CN108306085A - Upper and lower composite structure microstrip circulator - Google Patents
Upper and lower composite structure microstrip circulator Download PDFInfo
- Publication number
- CN108306085A CN108306085A CN201810093628.9A CN201810093628A CN108306085A CN 108306085 A CN108306085 A CN 108306085A CN 201810093628 A CN201810093628 A CN 201810093628A CN 108306085 A CN108306085 A CN 108306085A
- Authority
- CN
- China
- Prior art keywords
- magnetic moment
- ferrite substrate
- circulator
- bottom plate
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/32—Non-reciprocal transmission devices
- H01P1/38—Circulators
- H01P1/383—Junction circulators, e.g. Y-circulators
- H01P1/387—Strip line circulators
Landscapes
- Non-Reversible Transmitting Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及微波元器件领域,尤其涉及一种上下复合式结构微带环行器。The invention relates to the field of microwave components, in particular to a microstrip circulator with an upper and lower composite structure.
背景技术Background technique
环行器是微波工程中一类重要的基础性器件,其广泛应用于民用通讯、微波测量、雷达、通信、电子对抗、航空航天等各种民用、军用设备中。环形器在设备中主要用来实现天线收发共用,级间隔离等问题。微带环形器由于其体积小、重量轻、易于集成的特点,在当代雷达通讯系统发展中具有相当重要的地位,当前最大应用主要是有源相控阵TR模块,随着有源相控阵雷达的发展,对频带更宽、功率容量更大的微带环行器有着紧迫的需求。Circulator is an important basic device in microwave engineering, which is widely used in various civil and military equipment such as civil communication, microwave measurement, radar, communication, electronic countermeasures, aerospace and so on. The circulator is mainly used in the equipment to realize the sharing of antenna transmission and reception, inter-stage isolation and other issues. Due to its small size, light weight, and easy integration, the microstrip circulator plays an important role in the development of contemporary radar communication systems. The current largest application is mainly the active phased array TR module. With the active phased array With the development of radar, there is an urgent demand for microstrip circulators with wider frequency band and larger power capacity.
传统的微带环形器如图1所示,以铁氧体材料为微带基板即铁氧体基板1,通过溅射设备使铁氧体基板1上下两面金属化,上表面为微带电路,下表面为地,下表面与底板进行焊接,底板同铁氧体下表面形成共地。铁氧体基板1在永磁体的磁化作用下实现信号的环行传输:端口A7传输至端口B8,端口B8传输至端口C9,端口C9传输至端口A7。The traditional microstrip circulator is shown in Figure 1. The ferrite material is used as the microstrip substrate, that is, the ferrite substrate 1. The upper and lower sides of the ferrite substrate 1 are metallized by sputtering equipment, and the upper surface is a microstrip circuit. The lower surface is the ground, and the lower surface is welded to the base plate, and the base plate and the lower surface of the ferrite form a common ground. Under the magnetization of the permanent magnet, the ferrite substrate 1 realizes circular transmission of signals: the port A7 is transmitted to the port B8, the port B8 is transmitted to the port C9, and the port C9 is transmitted to the port A7.
图中1介质片4的作用是调节磁场强度及减小永磁体对环行微带电路的影响,补偿片6的作用是调整环行器温度下的性能参数。The role of the dielectric sheet 4 in the figure is to adjust the magnetic field strength and reduce the influence of the permanent magnet on the circular microstrip circuit, and the function of the compensation sheet 6 is to adjust the performance parameters at the temperature of the circulator.
传统的功率分配器其技术问题及缺陷主要体现在以下方面:The technical problems and defects of the traditional power divider are mainly reflected in the following aspects:
1.对于低场工作模式下的微带环形器,其旋磁铁氧体基片饱和磁化强度的选择直接影响环行器工作带宽。1. For the microstrip circulator in the low-field working mode, the selection of the saturation magnetization of the gyromagnetic ferrite substrate directly affects the working bandwidth of the circulator.
旋磁铁氧体材料的饱和磁化强度4πMs同工作频率f的关系如下公式:The relationship between the saturation magnetization 4πMs of the gyromagnetic ferrite material and the working frequency f is as follows:
4πMs=P·2πf/γ4πMs=P·2πf/γ
γ为电子自旋的回旋磁比,等于2.21×105rad·m/(S·A)γ is the gyromagnetic ratio of the electron spin, which is equal to 2.21×10 5 rad·m/(S·A)
P为归一化饱和磁矩,无量纲,低场工作模式,P一般取值范围在0.3~0.7;P is the normalized saturation magnetic moment, dimensionless, low-field working mode, and the value of P generally ranges from 0.3 to 0.7;
在取值范围内P值越大,环行器可实现的带宽越宽。也就是说采用高磁矩的铁氧体基片对实现器件的宽带有益。Within the value range, the larger the value of P, the wider the bandwidth that the circulator can achieve. That is to say, the use of a ferrite substrate with a high magnetic moment is beneficial to realize the broadband of the device.
根据微带环行器的传输理论,只需要微带电路中心结下方的铁氧体饱和磁化后,即可最优的实现环行性能,而中心结以外的铁氧体基片只是作为微带基板介质,其磁化后反而不易于器件的性能实现。According to the transmission theory of the microstrip circulator, only the ferrite under the center junction of the microstrip circuit needs to be saturated and magnetized to optimally realize the circulatory performance, and the ferrite substrate outside the center junction is only used as a microstrip substrate medium , it is not easy to realize the performance of the device after magnetization.
但在实际产品工作中,铁氧体基板作为一个整体基片,外加磁场不可能精准的对其中心结区域进行饱和磁化,而不对中心结以外的铁氧体进行磁化。中心结以外区域铁氧体基片的不饱和磁化带来的However, in actual product work, the ferrite substrate is a whole substrate, and it is impossible for an external magnetic field to accurately saturate and magnetize the central junction region without magnetizing the ferrite outside the central junction. The unsaturated magnetization of the ferrite substrate outside the central junction brings about
低场损耗直接影响产品的工作带宽,特别当归一化磁矩P值越大,材料选取饱和磁化强度越高,带来的低场损耗越大。Low field loss directly affects the working bandwidth of the product, especially when the value of the normalized magnetic moment P is larger, the higher the saturation magnetization of the material selected, the greater the low field loss will be.
传统的微带环行器结构由于结构的限制,无法通过采用高饱和磁化强度的铁氧体材料来拓展带宽。带宽只能实现40%左右,如8GHz-12GHz微带环形器。The traditional microstrip circulator structure cannot expand the bandwidth by using ferrite materials with high saturation magnetization due to structural limitations. The bandwidth can only achieve about 40%, such as 8GHz-12GHz microstrip circulator.
发明内容Contents of the invention
本发明的目的就在于提供一种上下复合式结构微带环行器,以解决上述问题。The object of the present invention is to provide a microstrip circulator with an up-and-down composite structure to solve the above problems.
为了实现上述目的,本发明采用的技术方案是这样的:一种上下复合式结构微带环行器,从上至下依次包括永磁体、介质片和底板,所述介质片和底板之间设置有低磁矩铁氧体基板,所述低磁矩铁氧体基板上表面设置微带电路,所述底板上嵌设有高磁矩铁氧体基板,所述高磁矩铁氧体基板与低磁矩铁氧体基板相邻。In order to achieve the above object, the technical solution adopted by the present invention is as follows: a microstrip circulator with an up-and-down composite structure comprises a permanent magnet, a dielectric sheet and a bottom plate sequentially from top to bottom, and a A low magnetic moment ferrite substrate, a microstrip circuit is arranged on the upper surface of the low magnetic moment ferrite substrate, a high magnetic moment ferrite substrate is embedded on the bottom plate, and the high magnetic moment ferrite substrate is connected to the low magnetic moment ferrite substrate. The magnetic moment ferrite substrates are adjacent.
本发明通过在底板中心挖槽,嵌入高磁矩的铁氧体基板,底板上方低磁矩铁氧体基板同底板进行焊接使之形成上下复合式铁氧体基片结构;永磁体同底板构成的外加偏置磁场可以对高磁矩的铁氧体基片进行良好的磁化;通过上述方式,本发明有效的降低了高磁矩铁氧体材料不饱和磁化带来的低场损耗,提高了微带环行器的归一化磁矩P,P值可以提高到0.5以上,拓展了环行器的工作带宽。The invention digs a groove in the center of the bottom plate, embeds a ferrite substrate with high magnetic moment, and welds the ferrite substrate with low magnetic moment above the bottom plate with the bottom plate to form an upper and lower composite ferrite substrate structure; the permanent magnet is composed of the same bottom plate A high magnetic moment ferrite substrate can be well magnetized by an applied bias magnetic field; through the above method, the present invention effectively reduces the low field loss caused by the unsaturated magnetization of the high magnetic moment ferrite material, and improves the The normalized magnetic moment P and P value of the microstrip circulator can be increased to more than 0.5, which expands the working bandwidth of the circulator.
作为优选的技术方案:所述低磁矩铁氧体基板的饱和磁化强度为1800Gauss。As a preferred technical solution: the saturation magnetization of the low magnetic moment ferrite substrate is 1800 Gauss.
作为优选的技术方案:所述高磁矩铁氧体基板的饱和磁化强度为2500Gauss。As a preferred technical solution: the saturation magnetization of the high magnetic moment ferrite substrate is 2500Gauss.
采用上述饱和磁化强度的低磁矩铁氧体基板和高磁矩铁氧体基板,产品P取值能达到0.7。Using the above-mentioned low magnetic moment ferrite substrate and high magnetic moment ferrite substrate with saturation magnetization, the product P value can reach 0.7.
如前面所述的,铁氧体基板饱和磁化强度属于高磁矩铁氧体还是低磁矩铁氧体是与其工作频率相对应的。根据旋磁铁氧体材料的饱和磁化强度4πMs同工作频率f的关系如下公式:As mentioned above, whether the saturation magnetization of the ferrite substrate belongs to high magnetic moment ferrite or low magnetic moment ferrite corresponds to its working frequency. According to the relationship between the saturation magnetization 4πMs of the gyromagnetic ferrite material and the working frequency f, the following formula is as follows:
4πMs=P·2πf/γ4πMs=P·2πf/γ
γ为电子自旋的回旋磁比,等于2.21×105rad·m/(S·A)γ is the gyromagnetic ratio of the electron spin, which is equal to 2.21×10 5 rad·m/(S·A)
P为归一化饱和磁矩,无量纲,低场工作模式,P一般取值范围在0.3~0.7;P is the normalized saturation magnetic moment, dimensionless, low-field working mode, and the value of P generally ranges from 0.3 to 0.7;
在本领域,一般当P的取值低于0.5即视为低磁矩的铁氧体,当P的取值高于0.5即视为高磁矩的铁氧体。对于低场器件,P值越小,环行器工作带宽越窄,但带内损耗越小;P值越大,环行器工作带宽越宽,带内损耗相对较大。(磁矩=饱和磁化强度)In this field, generally, when the value of P is lower than 0.5, it is regarded as a ferrite with low magnetic moment, and when the value of P is higher than 0.5, it is regarded as a ferrite with high magnetic moment. For low-field devices, the smaller the P value, the narrower the circulator's operating bandwidth, but the smaller the in-band loss; the larger the P value, the wider the circulator's operating bandwidth, and relatively larger in-band loss. (Magnetic moment = saturation magnetization)
传统的低场环行器,P值取到0.5以下,只能实现带宽40%,若在传统的结构中P值取到0.5以上,高磁矩铁氧体的不饱和磁化带来的低场损耗直接恶化器件带宽,使得器件带宽不能有效拓展。For traditional low-field circulators, if the P value is set below 0.5, the bandwidth can only be achieved by 40%. If the P value is set above 0.5 in the traditional structure, the low field loss caused by the unsaturated magnetization of high magnetic moment ferrite The bandwidth of the device is directly deteriorated, so that the bandwidth of the device cannot be effectively expanded.
本发明创新地提出在低磁矩铁氧体基片下方复合高磁矩圆形铁氧体基片,归一化饱和磁矩P取到0.5以上,外加偏置磁场能对规则的高磁矩圆形铁氧体基片进行完全饱和磁化,杜绝了低场损耗的产生,通过性能仿真及产品测试证明,该结构方案能有效拓展器件带宽。The invention innovatively proposes to compound a high magnetic moment circular ferrite substrate under the low magnetic moment ferrite substrate, the normalized saturation magnetic moment P is taken above 0.5, and the external bias magnetic field can correct the regular high magnetic moment The circular ferrite substrate is fully saturated and magnetized, which eliminates the generation of low field loss. Through performance simulation and product testing, it is proved that this structural scheme can effectively expand the bandwidth of the device.
与现有技术相比,本发明的优点在于:本发明在传统微带环行器基础上通过嵌入的方式在铁氧体基板下方复合高磁矩的铁氧体基板,高磁矩铁氧体基板集中在中心结下方,外加偏置磁场能均匀的对高磁矩铁氧体基片进行饱和磁化,有效地降低了高磁矩铁氧体材料不饱和磁化带来的低场损耗,传输损耗≤0.4 dB,提高了微带环行器的归一化磁矩P,拓展了环行器的工作带宽,工作带宽为7GHz-13GHz,端口驻波≤1.4,隔离≥15,实现微带环行器的宽带匹配。Compared with the prior art, the advantage of the present invention is that: on the basis of the traditional microstrip circulator, the present invention composites a ferrite substrate with high magnetic moment under the ferrite substrate by means of embedding, and the ferrite substrate with high magnetic moment Concentrated below the central junction, the external bias magnetic field can uniformly saturate and magnetize the high-moment ferrite substrate, effectively reducing the low field loss caused by the unsaturated magnetization of high-magnetic-moment ferrite materials, and the transmission loss is ≤ 0.4 dB, improve the normalized magnetic moment P of the microstrip circulator, expand the working bandwidth of the circulator, the working bandwidth is 7GHz-13GHz, the port standing wave is ≤1.4, and the isolation is ≥15, realizing the broadband matching of the microstrip circulator .
附图说明Description of drawings
图1为本发明现有技术的结构示意图;Fig. 1 is the structural representation of prior art of the present invention;
图2为本发明实施例的结构示意图;Fig. 2 is the structural representation of the embodiment of the present invention;
图3为本发明实施例的环形器损耗仿真结果图;Fig. 3 is the circulator loss simulation result figure of the embodiment of the present invention;
图4为本发明实施例的环形器隔离仿真结果图;Fig. 4 is the circulator isolation simulation result figure of the embodiment of the present invention;
图5为本发明实施例的环形器驻波仿真结果图。FIG. 5 is a graph showing the simulation result of a standing wave of a circulator according to an embodiment of the present invention.
图中:1、铁氧体基板;2、底板;3、微带电路;4、介质片;5、永磁体;6、补偿片;7、端口A;8、端口B;9、端口C;10、低磁矩铁氧体基板;11、高磁矩铁氧体基板。In the figure: 1. Ferrite substrate; 2. Bottom plate; 3. Microstrip circuit; 4. Dielectric sheet; 5. Permanent magnet; 6. Compensation sheet; 7. Port A; 8. Port B; 9. Port C; 10. Low magnetic moment ferrite substrate; 11. High magnetic moment ferrite substrate.
具体实施方式Detailed ways
下面将结合附图对本发明作进一步说明。The present invention will be further described below in conjunction with accompanying drawing.
实施例:Example:
参见图2,一种上下复合式结构微带环行器,从上至下依次包括永磁体5、介质片4和底板2,所述介质片4和底板2之间设置有低磁矩铁氧体基板10,所述低磁矩铁氧体基板10的饱和磁化强度为1800Gauss,所述低磁矩铁氧体基板10上表面设置微带电路3,所述底板2上嵌设有高磁矩铁氧体基板11,所述高磁矩铁氧体基板11的饱和磁化强度为2500Gauss,所述高磁矩铁氧体基板11与低磁矩铁氧体基板10相邻;Referring to Fig. 2, a microstrip circulator with an up-and-down composite structure includes a permanent magnet 5, a dielectric sheet 4 and a bottom plate 2 from top to bottom, and a low magnetic moment ferrite is arranged between the dielectric sheet 4 and the bottom plate 2 Substrate 10, the saturation magnetization of the low magnetic moment ferrite substrate 10 is 1800Gauss, the upper surface of the low magnetic moment ferrite substrate 10 is provided with a microstrip circuit 3, and the base plate 2 is embedded with a high magnetic moment ferrite An oxygen substrate 11, the saturation magnetization of the high magnetic moment ferrite substrate 11 is 2500Gauss, and the high magnetic moment ferrite substrate 11 is adjacent to the low magnetic moment ferrite substrate 10;
本实施例通过在底板2中心挖槽,嵌入高磁矩铁氧体基板11,底板2上方低磁矩铁氧体基板10同底板2进行焊接使之形成上下复合式铁氧体基片结构;永磁体5同底板2构成的外加偏置磁场可以对高磁矩铁氧体基板11进行良好的磁化,;In this embodiment, a high magnetic moment ferrite substrate 11 is embedded by digging a groove in the center of the bottom plate 2, and the low magnetic moment ferrite substrate 10 above the bottom plate 2 is welded with the bottom plate 2 to form an upper and lower composite ferrite substrate structure; The applied bias magnetic field formed by the permanent magnet 5 and the bottom plate 2 can perform good magnetization on the high magnetic moment ferrite substrate 11;
本实施例得到的微带环行器,工作带宽为7GHz-13GHz,传输损耗为0.4 dB,归一化磁矩P为0.7,端口驻波为1.4,隔离为15dB。The microstrip circulator obtained in this embodiment has a working bandwidth of 7 GHz-13 GHz, a transmission loss of 0.4 dB, a normalized magnetic moment P of 0.7, a port standing wave of 1.4, and an isolation of 15 dB.
本实施例的环形器,损耗仿真结果如图3所示,隔离仿真结果如图4所示、驻波仿真结果如图5所示。For the circulator of this embodiment, the loss simulation result is shown in FIG. 3 , the isolation simulation result is shown in FIG. 4 , and the standing wave simulation result is shown in FIG. 5 .
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. within range.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810093628.9A CN108306085B (en) | 2018-01-31 | 2018-01-31 | Microstrip circulator with upper and lower combined structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810093628.9A CN108306085B (en) | 2018-01-31 | 2018-01-31 | Microstrip circulator with upper and lower combined structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108306085A true CN108306085A (en) | 2018-07-20 |
CN108306085B CN108306085B (en) | 2024-01-16 |
Family
ID=62867228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810093628.9A Active CN108306085B (en) | 2018-01-31 | 2018-01-31 | Microstrip circulator with upper and lower combined structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108306085B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110571503A (en) * | 2019-11-05 | 2019-12-13 | 成都八九九科技有限公司 | A microstrip circulator, isolator and T/R component |
CN111509346A (en) * | 2020-06-15 | 2020-08-07 | 中国电子科技集团公司第九研究所 | Inverted structure circulator/isolator and processing method thereof |
CN111883900A (en) * | 2020-07-20 | 2020-11-03 | 中国电子科技集团公司第九研究所 | Method for expanding bandwidth of lumped parameter circulator for communication |
CN111883899A (en) * | 2020-07-20 | 2020-11-03 | 中国电子科技集团公司第九研究所 | Method for improving temperature stability of lumped parameter circulator |
CN114447552A (en) * | 2022-02-10 | 2022-05-06 | 西南应用磁学研究所(中国电子科技集团公司第九研究所) | A new type of microstrip circulator based on MEMS technology and its processing method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000201007A (en) * | 1999-01-08 | 2000-07-18 | Nec Corp | Composite substrate type non-reciprocal circuit element and manufacture of the same |
US20010045872A1 (en) * | 1999-01-10 | 2001-11-29 | Tdk Corporation | Non-reciprocal circuit element and millimeter-wave hybrid integrated circuit board with the non-reciprocal circuit element |
CN2924804Y (en) * | 2006-07-07 | 2007-07-18 | 南京理工大学 | Miniaturized Substrate Integrated Waveguide Ferrite Junction Circulator |
JP2008244680A (en) * | 2007-03-27 | 2008-10-09 | Yamaguchi Univ | Non-reciprocal circuit element which can be integrated |
CN103022609A (en) * | 2013-01-01 | 2013-04-03 | 彭龙 | X wave band laminated slice type micro-strip ferrite circulator |
CN103855456A (en) * | 2012-11-29 | 2014-06-11 | 中国航空工业第六○七研究所 | Method for making embedded micro-strip circulator |
CN107034517A (en) * | 2011-06-06 | 2017-08-11 | 天工方案公司 | Modified garnet structure and radio system |
CN207852879U (en) * | 2018-01-31 | 2018-09-11 | 西南应用磁学研究所 | Up and down compound structure microstrip circulator |
-
2018
- 2018-01-31 CN CN201810093628.9A patent/CN108306085B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000201007A (en) * | 1999-01-08 | 2000-07-18 | Nec Corp | Composite substrate type non-reciprocal circuit element and manufacture of the same |
US20010045872A1 (en) * | 1999-01-10 | 2001-11-29 | Tdk Corporation | Non-reciprocal circuit element and millimeter-wave hybrid integrated circuit board with the non-reciprocal circuit element |
CN2924804Y (en) * | 2006-07-07 | 2007-07-18 | 南京理工大学 | Miniaturized Substrate Integrated Waveguide Ferrite Junction Circulator |
JP2008244680A (en) * | 2007-03-27 | 2008-10-09 | Yamaguchi Univ | Non-reciprocal circuit element which can be integrated |
CN107034517A (en) * | 2011-06-06 | 2017-08-11 | 天工方案公司 | Modified garnet structure and radio system |
CN103855456A (en) * | 2012-11-29 | 2014-06-11 | 中国航空工业第六○七研究所 | Method for making embedded micro-strip circulator |
CN103022609A (en) * | 2013-01-01 | 2013-04-03 | 彭龙 | X wave band laminated slice type micro-strip ferrite circulator |
CN207852879U (en) * | 2018-01-31 | 2018-09-11 | 西南应用磁学研究所 | Up and down compound structure microstrip circulator |
Non-Patent Citations (4)
Title |
---|
S. D. YOON ET AL.: "Ferrite-Coupled Line Circulator Simulations For Application at X-Band Frequency", 《IEEE TRANSACTIONS ON MAGNETICS》, vol. 43, no. 6, XP011181864, DOI: 10.1109/TMAG.2007.893788 * |
吴曈等: "Ku 波段自偏置微带双Y 结环行器的设计和制作", 《微波学报》, vol. 27, no. 2 * |
尹久红等: "3mm 波铁氧体高速开关仿真设计", 《磁性材料及器件》 * |
金国庆等: "大功率带线结环行器的设计和功率容量探测", 《第二届中国西部磁材论坛暨粘结磁体制作与应用技术研讨会》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110571503A (en) * | 2019-11-05 | 2019-12-13 | 成都八九九科技有限公司 | A microstrip circulator, isolator and T/R component |
CN110571503B (en) * | 2019-11-05 | 2020-02-04 | 成都八九九科技有限公司 | Microstrip circulator, isolator and T/R assembly |
CN111509346A (en) * | 2020-06-15 | 2020-08-07 | 中国电子科技集团公司第九研究所 | Inverted structure circulator/isolator and processing method thereof |
CN111883900A (en) * | 2020-07-20 | 2020-11-03 | 中国电子科技集团公司第九研究所 | Method for expanding bandwidth of lumped parameter circulator for communication |
CN111883899A (en) * | 2020-07-20 | 2020-11-03 | 中国电子科技集团公司第九研究所 | Method for improving temperature stability of lumped parameter circulator |
CN114447552A (en) * | 2022-02-10 | 2022-05-06 | 西南应用磁学研究所(中国电子科技集团公司第九研究所) | A new type of microstrip circulator based on MEMS technology and its processing method |
CN114447552B (en) * | 2022-02-10 | 2023-01-13 | 西南应用磁学研究所(中国电子科技集团公司第九研究所) | Novel micro-strip circulator based on MEMS (micro-electromechanical systems) process and processing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108306085B (en) | 2024-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108306085B (en) | Microstrip circulator with upper and lower combined structure | |
CN107845852B (en) | Composite substrate type microstrip circulator | |
Oliver et al. | Integrated self-biased hexaferrite microstrip circulators for millimeter-wavelength applications | |
CN207852879U (en) | Up and down compound structure microstrip circulator | |
Nafe et al. | An integrable SIW phase shifter in a partially magnetized ferrite LTCC package | |
CN104577281B (en) | Ferritic microwave isolator is loaded based on substrate integration wave-guide | |
Ueda et al. | Nonreciprocal phase-shift composite right/left handed transmission lines and their application to leaky wave antennas | |
US8704608B1 (en) | Integrated circulator for phased arrays | |
CN209561594U (en) | Broadband Three-Port Microstrip Circulator | |
CN111430862A (en) | double-Y-shaped patch type circulator | |
US7242264B1 (en) | Method and apparatus of obtaining broadband circulator/isolator operation by shaping the bias magnetic field | |
CN107546450B (en) | Negative group delay circuit based on ferrite circulator | |
CN203013900U (en) | Embedded micro-strip circulator | |
CN221828122U (en) | Small-volume ultra-wideband circulator, isolator and composite structure | |
CN102386469A (en) | Full X-band ferrite micro-strip circulator | |
CN103855456A (en) | Method for making embedded micro-strip circulator | |
CN208208947U (en) | Minimize SIW surface-mount type circulator | |
US20250059062A1 (en) | Method for preparing high-performance composite ferrite for self-biased circulator | |
CN206236770U (en) | Miniature isolator circulator assembly with filter function | |
CN111540992A (en) | Miniaturized circulator circuit and circulator composed of same | |
CN203839492U (en) | Broadband drop-in microstrip ferrite isolator | |
CN116169449A (en) | Space-time modulation-based coupled terahertz on-chip circulator and implementation method thereof | |
CN215579001U (en) | High-power low-insertion-loss medium-loaded annular isolation assembly | |
CN112186345B (en) | Three-order filtering base station antenna based on resonator type dipole | |
CN203690463U (en) | Micro-strip substrate double-knot big-power circulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |