CN108313062B - A kind of the torque distribution control method and system of distributed driving electric vehicle - Google Patents

A kind of the torque distribution control method and system of distributed driving electric vehicle Download PDF

Info

Publication number
CN108313062B
CN108313062B CN201810070814.0A CN201810070814A CN108313062B CN 108313062 B CN108313062 B CN 108313062B CN 201810070814 A CN201810070814 A CN 201810070814A CN 108313062 B CN108313062 B CN 108313062B
Authority
CN
China
Prior art keywords
rate
yaw
target
torque
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810070814.0A
Other languages
Chinese (zh)
Other versions
CN108313062A (en
Inventor
崔金龙
杨兴旺
霍海涛
窦国旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FAW Group Corp
Original Assignee
FAW Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FAW Group Corp filed Critical FAW Group Corp
Priority to CN201810070814.0A priority Critical patent/CN108313062B/en
Publication of CN108313062A publication Critical patent/CN108313062A/en
Application granted granted Critical
Publication of CN108313062B publication Critical patent/CN108313062B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/112Roll movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/463Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/406Torque distribution between left and right wheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

The present invention provides a kind of torques of distributed driving electric vehicle to distribute control method, comprising: determines target manipulation yaw-rate, targeted security yaw-rate and target Critical yaw-rate;Identified target manipulation yaw-rate is compared with identified target Critical yaw-rate, and determines target yaw rate based on comparative result, using the control target as feedback control;Feedback control is carried out to the difference of identified target yaw rate and actual yaw rate, obtains the sideway torque of vehicle demand;Total driving torque and obtained sideway torque based on vehicle demand, determine revolver target torque and right wheel target torque.The present invention also provides a kind of torques of distributed driving electric vehicle to distribute control system.The present invention can take into account the yaw response and stability of vehicle.

