流程图。
在图4所示的情况下,直接在另外的方法步骤41中进一步处理在另外的方法步骤40中采集的多个磁共振信号走向SE。
为此,在另外的方法步骤41中的至少一个纹理参数的推导包括在另外的方法步骤41的子步骤41-3中的至少一个纹理参数图的重建,其中多个磁共振信号走向SE直接输入至少一个纹理参数图的重建中。在子步骤41-3中用于重建至少一个纹理参数图的磁共振指纹模型DB1在此可以考虑多个磁共振信号走向的空间关联。
然后在另外的方法步骤42中利用至少一个纹理参数图进行磁共振测量数据的分类。
图5示出了根据本发明的用于对借助磁共振指纹法从检查对象15采集的磁共振测量数据进行分类的方法的第四实施方式的流程图。
在图5所示的情况下,在另外的方法步骤41的子步骤41-4中时间分辨地关于采集多个磁共振信号走向SE的时间间隔推导出至少一个纹理参数。
然后可以在另外的方法步骤42中借助两种替换方案进行磁共振测量数据的分类。
根据第一替换方案,在另外的方法步骤42的子步骤42-1中利用数据库DB2对来自于至少一个时间分辨的纹理参数的磁共振测量数据进行分类,其中数据库DB2包括关于至少一个纹理参数在采集多个磁共振信号走向SE的时间间隔上的时间演变与至少一个组织类别的依赖关系的信息。
根据第二替换方案,在另外的方法步骤42的子步骤42-2中利用至少一个滤波操作对来自于至少一个时间分辨的纹理参数的磁共振测量数据进行分类。滤波操作还可以在按照图3或图4的另外的实施方式中作为替换方案被用于直接比较模型化的磁共振信号走向与数据库信号走向。
由计算单元实施图2至图5中所示的根据本发明的方法的方法步骤。为此,计算单元包含所需的软件和/或计算机程序,其存储在计算单元的存储器中。软件和/或计算机程序包括程序装置,其设计为,当软件和/或计算机程序在计算单元中借助计算单元的处理器单元运行时执行根据本发明的方法。
虽然在细节上通过优选的实施例对本发明进行阐述和描述,但是本发明却不限于所公开的示例并且本领域技术人员可以从中导出其它方案,而不脱离本发明的保护范围。

Claims (11)

1.一种用于对借助磁共振指纹法从检查对象采集的磁共振测量数据进行分类的方法,包括以下方法步骤:
-采集检查对象的磁共振测量数据,其中磁共振测量数据包括借助磁共振指纹法采集的多个磁共振信号走向,
-从磁共振测量数据推导出至少一个纹理参数,
-利用至少一个纹理参数将磁共振测量数据分类为至少一个组织类别,和
-提供分类后的磁共振测量数据。
2.根据权利要求1所述的方法,其中,
-磁共振测量数据包括由多个磁共振信号走向重建的多个位置分辨的组织参数图,
-至少一个纹理参数的推导包括从多个位置分辨的组织参数图推导出多个纹理参数图,和
-利用多个纹理参数图进行磁共振测量数据的分类。
3.根据权利要求1所述的方法,其中,
-至少一个纹理参数的推导包括重建至少一个纹理参数图,其中多个磁共振信号走向被直接引入到至少一个纹理参数图的重建中,和
-利用至少一个纹理参数图进行磁共振测量数据的分类。
4.根据权利要求3所述的方法,其中,对于重建至少一个纹理参数图所使用的磁共振指纹模型考虑多个磁共振信号走向的空间关联。
5.根据权利要求1所述的方法,其中,在采集多个磁共振信号走向的时间间隔上时间分辨地推导出至少一个纹理参数。
6.根据权利要求5所述的方法,其中,利用数据库对来自于至少一个时间分辨的纹理参数的磁共振测量数据进行分类,其中数据库包括关于至少一个纹理参数在采集多个磁共振信号走向的时间间隔中的时间演变与至少一个组织类别的依赖关系的信息。
7.根据权利要求5所述的方法,其中,利用至少一个滤波操作对来自于至少一个时间分辨的纹理参数的磁共振测量数据进行分类。
8.根据上述权利要求中任一项所述的方法,其中,在以其为基础推导出至少一个纹理参数的位置空间中基于至少一个以下元素确定至少一个长度标尺:从其采集了磁共振测量数据的解剖区域、用于采集磁共振测量数据的临床问题、在检查对象中预计的病变、事先从检查对象采集的医学图像数据。
9.一种分类单元,包括计算单元,其中所述分类单元构造为用于执行根据上述权利要求中任一项所述的方法。
10.一种具有根据权利要求9所述的分类单元的磁共振设备。
11.一种计算机程序产品,其能够直接加载到可编程的计算单元的存储器中并且具有程序代码装置,用于当计算机程序产品在计算单元中运行时执行根据权利要求1至8中任一项所述的方法。
CN201810047867.0A 2017-01-19 2018-01-18 用于分类借助磁共振指纹法采集的磁共振测量数据的方法 Active CN108324277B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17152234.5A EP3351956B1 (de) 2017-01-19 2017-01-19 Verfahren zur klassifikation von mittels einer magnetresonanz- fingerprinting methode von einem untersuchungsobjekt erfassten magnetresonanz-messdaten
EP17152234.5 2017-01-19

Publications (2)

Publication Number Publication Date
CN108324277A true CN108324277A (zh) 2018-07-27
CN108324277B CN108324277B (zh) 2022-08-19

Family

ID=57850997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810047867.0A Active CN108324277B (zh) 2017-01-19 2018-01-18 用于分类借助磁共振指纹法采集的磁共振测量数据的方法

Country Status (4)

Country Link
US (1) US10664683B2 (zh)
EP (1) EP3351956B1 (zh)
KR (1) KR20180085688A (zh)
CN (1) CN108324277B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805580A (zh) * 2018-10-25 2021-05-14 拜耳公司 用于用对比剂记录的磁共振指纹提取方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10241178B2 (en) * 2015-05-29 2019-03-26 Case Western Reserve University System and method for magnetic resonance fingerprinting at high field strengths
EP3863022A1 (en) * 2020-02-06 2021-08-11 Siemens Healthcare GmbH Method and system for automatically characterizing liver tissue of a patient, computer program and electronically readable storage medium
US11454687B2 (en) * 2020-04-01 2022-09-27 Siemens Healthcare Gmbh Multi-echo radial look-locker imaging for simultaneous T1 and fat fraction quantification

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104798105A (zh) * 2012-11-20 2015-07-22 皇家飞利浦有限公司 采用图像纹理特征的集成表型
US20150301144A1 (en) * 2014-04-22 2015-10-22 Case Western Reserve University Distinguishing Diseased Tissue From Healthy Tissue Based On Tissue Component Fractions Using Magnetic Resonance Fingerprinting (MRF)
US20160097830A1 (en) * 2014-08-12 2016-04-07 Siemens Aktiengesellschaft Method and apparatus for magnetic resonance fingerprinting
US20160278661A1 (en) * 2015-03-26 2016-09-29 Case Western Reserve University Quantitative prostate cancer imaging with magnetic resonance fingerprinting (mrf)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10627468B2 (en) 2011-03-18 2020-04-21 Case Western Reserve University Nuclear magnetic resonance (NMR) fingerprinting
KR101674848B1 (ko) 2012-09-19 2016-11-22 케이스 웨스턴 리저브 유니버시티 핵 자기 공명(nmr) 핑거프린팅
US9989609B2 (en) 2014-04-03 2018-06-05 Industry-Academic Foundation, Yonsei University Method and apparatus for adjusting the parameters of a magnetic resonance image
US10261154B2 (en) * 2014-04-21 2019-04-16 Case Western Reserve University Nuclear magnetic resonance (NMR) fingerprinting tissue classification and image segmentation
DE102014211354A1 (de) 2014-06-13 2015-12-17 Siemens Aktiengesellschaft Verfahren zur Magnetresonanz-Bildgebung
DE102014211695B4 (de) 2014-06-18 2016-08-18 Siemens Healthcare Gmbh Bestimmung einer ortsaufgelösten Verteilung einer Markierungssubstanz
DE102014214828A1 (de) 2014-07-29 2016-02-04 Siemens Aktiengesellschaft Verfahren zum Magnetresonanz-Fingerprinting
DE102014217283B4 (de) 2014-08-29 2016-03-31 Siemens Aktiengesellschaft Überwachung einer Strahlentherapie eines Patienten mittels einer MR-Fingerprinting-Methode
DE102014217284A1 (de) 2014-08-29 2016-03-03 Siemens Aktiengesellschaft Verfahren zu einer Magnetresonanz-Untersuchung eines Untersuchungsobjekts
US10215827B2 (en) * 2014-09-01 2019-02-26 Bioprotonics Inc. Method to measure tissue texture using NMR spectroscopy to identify the chemical species of component textural elements in a targeted region of tissue
KR20160150091A (ko) 2016-12-20 2016-12-28 연세대학교 산학협력단 후처리 기반 자기공명영상의 파라미터 조정 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104798105A (zh) * 2012-11-20 2015-07-22 皇家飞利浦有限公司 采用图像纹理特征的集成表型
US20150301144A1 (en) * 2014-04-22 2015-10-22 Case Western Reserve University Distinguishing Diseased Tissue From Healthy Tissue Based On Tissue Component Fractions Using Magnetic Resonance Fingerprinting (MRF)
US20160097830A1 (en) * 2014-08-12 2016-04-07 Siemens Aktiengesellschaft Method and apparatus for magnetic resonance fingerprinting
US20160278661A1 (en) * 2015-03-26 2016-09-29 Case Western Reserve University Quantitative prostate cancer imaging with magnetic resonance fingerprinting (mrf)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L. KJÆR, P. RING, C. THOMSEN & O. HENRIKSEN: "Texture Analysis in Quantitative MR Imaging", 《ACTA RADIOLOGICA》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805580A (zh) * 2018-10-25 2021-05-14 拜耳公司 用于用对比剂记录的磁共振指纹提取方法

Also Published As

Publication number Publication date
US20180204045A1 (en) 2018-07-19
US10664683B2 (en) 2020-05-26
CN108324277B (zh) 2022-08-19
EP3351956B1 (de) 2022-03-16
KR20180085688A (ko) 2018-07-27
EP3351956A1 (de) 2018-07-25

Similar Documents

Publication Publication Date Title
CN104603630B (zh) 具有基于导航器的运动检测的磁共振成像系统
KR101674848B1 (ko) 핵 자기 공명(nmr) 핑거프린팅
JP4972751B2 (ja) 神経線維束計測システム及び画像処理システム
CN107753020B (zh) 医学成像设备及其控制方法
CN108324277A (zh) 用于分类借助磁共振指纹法采集的磁共振测量数据的方法
US10379189B2 (en) Simultaneous magnetic resonance angiography and perfusion with nuclear magnetic resonance fingerprinting
EP3602097B1 (en) Selection of magnetic resonance fingerprinting dictionaries for anatomical regions
WO2017081302A1 (en) Medical instrument for analysis of white matter brain lesions
CN102573625B (zh) 磁共振成像装置、磁共振成像方法及图像显示装置
US10761167B2 (en) System and method for generating a magnetic resonance fingerprinting dictionary using semi-supervised learning
CN107440719A (zh) 用于显示定量磁共振图像数据的方法
CN107209236A (zh) 用于确定mr系统的性能退化的mr指纹识别
CN109791186A (zh) 对磁共振指纹期间的b0偏共振场的直接测量
CN110226098A (zh) 动态对比增强的磁共振成像中的图像质量控制
US10736538B2 (en) Method and computer differentiating correlation patterns in functional magnetic resonance imaging
US11435422B2 (en) Anomaly detection using magnetic resonance fingerprinting
Shah et al. Support vector machine classification of arterial volume‐weighted arterial spin tagging images
US10054655B2 (en) Method and apparatus for the representation of magnetic resonance data
CN114097041A (zh) 针对深度学习电特性断层摄影的不确定度图
US11971466B2 (en) System and method for fat and water diagnostic imaging
Brabec Diffusion MRI of Brain Tissue: Importance of Axonal Trajectory
CN114127574A (zh) 定量磁共振成像协议的验证

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant