CN108314079A - 一种调控钛酸镧La2Ti2O7(LTO)粉体尺寸的方法 - Google Patents

一种调控钛酸镧La2Ti2O7(LTO)粉体尺寸的方法 Download PDF

Info

Publication number
CN108314079A
CN108314079A CN201810315592.4A CN201810315592A CN108314079A CN 108314079 A CN108314079 A CN 108314079A CN 201810315592 A CN201810315592 A CN 201810315592A CN 108314079 A CN108314079 A CN 108314079A
Authority
CN
China
Prior art keywords
lto
gels
powders
powder
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810315592.4A
Other languages
English (en)
Inventor
朱建国
李曰毅
陈强
聂瑞
袁敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201810315592.4A priority Critical patent/CN108314079A/zh
Publication of CN108314079A publication Critical patent/CN108314079A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种调控钛酸镧La2Ti2O7(LTO)粉体晶粒尺寸的方法,其特点是该方法首先采用溶胶凝胶法制备出LTO凝胶,再将LTO凝胶在不同温度下处理形成具有纯单斜P21相的LTO纳米及微米级粉体。通过溶胶凝胶法可以获得表面活性较高、比表面积较大的LTO粉体,为后续应用(如制备LTO压电陶瓷、LTO光催化剂等)奠定基础。

Description

一种调控钛酸镧La2Ti2O7(LTO)粉体尺寸的方法
技术领域
本发明涉及一种调控钛酸镧(LTO)粉体尺寸的方法,即先用溶胶凝胶法制备LTO溶胶和凝胶,再用传统烧结法在400~1200 ℃下用不同的温度进行处理后获得LTO粉体,其粒径大小可以调控。本发明属于材料科学与工程领域。
背景技术
随着功能陶瓷在高温压电应用领域需求的增加,类钙钛矿结构(PLS)压电陶瓷以其超高的居里温度(~1500 ℃)成为候选者。高温压电传感技术在化学、材料加工、自动化、航空航天(如喷气式引擎中的电子器件需要在承受500~1000 ℃高温的情况下寿命还需要有100000 h以上)以及石油勘探等行业具有重要应用。目前,只有PLS可以在1000 ℃以上使用,并且可在高真空、强电子轰击环境下使用。近几年来,对高温压电材料PLS的研究方向主要转向了多晶陶瓷的研究,已有一定数量的文献报道了用不同方法制备出具有优良电学性能的压电PLS材料。其中La2Ti2O7(LTO)的性能最佳,LTO粉体的制备方法有:固相法、共沉淀法、尿素沉淀法、水热合成法、金属有机化学前驱体的高温分解法、硝酸盐热分解法、液体混合技术、MBE、脉冲激光沉积(PLD)、激光加热基座法以及操作简单的溶胶凝胶法(sol-gel)。Sol-gel法具有制备得到的LTO粉体均匀性好、表面活性高、对制备条件的要求低等,目前已经引起了很多科研者的兴趣。2005年Cl. Bohnke以硝酸镧、钛酸四丁酯、甲醇为原料,用Sol-gel法制备出直径为2~20 μm的LTO粉体,其中用到了容易使人中毒的甲醛;2010年LiSun以硝酸镧,钛酸四丁酯为原料,用Sol-gel法在700 ℃下处理凝胶得到正交相Pna21(28nm)LTO 粉体,在800~1150 ℃处理得到单斜P21 LTO 粉体,其晶粒尺寸为20 nm~20 μm的LTO 粉末;2011年CHENG Hua以钛酸四丁酯、硝酸、柠檬酸、硝酸镧为主要原料,用sol-gel法掺杂Eu后制备出100 nm左右的LTO粉体,但在低温下获得的XRD峰有宽化现象;2014年G.Herrera以丙烯酰胺为溶剂用溶胶凝胶法,在1073 K下处理凝胶获得LTO正交相,其空间群为Cmc21,在1000 ℃下处理得到空间群为Cmc2的正交LTO;2016年Ruhollah Talebi以硝酸镧、酪氨酸和钛酸四丁酯为原料,用溶胶凝胶法制备出直径为40~50 nm的LTO粉体,并没有给出LTO粉体的相结构。目前,未有在低温(700~900 ℃)获得纯单斜P21相的报道,也没有报道提出具体调控LTO粉体晶粒尺寸的方法。
发明内容
本发明涉及一种调控钛酸镧(LTO)粉体尺寸的方法,该方法可获得纳米到微米级的纯单斜P21相LTO粉体,提高了粉体表面活性,为LTO粉体的后续应用(如制备LTO压电陶瓷、LTO光催化剂等)奠定了基础。
一种调控钛酸镧(LTO)粉体尺寸的方法,其特征在于制备工艺如以下步骤:
(1)溶胶凝胶法制备LTO凝胶
将原料按La2Ti2O7的摩尔分数进行配料,采用La(NO3)3、C16H36O4Ti、无水柠檬酸为原料,按照La(NO3)3:C16H36O4Ti:无水柠檬酸=1:1:5~20的比例进行混合,用油浴锅在50~100 ℃下磁力搅拌10~12 h后,把获得的LTO溶胶移入坩埚,放入烘箱。烘箱温度保持在70~150 ℃,经过5~10天后将LTO溶胶烘干,获得LTO凝胶。
(2)LTO凝胶热分析
取微量上述LTO凝胶做TGA-DSC热分析,获得LTO相转变温区来确定LTO粉体的调控温度。
(3)调控LTO粉体尺寸
取少量上述LTO凝胶分别放入四个小坩埚,在400~1200 ℃之间取四个不同的温度点,用传统烧结法,分别将四个小坩埚在这四个温度点处理12~24 h,获得LTO粉体。
性能测试
利用热分析TGA-DSC分析了LTO凝胶的热分解以及相变过程;用X射线衍射仪(XRD,DX-1000)对不同温度下处理获得的LTO粉体进行了物相结构分析;用Maud软件对XRD图谱进行精修得到不同粉体中的相组成;利用电子显微镜(SEM,JSM-5900)观察了LTO粉体的表面形貌;利用EDS能谱得到了LTO中各个元素的占比情况;用粒度仪分析了四个粉末样品的粒度分布。测试结果见图1~7。
分析结果表明,利用本发明的方法制备的LTO粉末,随着处理温度的升高,粉体尺寸可以从纳米级调控到微米级,最小晶粒尺寸< 30 nm;600 ℃以下LTO不能成相,700~1200℃三个温度点下处理凝胶均获得了纯单斜相LTO粉体,其空间群为P21;各个温度下处理得到的LTO粉体均不存在元素偏析。
本发明与现有的技术相比,具有如下优点:
1.钛酸镧(LTO)粉体的粒度分布可以从纳米级到微米级,粉末表面活性高、比表面积大,后续应用(如制备LTO压电陶瓷、LTO催化剂等)奠定基础。
2.能在较低烧结温度下获得纯单斜相,空间群为P21的LTO粉体。
3.利用该方法获得的LTO粉体无元素偏析现象。
附图说明
图1为实施例1不同温度下烧结的钛酸镧(LTO)粉体的热分析TGA-DSC图。
图2为实施例1不同温度下烧结的钛酸镧(LTO)粉体的XRD图谱。
图3为实施例1不同温度下烧结的钛酸镧(LTO)粉体的结构精修图。
图4为实施例1不同温度下烧结的钛酸镧(LTO)粉体的微观形貌SEM图。
图5为实施例1不同温度下烧结的钛酸镧(LTO)粉体的元素占比EDS图。
图6为实施例1不同温度下烧结的钛酸镧(LTO)粉体的粒度总分布图。
图7为实施例1不同温度下烧结的钛酸镧(LTO)粉体的粒度D50分布图。
具体实施方式
下面通过实施例对本发明进行具体的描述,有必要在此指出的是本实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术熟练人员可以根据上述本发明的内容作出一些非本质的改进和调整。
实施例1:
(1)溶胶凝胶法制备LTO凝胶
将原料按La2Ti2O7的摩尔分数进行配料,采用La(NO3)3、C16H36O4Ti、无水柠檬酸为原料,按照La(NO3)3:C16H36O4Ti:无水柠檬酸=1:1:5~20的比例进行混合,用油浴锅在50~100 ℃下磁力搅拌10~12 h后,溶胶移入坩埚,放入烘箱,烘箱温度保持在70~150 ℃,经过5~10天后将溶胶烘干获得LTO凝胶。
(2)LTO凝胶热分析
取微量上述LTO凝胶做TGA-DSC热分析,获得LTO相转变温区来确定LTO粉体的调控温度。
(3)调控LTO粉体尺寸
取少量上述LTO凝胶放入一个小坩埚,在400~600 ℃温度区间取一个温度点,用传统烧结法,将小坩埚在这个温度点处理12~24 h,获得1# LTO粉体。
实施例2:
(1)溶胶凝胶法制备LTO凝胶
将原料按La2Ti2O7的摩尔分数进行配料,采用La(NO3)3、C16H36O4Ti、无水柠檬酸为原料,按照La(NO3)3:C16H36O4Ti:无水柠檬酸=1:1:5~20的比例进行混合,用油浴锅在50~100 ℃下磁力搅拌10~12 h后,溶胶移入坩埚,放入烘箱,烘箱温度保持在70~150 ℃,经过5~10天后将溶胶烘干获得LTO凝胶。
(2)LTO凝胶热分析
取微量上述LTO凝胶做TGA-DSC热分析,获得相转变温区来确定LTO粉体的调控温度。
(3)调控LTO粉体尺寸
取少量上述LTO凝胶放入一个小坩埚,在700~900 ℃温度区间取一个温度点,用传统烧结法,将小坩埚在这个温度点处理12~24 h,获得2# LTO粉体。
实施例3:
(1)溶胶凝胶法制备LTO凝胶
将原料按La2Ti2O7的摩尔分数进行配料,采用La(NO3)3、C16H36O4Ti、无水柠檬酸为原料,按照La(NO3)3:C16H36O4Ti:无水柠檬酸=1:1:5~20的比例进行混合,用油浴锅在50~100 ℃下磁力搅拌10~12 h后,溶胶移入坩埚,放入烘箱,烘箱温度保持在70~150 ℃,经过5~10天后将溶胶烘干获得LTO凝胶。
(2)LTO凝胶热分析
取微量上述LTO凝胶做TGA-DSC热分析,获得相转变温区来确定LTO粉体的调控温度。
(3)调控LTO粉体尺寸
取少量上述LTO凝胶放入一个小坩埚,在900~1150 ℃温度区间取一个温度点,用传统烧结法,将小坩埚在这个温度点处理12~24 h,获得3# LTO粉体。
实施例4:
(1)溶胶凝胶法制备LTO凝胶
将原料按La2Ti2O7的摩尔分数进行配料,采用La(NO3)3、C16H36O4Ti、无水柠檬酸为原料,按照La(NO3)3:C16H36O4Ti:无水柠檬酸=1:1:5~20的比例进行混合,用油浴锅在50~100 ℃下磁力搅拌10~12 h后,溶胶移入坩埚,放入烘箱,烘箱温度保持在70~150 ℃,经过5~10天后将溶胶烘干获得LTO凝胶。
(2)LTO凝胶热分析
取微量上述LTO凝胶做TGA-DSC热分析,获得相转变温区来确定LTO粉体的调控温度。
(3)调控LTO粉体尺寸
取少量上述LTO凝胶放入一个小坩埚,在1150~1200 ℃温度区间取一个温度点,用传统烧结法,将小坩埚在这个温度点处理12~24 h,获得4# LTO粉体。

Claims (2)

1.一种调控钛酸镧La2Ti2O7(LTO)粉体尺寸的方法,其特征在于采用以下步骤进行制备:
(1)溶胶凝胶法制备LTO凝胶
将原料按La2Ti2O7的摩尔分数进行配料,采用La(NO3)3、C16H36O4Ti、无水柠檬酸为原料,按照La(NO3)3:C16H36O4Ti:无水柠檬酸=1:1:5~20的比例进行混合,用油浴锅在50~100 ℃下磁力搅拌10~12 h后,把溶胶移入坩埚,放入烘箱,烘箱温度保持在70~150 ℃,经过5~10天后将溶胶烘干,获得LTO凝胶
(2)LTO凝胶热分析
取微量上述LTO凝胶做TGA-DSC热分析,获得LTO相转变温区来确定LTO粉体的调控温度
(3)调控LTO粉体尺寸
取少量上述LTO凝胶分别放入四个小坩埚,在400~1200 ℃之间取四个温度点,用传统烧结法,分别将四个小坩埚在这四个温度点处理12~24 h,获得LTO粉体。
2.如权利要求1所述钛酸镧(LTO)粉体,其晶粒尺寸可从纳米级调控到微米级,LTO粉体表面活性高、比表面积大、为后续应用(如制备LTO压电陶瓷、LTO光催化剂等)奠定基础。
CN201810315592.4A 2018-04-10 2018-04-10 一种调控钛酸镧La2Ti2O7(LTO)粉体尺寸的方法 Pending CN108314079A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810315592.4A CN108314079A (zh) 2018-04-10 2018-04-10 一种调控钛酸镧La2Ti2O7(LTO)粉体尺寸的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810315592.4A CN108314079A (zh) 2018-04-10 2018-04-10 一种调控钛酸镧La2Ti2O7(LTO)粉体尺寸的方法

Publications (1)

Publication Number Publication Date
CN108314079A true CN108314079A (zh) 2018-07-24

Family

ID=62898148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810315592.4A Pending CN108314079A (zh) 2018-04-10 2018-04-10 一种调控钛酸镧La2Ti2O7(LTO)粉体尺寸的方法

Country Status (1)

Country Link
CN (1) CN108314079A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110745864A (zh) * 2019-12-03 2020-02-04 中南大学 一种钙钛矿型钛酸镧材料及其制备方法和应用
CN110921702A (zh) * 2019-12-02 2020-03-27 吉林师范大学 一种小尺寸钛酸镧纳米颗粒的制备方法
CN110937625A (zh) * 2019-12-02 2020-03-31 吉林师范大学 一种具有缺陷的钛酸镧纳米颗粒的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1394680A (zh) * 2002-02-01 2003-02-05 重庆大学 纳米级镧钛复合氧化物及其制法和用途
CN102502763A (zh) * 2011-11-23 2012-06-20 陕西科技大学 溶胶凝胶-超声化学法制备铜酸镧(La2CuO4)粉体的方法
CN106365194A (zh) * 2016-11-10 2017-02-01 渤海大学 一种钛酸镧纳米材料的制备方法
CN106732519A (zh) * 2016-11-22 2017-05-31 沈阳理工大学 一种软性钛酸镧纤维的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1394680A (zh) * 2002-02-01 2003-02-05 重庆大学 纳米级镧钛复合氧化物及其制法和用途
CN102502763A (zh) * 2011-11-23 2012-06-20 陕西科技大学 溶胶凝胶-超声化学法制备铜酸镧(La2CuO4)粉体的方法
CN106365194A (zh) * 2016-11-10 2017-02-01 渤海大学 一种钛酸镧纳米材料的制备方法
CN106732519A (zh) * 2016-11-22 2017-05-31 沈阳理工大学 一种软性钛酸镧纤维的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENG HUA ET AL.: "Sol-gel synthesis and photoluminescence characterization of La2Ti2O7:Eu3+ nanocrystals", 《RARE METALS》 *
LI SUN ET AL.: "Room-temperature ferromagnetism and ferroelectricity of nanocrystalline La2Ti2O7", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110921702A (zh) * 2019-12-02 2020-03-27 吉林师范大学 一种小尺寸钛酸镧纳米颗粒的制备方法
CN110937625A (zh) * 2019-12-02 2020-03-31 吉林师范大学 一种具有缺陷的钛酸镧纳米颗粒的制备方法
CN110745864A (zh) * 2019-12-03 2020-02-04 中南大学 一种钙钛矿型钛酸镧材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN111763087B (zh) 一系列立方萤石型高熵铈氧化物纳米粉体及其制备方法
Cho et al. Hydrothermal synthesis of acicular lead zirconate titanate (PZT)
Salavati-Niasari et al. Facile synthesis and characterization of CdTiO 3 nanoparticles by Pechini sol–gel method
CN108314079A (zh) 一种调控钛酸镧La2Ti2O7(LTO)粉体尺寸的方法
Huang et al. The effects of precipitants on co-precipitation synthesis of yttria-stabilized zirconia nanocrystalline powders
Wang et al. Hydrothermal assisted synthesis and hot-corrosion resistance of nano lanthanum zirconate particles
Chao et al. Improvement of thermal stability of zirconia aerogel by addition of yttrium
Su et al. Synthesis of MgAl 2 O 4 spinel nanoparticles using a mixture of bayerite and magnesium sulfate
Sanad et al. Synthesis and characterization of nanocrystalline mullite powders at low annealing temperature using a new technique
Matovic et al. A novel reduction–oxidation synthetic route for hafnia
Abothu et al. Processing of Pb (Zr0. 52Ti0. 48) O3 (PZT) ceramics from microwave and conventional hydrothermal powders
Li et al. Fabrication of Ni-coated Al2O3 powders by the heterogeneous precipitation method
Keyvani et al. Synthesis and characterization of ((La1-xGdx) 2Zr2O7; x= 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1) nanoparticles for advanced TBCs
Thomas et al. Nanocrystalline SrHfO3 synthesized through a single step auto-igniting combustion technique and its characterization
CN109205662A (zh) 两步熔盐法制备片状BaTiO3微米晶的方法
Sun et al. Ethanol-induced formation of precursor for 8 mol% Yttria-stabilized zirconia: Towards the production of well-dispersed, easily sintering, and high-conductivity nano-powders
Esparza-Ponce et al. Synthesis and characterization of spherical calcia stabilized zirconia nano-powders obtained by spray pyrolysis
CN111204800B (zh) 一种锆酸镧纳米颗粒的制备方法
Hwan Jo et al. Low-temperature sintering of dense lanthanum silicate electrolytes with apatite-type structure using an organic precipitant synthesized nanopowder
An et al. Thermal insulating and mechanical properties of high entropy pyrochlore oxide ceramic with hierarchical porous structures
Suresh et al. Mixed hydroxide precursors for La2Ti2O7 and Nd2Ti2O7 by homogeneous precipitation
Miyazaki et al. Synthesis of CeO2 nanoparticles by rapid thermal decomposition using microwave heating
Sangsubun et al. Densification and microstructure of lead zirconate titanate ceramics fabricated from a triol sol–gel powder
Wang et al. Synthesis of CaCu 3 Ti 4 O 12 powders and ceramics by sol-gel method using decanedioic acid and its dielectric properties
Ciptasari et al. Effect of cobalt content on the structural properties of zirconia prepared by sol-gel method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180724