Description

A kind of the torque distribution control method and system of distributed driving electric vehicle
Technical field
The present invention relates to a kind of torque distribution control method and systems, and in particular to a kind of torsion of distributed driving electric vehicle Square distributes control method and system.
Background technique
In recent years, distribution driving electric vehicle saves space, the originals such as body shape constraint reduction due to omitting transmission system Cause, increasingly by the favor of Automobile Enterprises.Also become research hotspot for the distributed AC servo system of distributed driving electric vehicle.Point Cloth drive control can not only improve response performance of the vehicle in negotiation of bends, moreover it is possible to realize stability contorting, significant increase The movenent performance of vehicle.
Currently, can effectively promote Vehicular turn responsiveness based on yaw-rate tracking feedback control for distributed AC servo system Can, but when the target yaw rate of setting exceeds road surface limit of adhesion, will lead to intact stability variation.
Aiming at the problem that target yaw rate is more than that road surface tolerance limit will lead to vehicle unstability, a kind of scheme is by real-time Estimate coefficient of road adhesion, the limitation of Lai Jinhang target yaw rate.But in the non-unstability of vehicle, it can not estimate true Coefficient of road adhesion, and the utilization service estimated is less than the true attachment coefficient in road surface, is carried out using utilization service Limitation can make vehicle target yaw rate relatively low, although can guarantee vehicle stabilization performance, turn it can be difficult to playing distributed vehicle To response performance, or even it is deteriorated.
Another scheme is to carry out sideway torque control by estimation rear tyre side drift angle or vehicle centroid side drift angle The limitation of system reduces sideway moment of torsion control intensity, to guarantee when rear tyre side drift angle or excessive vehicle centroid side drift angle The stability of vehicle.But this kind of scheme is affected by the estimated accuracy of rear tyre side drift angle or vehicle centroid side drift angle, And it is difficult to accurately estimate Vehicle Side Slip Angle at present.
Therefore, vehicle is driven for distribution, how guarantees the torque point of the yaw response for taking into account vehicle and stability Distribution controlling method is current Research Challenges.
Summary of the invention
In view of the above technical problems, one aspect of the present invention provides a kind of torque distribution controlling party of distributed driving electric vehicle Method, this method can take into account the yaw response and stability of vehicle.Another aspect of the present invention provides a kind of distributed driving The torque of electric vehicle distributes control system.
The technical solution adopted by the present invention are as follows:
One embodiment of the invention provides a kind of torque distribution control method of distributed driving electric vehicle, comprising: is based on vehicle Current vehicle speed and front wheel angle and preset first operation relation determine that target manipulates yaw-rate;Based on vehicle current vehicle speed Targeted security yaw-rate is determined with side acceleration and preset second operation relation;Based on the targeted security yaw-rate and Preset yaw-rate compensation rate determines target Critical yaw-rate;Identified target manipulation yaw-rate is faced with identified target Boundary's yaw-rate is compared, and determines target yaw rate based on comparative result, using the control target as feedback control;To really The difference of fixed target yaw rate and actual yaw rate carries out feedback control, obtains the sideway torque of vehicle demand;Based on vehicle Total driving torque of demand and obtained sideway torque, determine revolver target torque and right wheel target torque.
It is optionally, described to be compared identified target manipulation yaw-rate with identified target Critical yaw-rate, And target yaw rate is determined based on comparative result, it is specifically included using the control target as feedback control: if target manipulation is horizontal Slew Rate is greater than the target Critical yaw-rate, then the targeted security yaw-rate is determined as the target yaw rate;If mesh Mark manipulation yaw-rate is less than the preset ratio of the target Critical yaw-rate, then is determined as target manipulation yaw-rate described Target yaw rate;If target manipulation yaw-rate is greater than the preset ratio of the target Critical yaw-rate and is less than the target and faces Boundary's yaw-rate, then the weighting yaw-rate obtained the weighted sum of target manipulation yaw-rate and the targeted security yaw-rate It is determined as the target yaw rate.
Optionally, described to determine that target is grasped based on vehicle current vehicle speed and front wheel angle and preset first operation relation Slew Rate includes determining that the target manipulates yaw-rate by following formula (1) in length and breadth:
Wherein, γhandleYaw-rate, unit rad/s are manipulated for target;vxFor speed, unit m/s;δfFor preceding rotation Angle, unit rad;vchIt is characterized speed, unit m/s;Wheelbase of the L between front and back wheel, unit m.
Optionally, described that target is determined based on vehicle current vehicle speed and side acceleration and preset second operation relation Safe yaw-rate includes determining the targeted security yaw-rate by following formula (2):
Wherein, γsafeFor targeted security yaw-rate, unit rad/s;ayFor side acceleration, unit m/s2
Optionally, the target Critical yaw-rate is equal to the targeted security yaw-rate and the preset yaw-rate compensation Amount is added obtain and value;
Current vehicle speed of the preset yaw-rate compensation rate based on vehicle, side acceleration and steering wheel angular velocity are true It is fixed.
Optionally, the preset yaw-rate compensation rate is determined by following formula (3):
Δ γ=k1d|ay|+f(vx)+k2|dδsw| (3)
Wherein, Δ γ is yaw-rate compensation rate, unit rad/s;k1、k2For the constant of calibration;ayFor side acceleration, Unit is m/s2;dδswFor steering wheel angular velocity, unit rad/s, f (vx) be current vehicle speed function, value is according to working as front truck Speed is determining, unit rad/s.
Optionally, if the target manipulates yaw-rate close to the target Critical yaw-rate, the target is manipulated The weighting yaw-rate that the weighted sum of yaw-rate and the targeted security yaw-rate obtains is determined as the target yaw rate The weighting yaw-rate is determined by following formula (4):
γweight=sign (γhandle)·(w·|γhandle|+(1-w)·|γsafe|) (4)
Wherein, γweightTo weight yaw-rate, unit rad/s;sign(γhandle) it is γhandleSign function;w For weight factor, γhandleYaw-rate, γ are manipulated for targetsafeFor targeted security yaw-rate.
Optionally, the weight factor w is determined by following formula (5):
Wherein, k is the constant of calibration;γlimitFor target Critical yaw-rate.Optionally, described based on the total of vehicle demand Driving torque and obtained sideway torque, determine revolver target torque and right wheel target torque includes by following formula (6) Determine revolver target torque and right wheel target torque:
Wherein, TtotalAlways to drive demand torque, unit Nm;Δ M is sideway torque, unit Nm;TLFor revolver mesh Mark torque, unit Nm;TRFor right wheel target torque, unit Nm;R is radius of wheel, unit m;wdBetween left and right wheels Wheelspan, unit m.
Another embodiment of the present invention provides a kind of torques of distributed driving electric vehicle to distribute control system, comprising: target Yaw-rate determining module is manipulated, for determining mesh based on vehicle current vehicle speed and front wheel angle and preset first operation relation Mark manipulation yaw-rate;Targeted security yaw-rate determining module, for being based on vehicle current vehicle speed and side acceleration and presetting The second operation relation determine targeted security yaw-rate;Target Critical yaw-rate determining module, for being based on the targeted security The targeted security yaw-rate and preset yaw-rate compensation rate that yaw-rate determining module determines determine target Critical yaw-rate;Control Module, including the first control module and the second control module;First control module is used to manipulate identified target horizontal Slew Rate is compared with identified target Critical yaw-rate, and determines target yaw rate based on comparative result, using as feedback The control target of control and feedback control is carried out to the difference of identified target yaw rate and actual yaw rate, obtains vehicle The sideway torque of demand;Second control module, for total driving torque and the first control mould based on vehicle demand The sideway torque that block obtains, determines revolver target torque and right wheel target torque.
The torque distribution control method and system of distributed driving electric vehicle provided in an embodiment of the present invention, work as according to vehicle Preceding state carries out target manipulation yaw-rate, targeted security yaw-rate calculates, and then calculates critical yaw-rate value, passes through above three The relationship of person obtains final goal yaw-rate, by the difference of target yaw rate and actual yaw rate by P closed-loop control, obtains attached Add sideway torque demand, always drive demand torque then in conjunction with vehicle, finally obtains the practical apportioning cost of left and right wheels torque, Neng Goushi Existing Vehicular yaw response performance is promoted and stability is promoted.
Detailed description of the invention
Fig. 1 is the torque distribution control for the distributed driving electric vehicle provided in an embodiment of the present invention being shown in block diagram form The flow diagram of method;
Fig. 2 is that the torque of distributed driving electric vehicle provided in an embodiment of the present invention distributes the process signal of control method Figure;
Fig. 3 to Fig. 5 is respectively to be carried out using the torque distribution control method of distributed driving electric vehicle provided by the invention Effect diagram after control;
Fig. 6 is that the torque of distributed driving electric vehicle provided in an embodiment of the present invention distributes the structural representation of control system Figure.
Specific embodiment
To keep the technical problem to be solved in the present invention, technical solution and advantage clearer, below in conjunction with attached drawing and tool Body embodiment is described in detail.
The purpose of the present invention is using target yaw rate tracing control, target yaw rate manipulates yaw-rate and target by target Safe yaw-rate composition realizes torque distribution by P closed-loop control, to realize the yaw response and stability of vehicle simultaneously Control.As shown in Figure 1, the torque distribution control method of distributed driving electric vehicle provided by the invention includes: to be worked as according to vehicle Preceding state carries out target manipulation yaw-rate, targeted security yaw-rate calculates, specifically, according to vehicle current vehicle speed, front wheel angle It calculates target and manipulates yaw-rate, targeted security yaw-rate is calculated according to current vehicle speed and side acceleration, then according to calculating Targeted security yaw-rate, steering wheel angular velocity, side acceleration absolute derivative and current vehicle speed etc. calculate critical yaw-rate Value, obtains final goal yaw-rate by the relationship of the above three, the difference of target yaw rate and actual yaw rate is closed by P Ring control obtains additional sideway torque demand, always drives demand torque then in conjunction with vehicle, it is practical to finally obtain left and right wheels torque Apportioning cost.It is carried out below in conjunction with torque distribution control method of the Fig. 2 to distributed driving electric vehicle provided in an embodiment of the present invention Detailed description.
Fig. 2 is that the torque of distributed driving electric vehicle provided in an embodiment of the present invention distributes the process signal of control method Figure.As shown in Fig. 2, the torque of distributed driving electric vehicle provided in an embodiment of the present invention distributes control method, including following step It is rapid:
S101, determine that target manipulates sideway based on vehicle current vehicle speed and front wheel angle and preset first operation relation Rate.
S102, targeted security cross is determined based on vehicle current vehicle speed and side acceleration and preset second operation relation Slew Rate.
S103, target Critical yaw-rate is determined based on the targeted security yaw-rate and preset yaw-rate compensation rate.
S104, identified target manipulation yaw-rate is compared with identified target Critical yaw-rate, and be based on Comparison result determines target yaw rate, using the control target as feedback control.
S105, feedback control is carried out to the difference of identified target yaw rate and actual yaw rate, obtains vehicle demand Sideway torque.
S106, total driving torque based on vehicle demand and obtained sideway torque, determine revolver target torque and the right side Take turns target torque.
Further, the operation that the target manipulation yaw-rate in step S101 directly reacts driver is intended to, can be according to vehicle Current vehicle speed, front wheel angle, are calculated by vehicle two-freedom model, specifically can be by following formula (1) to determine State target manipulation yaw-rate:
Wherein, γhandleYaw-rate, unit rad/s are manipulated for target;vxFor speed, unit m/s can pass through wheel speed Sensor obtains;δfFor front wheel angle, unit rad;vchIt is characterized speed, unit m/s;Axis of the L between front and back wheel Away from unit m.Front wheel angle and steering wheel angle are there are corresponding relationship, which is stored in mapping table, direction Disk corner can be obtained by the angle transducer measurement of the electric power steering EPS of vehicle, so as to according to the steering wheel angle of measurement Searching corresponding relation table can be obtained corresponding front wheel angle.Characteristic speed vchIt can demarcate to obtain by real vehicle, in an example In, it can be 24m/s.
In the present invention, when vehicle is in non-instability status, i.e., the state that vehicle tyre is not up to limit of adhesion (can manage Solution is that ESP does not intervene state) when, using target manipulation yaw-rate progress yaw rate feedback tracing control, it can be achieved that the cross of vehicle Response control is put, response performance of the vehicle in negotiation of bends is promoted.This is because the yaw response and driver side of automobile to The operation of disk corner is compared, and has certain lag characteristic;Feedback control is tracked by yaw-rate, is increased in turning within a certain period of time The outboard wheels torque of vehicle reduces inboard wheel torque, generates additional sideway torque, accelerating vehicle weaving, thus Reduce the response time of yaw-rate.
Further, in step s 102, targeted security yaw-rate can be calculated according to current speed and side acceleration It obtains, what is indicated is the target yaw rate value of the safety under vehicle present case, can specifically be determined by following formula (2) The targeted security yaw-rate:
Wherein, γsafeFor targeted security yaw-rate, unit rad/s;ayFor side acceleration, unit m/s2
In the present invention, when vehicle is in instability status, i.e., the state that vehicle tyre reaches limit of adhesion (can be regarded as ESP intervenes state) when, using targeted security yaw-rate progress tracing control, it can be achieved that the sideway stability contorting of vehicle.This be because It is calculated for targeted security yaw-rate by speed and side acceleration, which is made in consideration road surface attachment Limitation, for being in the vehicle of instability status, which indicates the permitted maximum yaw-rate of current road.When vehicle is sent out When raw sideway unstability, actual yaw rate can be more than the targeted security yaw-rate value, be tracked at this time by targeted security yaw-rate Feedback control can correct actual yaw rate value, vehicle can be made to be promptly restored to stable state, to promote the stabilization of vehicle Property.
On low attachment road surface, when vehicle carries out feedback control according to target manipulation yaw-rate, since target manipulates sideway Rate can have the case where more than road surface limit of adhesion, will lead to vehicle easily unstability in this way;If being made using targeted security yaw-rate The upper limit for manipulating yaw-rate for target is effectively limited, then can guarantee the curve stability of vehicle, but this can make Yaw response control performance of the about distributed driving vehicle on high attached road surface.This is because when Vehicular turn, due to lateral The variation of acceleration lags behind the actual yaw rate of steering wheel angle and vehicle, and targeted security yaw-rate equally lags behind target behaviour The actual yaw rate of Slew Rate and vehicle in length and breadth.Therefore, targeted security yaw-rate needs close to unstability or to be in mistake in vehicle Target manipulation yaw-rate is limited under steady state.
Based on above-mentioned analysis, in embodiments of the present invention, a judgement vehicle is set close to instability status or has been in The critical yaw-rate limit value of instability status, i.e. target Critical yaw-rate in step S103, it is in targeted security yaw-rate On the basis of increase a preset yaw rate increase.When vehicle target manipulation yaw-rate is more than the critical value, then vehicle is determined It will enter or be in instability status, maximum value limit is carried out to target manipulation yaw-rate using targeted security yaw-rate at this time System, controls, it is ensured that intact stability by yaw rate feedback.
In the present invention, the target Critical yaw-rate is equal to the targeted security yaw-rate and the preset yaw-rate Compensation rate is added and value can determine target Critical yaw-rate by following formula (3):
γlimitsafe+Δγ (3)
Wherein, γlimitFor critical yaw-rate, unit is rad/s;Δ γ is yaw-rate compensation rate, unit rad/s.
In addition, current vehicle speed, side acceleration and the steering wheel of the preset yaw-rate compensation rate Δ γ based on vehicle Angular speed determines that specifically, the preset yaw-rate compensation rate can be determined by following formula (4):
Δ γ=k1d|ay|+f(vx)+k2|dδsw| (4)
Wherein, k1、k2For the constant of calibration, can be demarcated according to vehicle concrete condition, in one example, k1Can be 10, k2It can be 0.2;ayFor side acceleration, unit m/s2;dδswIt is steering wheel angle δ for steering wheel angular velocityswLead Number, unit rad/s;f(vx) be current vehicle speed function, value according to current vehicle speed determine, unit rad/s.Specifically, f(vx) can be indicated by following formula (5):
That is, the yaw-rate compensation rate Δ γ in the present invention becomes smaller with the increase of speed, it is exhausted with side acceleration Become larger to the increase of the derivative of value, with the absolute value of steering wheel angular velocity, the i.e. increase of the derivative absolute value of steering wheel angle And become larger.
In the present invention, when determining yaw-rate compensation rate, Consideration is specifically included that
1, speed is higher, and vehicle unstability risk is bigger, therefore reduces with the increase of speed.
2, when the side acceleration absolute value of vehicle is during rapid increase, vehicle also not up to attachment pole is thought at this time Limit increases with the increase of the rate of side acceleration absolute value rising, and target Critical yaw-rate value is larger at this time, target manipulation Yaw-rate reaches far away critical yaw-rate value, based on vehicle is controlled with yaw response.
3, during the side acceleration absolute value of vehicle is in stationary stage or reduces, vehicle is likely to be at two at this time Kind situation: (1) vehicle is in limit of adhesion state or instability status, and vehicle lateral acceleration, which has reached the limit, to be increased again Add, reduced according to the reduction of side acceleration absolute value climbing speed, the yaw-rate of target manipulation at this time is rapidly achieved even super Target Critical yaw-rate is crossed, then targeted security yaw-rate can be used as target yaw rate, control by yaw rate feedback, vehicle is with cross It puts based on stability contorting;(2) vehicle, which is in, normally returns wheel state, then the yaw-rate of target manipulation at this time is less than the targeted security of lag Yaw-rate and critical yaw-rate, vehicle tracking target manipulate yaw-rate and realize sideway control, can guarantee the yaw response of vehicle Performance.
4, in addition, when driver's quick rotation steering wheel (such as step test), in order to improve the responsiveness of vehicle, sideway Rate compensation rate Δ γ increases with the increase of steering wheel angular velocity, makes target manipulation yaw-rate far from critical yaw-rate, vehicle with Based on yaw response control.
Further, described by identified target manipulation yaw-rate and identified target Critical in step S104 Yaw-rate is compared, and determines target yaw rate based on comparative result, is specifically included using the control target as feedback control:
If target, which manipulates yaw-rate, is greater than the target Critical yaw-rate, the targeted security yaw-rate is determined as The target yaw rate;That is, vehicle is in unstability precarious position when target manipulation yaw-rate is more than critical yaw-rate limit value, Using targeted security yaw-rate as control target, guarantee intact stability.
If target manipulates the preset ratio that yaw-rate is less than the target Critical yaw-rate, the target is manipulated horizontal Slew Rate is determined as the target yaw rate;That is, when target manipulation yaw-rate is lower than the preset ratio of critical yaw-rate limit value, vehicle Be in safety traffic state, using target manipulation yaw-rate as control target, guarantee the yaw response of vehicle;Show at one In example, if 80% of target manipulation yaw-rate less than target Critical yaw-rate (faces that is, target manipulates yaw-rate ﹤ 80%* target Boundary's yaw-rate), then target manipulation yaw-rate is determined as the target yaw rate.
It is greater than the preset ratio of the target Critical yaw-rate if target manipulates yaw-rate and is less than the target Critical Yaw-rate, then the weighting yaw-rate obtained the weighted sum of target manipulation yaw-rate and the targeted security yaw-rate are true It is set to the target yaw rate.That is, being then a transitional period, adopting when target manipulates yaw-rate close to critical yaw-rate limit value The weighting yaw-rate for using the weighted sum of target manipulation yaw-rate and targeted security yaw-rate to obtain is as control target, with simultaneously Take into account intact stability and yaw response.In one example, if target manipulation yaw-rate is greater than target Critical yaw-rate 80% and be less than target Critical yaw-rate (i.e. 80%* target Critical yaw-rate ﹤ target manipulate yaw-rate ﹤ target Critical sideway Rate), then the weighting yaw-rate that the weighted sum of target manipulation yaw-rate and the targeted security yaw-rate obtains is determined For the target yaw rate.Specifically, the weighting yaw-rate can be determined by following formula (6):
γweight=sign (γhandle)·(w·|γhandle|+(1-w)·|γsafe|) (6)
Wherein, γweightTo weight yaw-rate, unit rad/s;sign(γhandle) it is γhandleSign function, when γhandleWhen greater than 0, sign (γhandle) it is 1, work as γhandleWhen less than 0, sign (γhandle) it is -1, work as γhandleEqual to 0 When, sign (γhandle) it is 0;W is weight factor, γhandleYaw-rate, γ are manipulated for targetsafeFor targeted security yaw-rate.
The size of weight factor w in the present invention depends on the degree of closeness of target manipulation yaw-rate and critical yaw-rate, It can specifically be determined by following formula (7):
Wherein, k is the constant of calibration, in one example, k 0.8.Further, in step s105, to determining Target yaw rate and actual yaw rate difference carry out P closed loop feedback control adopted with obtaining the sideway torque of vehicle demand The tracing control of target yaw rate is carried out with ratio (P) controller, specifically can obtain the cross of vehicle demand by following formula (8) Put torque:
Δ M=P (γtargetreal) (8)
Wherein, Δ M is sideway torque, unit Nm;γtargetIt is the target determined in step S104 for target yaw rate Yaw-rate;γrealFor actual yaw rate, determined according to the practical yaw velocity that sensor obtains;P is calibrating parameters, according to Real train test is demarcated, and in one exemplary embodiment, P can be 15000.That is, by will be true in step S104 Corresponding output, the i.e. cross of vehicle demand can be obtained by formula (8) in input of the fixed target yaw rate as P controller Put torque.
Further, in step s 106, left and right wheels torque distribution should meet total driving torque demand and sideway torque need It asks, that is, the left and right wheels torque distributed should meet the functional relation between total driving torque and sideway torque.Specifically, can pass through Following formula (9) determine revolver target torque and right wheel target torque:
Wherein, TtotalFor total driving demand torque of vehicle, unit Nm is given value;TLIt is single for revolver target torque Position is Nm;TRFor right wheel target torque, unit Nm;R is radius of wheel, unit m;wdWheelspan between left and right wheels, it is single Position is m.
By the calculating of above-mentioned formula (9), revolver target torque and right wheel target torque are finally obtained, thus by corresponding Revolver target torque and right wheel target torque are applied on the revolver and right wheel of vehicle, realize sideway control, which controls energy Enough guarantee the yaw response performance and stability energy of vehicle.
To sum up, the torque distribution control method of distributed driving electric vehicle provided by the invention according to vehicle's current condition into Row target manipulates yaw-rate, targeted security yaw-rate calculates, and then calculates critical yaw-rate value, passes through the relationship of the above three Final goal yaw-rate is obtained, the difference of target yaw rate and actual yaw rate is controlled by P, obtaining additional sideway torque needs It asks, always drives demand torque in conjunction with vehicle, finally obtain the practical apportioning cost of left and right wheels torque, can be realized Vehicular yaw responsiveness It can be promoted and stability is promoted.Fig. 3 to Fig. 5 is respectively to be distributed using the torque of distributed driving electric vehicle provided by the invention Control method controlled after effect diagram.In high attached step test, the distributed driving provided through the invention is electric After the torque distribution control method of motor-car is controlled, capable of shortening the yaw-rate response time, what promotes vehicle responsiveness, such as Fig. 3 It is shown.In low attachment road surface step test, the torque distribution controlling party of the distributed driving electric vehicle provided through the invention After method is controlled, the sideway fluctuation of vehicle can be reduced and stablized the time, realize vehicle stabilization control, as shown in Figure 4.Vehicle It is stagnated in test in sine, the torque distribution control method of the distributed driving electric vehicle provided through the invention is controlled Afterwards, in the case where not needing to carry out coefficient of road adhesion estimation and side slip angle estimation, the sideway for being able to ascend vehicle is rung Performance and stability contorting are answered, meets sinusoidal stagnation test request, as shown in Figure 5.
Based on the same inventive concept, the embodiment of the invention also provides a kind of torques of distributed driving electric vehicle to distribute control System processed, since the principle of the solved problem of the system and the torque of aforementioned distributed driving electric vehicle distribute control method phase Seemingly, therefore the implementation of the system may refer to the implementation of preceding method, and overlaps will not be repeated.
Fig. 6 is that the torque of distributed driving electric vehicle provided in an embodiment of the present invention distributes the structural representation of control system Figure.As shown in fig. 6, a kind of torque of distributed driving electric vehicle provided in this embodiment distributes control system, comprising:
Target manipulates yaw-rate determining module 201, for based on vehicle current vehicle speed and front wheel angle and preset the One operation relation determines that target manipulates yaw-rate;
Targeted security yaw-rate determining module 202, for based on vehicle current vehicle speed and side acceleration and preset Second operation relation determines targeted security yaw-rate;
Target Critical yaw-rate determining module 203, the mesh for being determined based on the targeted security yaw-rate determining module It marks safe yaw-rate and preset yaw-rate compensation rate determines target Critical yaw-rate;
Control module 204, including the first control module and the second control module;First control module be used for by really Fixed target manipulation yaw-rate is compared with identified target Critical yaw-rate, and determines target yaw based on comparative result Rate using the control target as feedback control, and carries out the difference of identified target yaw rate and actual yaw rate anti- Feedback control, obtains the sideway torque of vehicle demand;Second control module, for based on vehicle demand total driving torque and The sideway torque that first control module obtains, determines revolver target torque and right wheel target torque.
Further, first control module is specifically used for:
If target, which manipulates yaw-rate, is greater than the target Critical yaw-rate, the targeted security yaw-rate is determined as The target yaw rate;
If target manipulates the preset ratio that yaw-rate is less than the target Critical yaw-rate, the target is manipulated horizontal Slew Rate is determined as the target yaw rate;
It is greater than the preset ratio of the target Critical yaw-rate if target manipulates yaw-rate and is less than the target Critical Yaw-rate, then the weighting yaw-rate obtained the weighted sum of target manipulation yaw-rate and the targeted security yaw-rate are true It is set to the target yaw rate.
Further, the target manipulation yaw-rate determining module 201 can determine the target by following formula (10) Manipulate yaw-rate:
Wherein, γhandleYaw-rate, unit rad/s are manipulated for target;vxFor speed, unit m/s;δfFor preceding rotation Angle, unit rad;vchIt is characterized speed, unit m/s;Wheelbase of the L between front and back wheel, unit m.
Further, the targeted security yaw-rate determining module 202 can determine the target by following formula (11) Safe yaw-rate:
Wherein, γsafeFor targeted security yaw-rate, unit rad/s;ayFor side acceleration, unit m/s2
Further, the target Critical yaw-rate determining module 203 be specifically used for the targeted security yaw-rate and The preset yaw-rate compensation rate is added and value is determined as the target Critical yaw-rate;Wherein, described preset Yaw-rate compensation rate is determined based on the current vehicle speed, side acceleration and steering wheel angular velocity of vehicle.
Further, the preset yaw-rate compensation rate can be determined by following formula (12):
Δ γ=k1d|ay|+f(vx)+k2|dδsw| (12)
Wherein, Δ γ is yaw-rate compensation rate, unit rad/s;k1、k2For the constant of calibration;ayFor side acceleration, Unit is m/s2;dδswFor steering wheel angular velocity, unit rad/s, f (vx) be current vehicle speed function, value is according to working as front truck Speed is determining, unit rad/s.Specifically, f (vx) can be indicated by following formula (13):
Further, first control module can determine the weighting yaw-rate by following formula (14):
γweight=sign (γhandle)·(w·|γhandle|+(1-w)·|γsafe|) (14)
Wherein, γweightTo weight yaw-rate, unit rad/s;sign(γhandle) it is γhandleSign function, when γhandleWhen greater than 0, sign (γhandle) it is 1, work as γhandleWhen less than 0, sign (γhandle) it is -1, work as γhandleEqual to 0 When, sign (γhandle) it is 0;W is weight factor, γhandleYaw-rate, γ are manipulated for targetsafeFor targeted security yaw-rate.
Further, the weight factor w can be determined by following formula (15):
Wherein, k is the constant of calibration;γlimitFor target Critical yaw-rate.
Further, second control module can determine revolver target torque and right wheel target by following formula (16) Torque:
Wherein, TtotalAlways to drive demand torque, unit Nm is given value;Δ M is sideway torque, unit Nm;TL For revolver target torque, unit Nm;TRFor right wheel target torque, unit Nm;R is radius of wheel, unit m;wdFor left and right Wheelspan between wheel, unit m.
Above-mentioned each module may be provided in entire car controller, and the function of each module can correspond in process shown in Fig. 1 to Fig. 2 Respective handling step, details are not described herein.
Embodiment described above, only a specific embodiment of the invention, to illustrate technical solution of the present invention, rather than It is limited, scope of protection of the present invention is not limited thereto, although having carried out with reference to the foregoing embodiments to the present invention detailed Illustrate, those skilled in the art should understand that: anyone skilled in the art the invention discloses In technical scope, it can still modify to technical solution documented by previous embodiment or variation can be readily occurred in, or Person's equivalent replacement of some of the technical features;And these modifications, variation or replacement, do not make corresponding technical solution Essence is detached from the spirit and scope of technical solution of the embodiment of the present invention, should be covered by the protection scope of the present invention.Therefore, The protection scope of the present invention shall be subject to the protection scope of the claims.

Claims (7)

1. a kind of torque of distributed driving electric vehicle distributes control method characterized by comprising
Determine that target manipulates yaw-rate based on vehicle current vehicle speed and front wheel angle and preset first operation relation;
Targeted security yaw-rate is determined based on vehicle current vehicle speed and side acceleration and preset second operation relation;
Target Critical yaw-rate is determined based on the targeted security yaw-rate and preset yaw-rate compensation rate;
Identified target manipulation yaw-rate is compared with identified target Critical yaw-rate, and based on comparative result really Set the goal yaw-rate, using the control target as feedback control;
P closed loop feedback control is carried out to the difference of identified target yaw rate and actual yaw rate, obtains the cross of vehicle demand Put torque;
Total driving torque and obtained sideway torque based on vehicle demand determine that revolver target torque and right wheel target are turned round Square;
Wherein, described to determine that target manipulates sideway based on vehicle current vehicle speed and front wheel angle and preset first operation relation Rate includes determining that the target manipulates yaw-rate by following formula (1):
Wherein, γhandleYaw-rate, unit rad/s are manipulated for target;vxFor speed, unit m/s;δfIt is single for front wheel angle Position is rad;vchIt is characterized speed, unit m/s;Wheelbase of the L between front and back wheel, unit m;
It is described that targeted security yaw-rate is determined based on vehicle current vehicle speed and side acceleration and preset second operation relation Including determining the targeted security yaw-rate by following formula (2):
Wherein, γsafeFor targeted security yaw-rate, unit rad/s;ayFor side acceleration, unit m/s2;vxFor speed;
The preset yaw-rate compensation rate is determined based on the current vehicle speed, side acceleration and steering wheel angular velocity of vehicle;
The preset yaw-rate compensation rate is determined by following formula (3):
Δ γ=k1d|ay|+f(vx)+k2|dδsw| (3)
Wherein, Δ γ is yaw-rate compensation rate, unit rad/s;k1、k2For the constant of calibration;ayFor side acceleration, unit For m/s2;dδswFor steering wheel angular velocity, unit rad/s, f (vx) be current vehicle speed function, value is true according to current vehicle speed It is fixed, unit rad/s.
2. the torque of distributed driving electric vehicle according to claim 1 distributes control method, which is characterized in that described to incite somebody to action Identified target manipulation yaw-rate is compared with identified target Critical yaw-rate, and determines target based on comparative result Yaw-rate is specifically included using the control target as feedback control:
If target, which manipulates yaw-rate, is greater than the target Critical yaw-rate, the targeted security yaw-rate is determined as described Target yaw rate;
If target manipulates the preset ratio that yaw-rate is less than the target Critical yaw-rate, the target is manipulated into yaw-rate It is determined as the target yaw rate;
It is greater than the preset ratio of the target Critical yaw-rate if target manipulates yaw-rate and is less than the target Critical sideway The weighting yaw-rate that the weighted sum of target manipulation yaw-rate and the targeted security yaw-rate obtains then is determined as by rate The target yaw rate.
3. the torque of distributed driving electric vehicle according to claim 1 distributes control method, which is characterized in that the mesh Mark critical yaw-rate is added equal to the targeted security yaw-rate with the preset yaw-rate compensation rate and value.
4. the torque of distributed driving electric vehicle according to claim 2 distributes control method, which is characterized in that if institute Target manipulation yaw-rate is stated close to the target Critical yaw-rate, then the target is manipulated into yaw-rate and the targeted security is horizontal It includes by described in following formula (4) determination that the weighting yaw-rate that the weighted sum of Slew Rate obtains, which is determined as the target yaw rate, Weight yaw-rate:
γweight=sign (γhandle)·(w·|γhandle|+(1-w)·|γsafe|) (4)
Wherein, γweightTo weight yaw-rate, unit rad/s;sign(γhandle) it is γhandleSign function;W is power Repeated factor, γhandleYaw-rate, γ are manipulated for targetsafeFor targeted security yaw-rate.
5. the torque of distributed driving electric vehicle according to claim 4 distributes control method, which is characterized in that the power Repeated factor w is determined by following formula (5):
Wherein, k is the constant of calibration;γlimitFor target Critical yaw-rate.
6. the torque of distributed driving electric vehicle according to claim 1 distributes control method, which is characterized in that the base In the total driving torque and obtained sideway torque of vehicle demand, determines revolver target torque and right wheel target torque includes logical It crosses following formula (6) and determines revolver target torque and right wheel target torque:
Wherein, TtotalAlways to drive demand torque, unit Nm;Δ M is sideway torque, unit Nm;TLFor the torsion of revolver target Square, unit Nm;TRFor right wheel target torque, unit Nm;R is radius of wheel, unit m;wdWheel between left and right wheels Away from unit m.
7. a kind of torque of distributed driving electric vehicle distributes control system characterized by comprising
Target manipulates yaw-rate determining module, for being closed based on vehicle current vehicle speed and front wheel angle and preset first operation It is to determine that target manipulates yaw-rate;
Targeted security yaw-rate determining module, for based on vehicle current vehicle speed and side acceleration and preset second operation Relationship determines targeted security yaw-rate;
Target Critical yaw-rate determining module, the targeted security for being determined based on the targeted security yaw-rate determining module are horizontal Slew Rate and preset yaw-rate compensation rate determine target Critical yaw-rate;
Control module, including the first control module and the second control module;
First control module is used to carry out identified target manipulation yaw-rate and identified target Critical yaw-rate Compare, and determine target yaw rate based on comparative result, using the control target as feedback control and to identified target The difference of yaw-rate and actual yaw rate carries out P closed loop feedback control, obtains the sideway torque of vehicle demand;
Second control module, for total driving torque and the obtained sideway of first control module based on vehicle demand Torque determines revolver target torque and right wheel target torque;
Wherein, the target manipulation yaw-rate determining module determines that the target manipulates yaw-rate by following formula (a):
Wherein, γhandleYaw-rate, unit rad/s are manipulated for target;vxFor speed, unit m/s;δfIt is single for front wheel angle Position is rad;vchIt is characterized speed, unit m/s;Wheelbase of the L between front and back wheel, unit m;
The targeted security yaw-rate determining module determines the targeted security yaw-rate by following formula (b):
Wherein, γsafeFor targeted security yaw-rate, unit rad/s;ayFor side acceleration, unit m/s2;vxFor speed;
The preset yaw-rate compensation rate is determined based on the current vehicle speed, side acceleration and steering wheel angular velocity of vehicle;
The preset yaw-rate compensation rate is determined by following formula (c):
Δ γ=k1d|ay|+f(vx)+k2|dδsw| (c)
Wherein, Δ γ is yaw-rate compensation rate, unit rad/s;k1、k2For the constant of calibration;ayFor side acceleration, unit For m/s2;dδswFor steering wheel angular velocity, unit rad/s, f (vx) be current vehicle speed function, value is true according to current vehicle speed It is fixed, unit rad/s.
CN201810070814.0A 2018-01-25 2018-01-25 A kind of the torque distribution control method and system of distributed driving electric vehicle Active CN108313062B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810070814.0A CN108313062B (en) 2018-01-25 2018-01-25 A kind of the torque distribution control method and system of distributed driving electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810070814.0A CN108313062B (en) 2018-01-25 2018-01-25 A kind of the torque distribution control method and system of distributed driving electric vehicle

Publications (2)

Publication Number Publication Date
CN108313062A CN108313062A (en) 2018-07-24
CN108313062B true CN108313062B (en) 2019-09-03

Family

ID=62887123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810070814.0A Active CN108313062B (en) 2018-01-25 2018-01-25 A kind of the torque distribution control method and system of distributed driving electric vehicle

Country Status (1)

Country Link
CN (1) CN108313062B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109774493B (en) * 2019-01-18 2022-05-20 南昌大学 Optimal torque distribution method based on distributed electric drive vehicle
CN111483467B (en) * 2019-01-29 2022-01-11 华为技术有限公司 Vehicle control method and device
CN110606075B (en) * 2019-08-28 2021-03-09 中国第一汽车股份有限公司 Torque distribution control method and system of distributed four-wheel-drive electric vehicle and vehicle
CN111376906B (en) * 2020-03-27 2021-03-26 清华大学 Corrected target anti-skid control method for heavy hub motor vehicle
CN113635961B (en) * 2020-04-27 2022-09-09 比亚迪股份有限公司 Distributed driving automobile steering control method and device and automobile
CN112277929B (en) * 2020-11-05 2022-03-01 中国第一汽车股份有限公司 Vehicle wheel slip rate control method and device, vehicle and storage medium
CN114371714A (en) * 2022-01-13 2022-04-19 江苏大学 Double-wheel independent drive control method, drive system and robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145692A (en) * 2010-02-08 2011-08-10 株式会社电装 Apparatus for controlling motion of vehicle
WO2012005260A1 (en) * 2010-07-09 2012-01-12 日産自動車株式会社 Device for controlling torque distribution to left and right wheels on a vehicle
CN105857304A (en) * 2016-05-23 2016-08-17 武汉理工大学 Four-wheel drive vehicle-based moment of force distribution control system
CN105936273A (en) * 2016-05-31 2016-09-14 上海理工大学 Vehicle active torque inter-wheel and inter-axis distribution method
FR3017095B1 (en) * 2014-02-03 2017-05-12 Renault Sas METHOD FOR MONITORING THE TRACK OF A MOTOR VEHICLE AND VEHICLE THEREFOR

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101294057B1 (en) * 2011-07-08 2013-08-08 현대자동차주식회사 Inclination controlling method using by torque vectoring system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145692A (en) * 2010-02-08 2011-08-10 株式会社电装 Apparatus for controlling motion of vehicle
WO2012005260A1 (en) * 2010-07-09 2012-01-12 日産自動車株式会社 Device for controlling torque distribution to left and right wheels on a vehicle
FR3017095B1 (en) * 2014-02-03 2017-05-12 Renault Sas METHOD FOR MONITORING THE TRACK OF A MOTOR VEHICLE AND VEHICLE THEREFOR
CN105857304A (en) * 2016-05-23 2016-08-17 武汉理工大学 Four-wheel drive vehicle-based moment of force distribution control system
CN105936273A (en) * 2016-05-31 2016-09-14 上海理工大学 Vehicle active torque inter-wheel and inter-axis distribution method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
分布式驱动电动汽车横向稳定性与转矩分配控制;张志勇;《长沙理工大学学报》;20170628;第14卷(第2期);第61-67页

Also Published As

Publication number Publication date
CN108313062A (en) 2018-07-24

Similar Documents

Publication Publication Date Title
CN108313062B (en) A kind of the torque distribution control method and system of distributed driving electric vehicle
CN109795502B (en) Intelligent electric vehicle path tracking model prediction control method
CN111717192B (en) Control method and system for automatically driving vehicle
CN108082185A (en) A kind of travel control method of vehicle, device and vehicle
EP1555184B1 (en) Vehicle braking control apparatus
CN107009916B (en) Distributed driving electric automobile anti-skid control system and method considering driver intention
CN107215334B (en) Method for controlling driving speed, device and pilotless automobile
CN111923908A (en) Stability-fused intelligent automobile path tracking control method
CN108427417A (en) Automatic driving control system and method, computer server and automatic driving vehicle
CN108340967B (en) Method for controlling yaw stability during steering of multi-wheel independent driving electric vehicle
CN108508760B (en) Joint simulation method and system for multi-wheel independently-driven slip steering vehicle
US11027617B2 (en) Control method for electrically driven vehicle and control device for electrically driven vehicle
CN110979304A (en) Moment distribution method of vehicle under variable attachment working condition
US11230272B2 (en) Wheelie controller and control method thereof
JP2009006873A (en) Vehicular drive control apparatus
WO2022095460A1 (en) Vehicle lateral control method and apparatus, and vehicle and readable storage medium
CN110979303A (en) Method for deciding additional yaw moment of running vehicle
CN106347361B (en) A kind of redundant drive Study on Vehicle Dynamic Control distribution method
KR102164606B1 (en) Lateral control parameter correction apparatus and method for autonomous vehicle
CN113147420A (en) Target optimization torque distribution method based on road adhesion coefficient identification
JP4876617B2 (en) Vehicle behavior control device
CN107351911B (en) A kind of electric car stable direction control method
CN109677403B (en) Intelligent vehicle obstacle avoidance control method based on differential flatness
CN108569288A (en) A kind of vehicle hazard operating mode defines and collision avoidance control method
US10562523B2 (en) Vehicle control apparatus and vehicle control method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant