CN108303672A - 基于位置指纹的wlan室内定位误差修正方法及系统 - Google Patents
基于位置指纹的wlan室内定位误差修正方法及系统 Download PDFInfo
- Publication number
- CN108303672A CN108303672A CN201711437260.5A CN201711437260A CN108303672A CN 108303672 A CN108303672 A CN 108303672A CN 201711437260 A CN201711437260 A CN 201711437260A CN 108303672 A CN108303672 A CN 108303672A
- Authority
- CN
- China
- Prior art keywords
- training
- rss
- input
- training points
- samples
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
- G01S5/021—Calibration, monitoring or correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0252—Radio frequency fingerprinting
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Collating Specific Patterns (AREA)
- Image Analysis (AREA)
Abstract
一种基于位置指纹的WLAN室内定位误差修正方法,其包括如下步骤:S1、在位置指纹图已经建立后,选取预设数量的训练点并记录其位置坐标,在训练点上采集RSS样本建立训练点数据库;利用近邻选择算法将RSS样本和静态位置指纹图匹配计算定位结果,并利用训练点的位置坐标计算定位误差;并利用人工神经网络ANN融合训练点的RSS样本和定位坐标作为ANN的输入数据,将训练点的定位误差作为其输出数据建立输入与输出之间的非线性映射关系;S2、在线定位时,当用户接收到来自各个AP的RSS样本时,利用近邻选择算法计算定位坐标,然后将在线RSS样本和定位坐标输入到在离线阶段训练的ANN模型中估计定位误差。
Description
技术领域
本发明涉及室内定位技术领域,特别涉及一种基于位置指纹的WLAN室内定位误差修正方法及系统。
背景技术
现有技术利用在线RSS均值样本计算定位结果的位置指纹定位算法,相关参考点RSS变化没有引入相关系数,导致定位精度不理想。
发明内容
有鉴于此,本发明提出一种基于位置指纹的WLAN室内定位误差修正方法及系统。
一种基于位置指纹的WLAN室内定位误差修正方法,其包括如下步骤:
S1、在位置指纹图已经建立后,选取预设数量的训练点并记录其位置坐标,在训练点上采集RSS样本建立训练点数据库;利用近邻选择算法将RSS样本和静态位置指纹图匹配计算定位结果,并利用训练点的位置坐标计算定位误差;并利用人工神经网络ANN融合训练点的RSS样本和定位坐标作为ANN的输入数据,将训练点的定位误差作为其输出数据建立输入与输出之间的非线性映射关系;利用遗传算法优化ANN的初始权值和阈值并利用反向传播算法迭代更新权值和阈值使误差平方和最小;
S2、在线定位时,当用户接收到来自各个AP的RSS样本时,利用近邻选择算法计算定位坐标,然后将在线RSS样本和定位坐标输入到在离线阶段训练的ANN模型中估计定位误差;根据所估计的定位误差修正定位结果,以减少静态位置指纹图和参考点分布等因素对定位精度的影响。
在本发明所述的基于位置指纹的WLAN室内定位误差修正方法中,
所述步骤S1中ANN构建方式如下:
令室内环境中AP的数量和用于定位的在线RSS样本数量分别为M和N,将每一个RSS样本中的数值都输入三层感知器时,则该网络共有M×N+2个输入,包括M×N个RSS数值输入和2个分别为X轴和Y轴定位坐标的输入;
当用户接收到N个M维的RSS样本时,将这N个M维的RSS样本合并为一个维度为1行M×N列的向量
作为三层感知器输入的一部分,其中
将RSS向量和定位坐标作为三层传感器的输入,定位误差(δx,δy)作为网络的输出,因此网络输入和输出之间的非线性关系通过如下函数F(·)表示:
当将第k个输入向量输入到所构建的三层感知器中时,三层感知器各层的输出如下:
其中表示来自第(l-1)层的第i个神经元的输入,表示第l层第j个神经元的输出;表示从(l-1)层第i个神经元到第l个神经元的权值;表示第l层第j个神经元的阈值;f(·)表示三层感知器的传递函数;
在该三层感知器的离线训练阶段,当输出层的误差被计算后,反向传播更新三层感知器的所有权值和阈值,更新过程如下:
其中dj,k为第j个神经元的期望输出;α和β分别表示三层感知器权值和阈值更新的学习率。
在本发明所述的基于位置指纹的WLAN室内定位误差修正方法中,
当位置指纹图建立完成且未实时更新时,
利用基于ANN的EC算法离线标记预设数量的训练点,并记录训练点的坐标和在训练点采集到的预设数量RSS样本;
然后利用近邻选择算法将训练点的RSS样本和静态位置指纹图中的RSS样本相匹配计算定位坐标,在训练点的坐标已知的情况下计算出定位误差,获得训练三层感知器的输入和输出数据,并利用遗传算法和反向传播算法优化三层感知器的权值和阈值。
在本发明所述的基于位置指纹的WLAN室内定位误差修正方法中,当位置指纹图建立完成且未实时更新时,
利用基于ANN的EC算法离线标记预设数量的训练点,并记录训练点的坐标和在训练点采集到的预设数量RSS样本;
然后利用近邻选择算法将训练点的RSS样本和静态位置指纹图中的RSS样本相匹配计算定位坐标,在训练点的坐标已知的情况下计算出定位误差,获得训练三层感知器的输入和输出数据,并利用遗传算法和反向传播算法优化三层感知器的权值和阈值包括:
在EC算法的离线阶段,标记预设数量的训练点,在训练点上采集RSS样本;
令表示RSS训练样本,表示训练点的位置坐标,i=1,2,…,Q,其中Q表示RSS训练样本和训练点位置坐标的数量;表示第i个训练样本中第N个RSS样本;第i个训练样本首先被近邻选择算法用来计算训练点的定位结果则训练点的定位误差通过如下公式获取:
ei Tr=ti Tr-pi Tr,i=1,2,···,Q;
当计算出三层感知器的所有输入和输出后,由函数F(·)获得,利用Q对输入和输出训练样本训练该非线性关系;利用遗传算法搜索最优初始权值和阈值,利用反向传播算法优化和更新各层的权值和阈值,获得优化的用于估计定位误差的三层感知器。
在本发明所述的基于位置指纹的WLAN室内定位误差修正方法中,
所述步骤S2中在线定位时,当用户接收到N个RSS样本利用近邻选择位置指纹定位算法计算用户的定位坐标将获得的定位坐标与在线接收的RSS样本融合成一个三层感知器的输入向量,并将输入的离线阶段训练的三层感知器后获得定位误差修正后的定位结果通过如下公式获得:
本发明还提供一种基于位置指纹的WLAN室内定位误差修正系统,其包括如下单元:
离线单元,用于在位置指纹图已经建立后,选取预设数量的训练点并记录其位置坐标,在训练点上采集RSS样本建立训练点数据库;利用近邻选择算法将RSS样本和静态位置指纹图匹配计算定位结果,并利用训练点的位置坐标计算定位误差;并利用人工神经网络ANN融合训练点的RSS样本和定位坐标作为ANN的输入数据,将训练点的定位误差作为其输出数据建立输入与输出之间的非线性映射关系;利用遗传算法优化ANN的初始权值和阈值并利用反向传播算法迭代更新权值和阈值使误差平方和最小;
在线单元,用于在线定位时,当用户接收到来自各个AP的RSS样本时,利用近邻选择算法计算定位坐标,然后将在线RSS样本和定位坐标输入到在离线阶段训练的ANN模型中估计定位误差;根据所估计的定位误差修正定位结果,以减少静态位置指纹图和参考点分布等因素对定位精度的影响。
在本发明所述的基于位置指纹的WLAN室内定位误差修正系统中,
所述离线单元中ANN构建方式如下:
令室内环境中AP的数量和用于定位的在线RSS样本数量分别为M和N,将每一个RSS样本中的数值都输入三层感知器时,则该网络共有M×N+2个输入,包括M×N个RSS数值输入和2个分别为X轴和Y轴定位坐标的输入;
当用户接收到N个M维的RSS样本时,将这N个M维的RSS样本合并为一个维度为1行M×N列的向量
作为三层感知器输入的一部分,其中
将RSS向量和定位坐标作为三层传感器的输入,定位误差(δx,δy)作为网络的输出,因此网络输入和输出之间的非线性关系通过如下函数F(·)表示:
当将第k个输入向量输入到所构建的三层感知器中时,三层感知器各层的输出如下:
其中表示来自第(l-1)层的第i个神经元的输入,表示第l层第j个神经元的输出;表示从(l-1)层第i个神经元到第l个神经元的权值;表示第l层第j个神经元的阈值;f(·)表示三层感知器的传递函数;
在该三层感知器的离线训练阶段,当输出层的误差被计算后,反向传播更新三层感知器的所有权值和阈值,更新过程如下:
其中dj,k为第j个神经元的期望输出;α和β分别表示三层感知器权值和阈值更新的学习率。
在本发明所述的基于位置指纹的WLAN室内定位误差修正系统中,
当位置指纹图建立完成且未实时更新时,
利用基于ANN的EC算法离线标记预设数量的训练点,并记录训练点的坐标和在训练点采集到的预设数量RSS样本;
然后利用近邻选择算法将训练点的RSS样本和静态位置指纹图中的RSS样本相匹配计算定位坐标,在训练点的坐标已知的情况下计算出定位误差,获得训练三层感知器的输入和输出数据,并利用遗传算法和反向传播算法优化三层感知器的权值和阈值。
在本发明所述的基于位置指纹的WLAN室内定位误差修正系统中,当位置指纹图建立完成且未实时更新时,
利用基于ANN的EC算法离线标记预设数量的训练点,并记录训练点的坐标和在训练点采集到的预设数量RSS样本;
然后利用近邻选择算法将训练点的RSS样本和静态位置指纹图中的RSS样本相匹配计算定位坐标,在训练点的坐标已知的情况下计算出定位误差,获得训练三层感知器的输入和输出数据,并利用遗传算法和反向传播算法优化三层感知器的权值和阈值包括:
在EC算法的离线阶段,标记预设数量的训练点,在训练点上采集RSS样本;
令表示RSS训练样本,表示训练点的位置坐标,i=1,2,…,Q,其中Q表示RSS训练样本和训练点位置坐标的数量;表示第i个训练样本中第N个RSS样本;第i个训练样本首先被近邻选择算法用来计算训练点的定位结果则训练点的定位误差通过如下公式获取:
ei Tr=ti Tr-pi Tr,i=1,2,···,Q;
当计算出三层感知器的所有输入和输出后,由函数F(·)获得,利用Q对输入和输出训练样本训练该非线性关系;利用遗传算法搜索最优初始权值和阈值,利用反向传播算法优化和更新各层的权值和阈值,获得优化的用于估计定位误差的三层感知器。
在本发明所述的基于位置指纹的WLAN室内定位误差修正系统中,
所述在线单元中在线定位时,当用户接收到N个RSS样本利用近邻选择位置指纹定位算法计算用户的定位坐标将获得的定位坐标与在线接收的RSS样本融合成一个三层感知器的输入向量,并将输入的离线阶段训练的三层感知器后获得定位误差修正后的定位结果通过如下公式获得:
实施本发明提供的基于位置指纹的WLAN室内定位误差修正方法及系统与现有技术相比具有以下有益效果:
本发明利用多层感知器融合RSS样本和定位坐标两种不同的数据,建立它们与定位误差之间的非线性关系,然后利用这种非线性关系在线估计定位误差,从而修正定位结果,提高定位精度。
附图说明
图1是本发明实施例的基于位置指纹的WLAN室内定位误差修正方法流程图;
图2是基于人工神经网络的定位误差修正定位过程示意图;
图3是用于定位误差估计的三层感知器结构图;
图4是用于误差估计的ANN离线训练示意图;
图5是ANN在线误差修正过程示意图。
具体实施方式
如图1所示,一种基于位置指纹的WLAN室内定位误差修正方法,其包括如下步骤:
S1、在位置指纹图已经建立后,选取预设数量的训练点并记录其位置坐标,在训练点上采集RSS样本建立训练点数据库;利用近邻选择算法将RSS样本和静态位置指纹图匹配计算定位结果,并利用训练点的位置坐标计算定位误差;并利用人工神经网络ANN融合训练点的RSS样本和定位坐标作为ANN的输入数据,将训练点的定位误差作为其输出数据建立输入与输出之间的非线性映射关系;利用遗传算法优化ANN的初始权值和阈值并利用反向传播算法迭代更新权值和阈值使误差平方和最小;
S2、在线定位时,当用户接收到来自各个AP的RSS样本时,利用近邻选择算法计算定位坐标,然后将在线RSS样本和定位坐标输入到在离线阶段训练的ANN模型中估计定位误差;根据所估计的定位误差修正定位结果,以减少静态位置指纹图和参考点分布等因素对定位精度的影响。
当位置指纹图已经建立后,室内无线传播环境发生变化但位置指纹图并未实时更新时,利用该位置指纹图定位会增大位置指纹定位算法的定位误差。首先需要离线采集RSS数据并建立一个训练点数据库,然后利用该数据库训练ANN误差估计函数。因此,基于ANN的EC算法分为两个阶段:离线阶段和在线阶段,其定位过程如图2所示。在位置指纹图已经建立后,EC算法需要离线采集训练点数据,即首先选取一定数量的训练点并记录其位置坐标,在训练点上采集少量的RSS样本建立训练点数据库。然后利用近邻选择算法将这些RSS样本和静态位置指纹图匹配计算定位结果,并利用训练点的位置坐标计算定位误差。实验证明,由于参考点分布、室内布局等的影响,定位结果和定位误差之间存在一定的相关性。因此,利用ANN融合训练点的RSS样本和定位坐标作为ANN的输入数据,将训练点的定位误差作为其输出数据建立输入与输出之间的非线性映射关系。在这个过程中,利用遗传算法优化ANN的初始权值和阈值并利用反向传播算法迭代更新权值和阈值使误差平方和最小,从而提高ANN的定位误差估计性能。
在线定位时,当用户接收到来自各个AP的RSS样本时,首先利用近邻选择算法计算定位坐标,然后将在线RSS样本和定位坐标输入到在离线阶段训练的ANN模型中估计定位误差。最后,根据所估计的定位误差修正定位结果,减少静态位置指纹图和参考点分布等因素对定位精度的影响,获得更精确的定位结果。由上述过程可知,训练数据也需要根据室内无线传播环境变化而更新以调整ANN定位误差估计模型。但是如图2所示,所需训练点RSS样本数量相比位置指纹图中的RSS样本要少得多,更容易被更新。所以,该算法可以有效降低RSS样本采集工作量,为位置指纹图的更新和维护提供了一种切实可行的解决方案。
在本发明所述的基于位置指纹的WLAN室内定位误差修正方法中,
所述步骤S1中ANN构建方式如下:
令室内环境中AP的数量和用于定位的在线RSS样本数量分别为M和N,将每一个RSS样本中的数值都输入三层感知器时,三层感知器的示意图如图3所示,则该网络共有M×N+2个输入,包括M×N个RSS数值输入和2个分别为X轴和Y轴定位坐标的输入;
当用户接收到N个M维的RSS样本时,将这N个M维的RSS样本合并为一个维度为1行M×N列的向量
作为三层感知器输入的一部分,其中
将RSS向量和定位坐标作为三层传感器的输入,定位误差(δx,δy)作为网络的输出,因此网络输入和输出之间的非线性关系通过如下函数F(·)表示:
当将第k个输入向量输入到所构建的三层感知器中时,三层感知器各层的输出如下:
其中表示来自第(l-1)层的第i个神经元的输入,表示第l层第j个神经元的输出;表示从(l-1)层第i个神经元到第l个神经元的权值;表示第l层第j个神经元的阈值;f(·)表示三层感知器的传递函数;
在该三层感知器的离线训练阶段,当输出层的误差被计算后,反向传播更新三层感知器的所有权值和阈值,更新过程如下:
其中fj,k为第j个神经元的期望输出;α和β分别表示三层感知器权值和阈值更新的学习率。
学习率通常被自适应调整,使其在保证所构建的三层感知器稳定性的同时,减少所需要的训练时间。
在本发明所述的基于位置指纹的WLAN室内定位误差修正方法中,
当位置指纹图建立完成且未实时更新时,
利用基于ANN的EC算法离线标记预设数量的训练点,并记录训练点的坐标和在训练点采集到的预设数量RSS样本;
然后利用近邻选择算法将训练点的RSS样本和静态位置指纹图中的RSS样本相匹配计算定位坐标,在训练点的坐标已知的情况下计算出定位误差,获得训练三层感知器的输入和输出数据,并利用遗传算法和反向传播算法优化三层感知器的权值和阈值。
在本发明所述的基于位置指纹的WLAN室内定位误差修正方法中,当位置指纹图建立完成且未实时更新时,
利用基于ANN的EC算法离线标记预设数量的训练点,并记录训练点的坐标和在训练点采集到的预设数量RSS样本;
然后利用近邻选择算法将训练点的RSS样本和静态位置指纹图中的RSS样本相匹配计算定位坐标,在训练点的坐标已知的情况下计算出定位误差,获得训练三层感知器的输入和输出数据,并利用遗传算法和反向传播算法优化三层感知器的权值和阈值包括:
在EC算法的离线阶段,标记预设数量的训练点,在训练点上采集RSS样本;
令表示RSS训练样本,表示训练点的位置坐标,i=1,2,···,Q,其中Q表示RSS训练样本和训练点位置坐标的数量;表示第i个训练样本中第N个RSS样本;第i个训练样本首先被近邻选择算法用来计算训练点的定位结果则训练点的定位误差通过如下公式获取:
ei Tr=ti Tr-pi Tr,i=1,2,···,Q;
当计算出三层感知器的所有输入和输出后,由函数F(·)获得,利用Q对输入和输出训练样本训练该非线性关系;利用遗传算法搜索最优初始权值和阈值,利用反向传播算法优化和更新各层的权值和阈值,获得优化的用于估计定位误差的三层感知器。图4描述了图2所示定位框图的离线阶段部分。
在本发明所述的基于位置指纹的WLAN室内定位误差修正方法中,
所述步骤S2中在线定位时,当用户接收到N个RSS样本利用近邻选择位置指纹定位算法计算用户的定位坐标将获得的定位坐标与在线接收的RSS样本融合成一个三层感知器的输入向量,并将输入的离线阶段训练的三层感知器后获得定位误差修正后的定位结果通过如下公式获得:
在线定位误差修正过程如图5所示。
本发明还提供一种基于位置指纹的WLAN室内定位误差修正系统,其包括如下单元:
离线单元,用于在位置指纹图已经建立后,选取预设数量的训练点并记录其位置坐标,在训练点上采集RSS样本建立训练点数据库;利用近邻选择算法将RSS样本和静态位置指纹图匹配计算定位结果,并利用训练点的位置坐标计算定位误差;并利用人工神经网络ANN融合训练点的RSS样本和定位坐标作为ANN的输入数据,将训练点的定位误差作为其输出数据建立输入与输出之间的非线性映射关系;利用遗传算法优化ANN的初始权值和阈值并利用反向传播算法迭代更新权值和阈值使误差平方和最小;
在线单元,用于在线定位时,当用户接收到来自各个AP的RSS样本时,利用近邻选择算法计算定位坐标,然后将在线RSS样本和定位坐标输入到在离线阶段训练的ANN模型中估计定位误差;根据所估计的定位误差修正定位结果,以减少静态位置指纹图和参考点分布等因素对定位精度的影响。
在本发明所述的基于位置指纹的WLAN室内定位误差修正系统中,
所述离线单元中ANN构建方式如下:
令室内环境中AP的数量和用于定位的在线RSS样本数量分别为M和N,将每一个RSS样本中的数值都输入三层感知器时,则该网络共有M×N+2个输入,包括M×N个RSS数值输入和2个分别为X轴和Y轴定位坐标的输入;
当用户接收到N个M维的RSS样本时,将这N个M维的RSS样本合并为一个维度为1行M×N列的向量
作为三层感知器输入的一部分,其中
将RSS向量和定位坐标作为三层传感器的输入,定位误差(δx,δy)作为网络的输出,因此网络输入和输出之间的非线性关系通过如下函数F(·)表示:
当将第k个输入向量输入到所构建的三层感知器中时,三层感知器各层的输出如下:
其中表示来自第(l-1)层的第i个神经元的输入,表示第l层第j个神经元的输出;表示从(l-1)层第i个神经元到第l个神经元的权值;表示第l层第j个神经元的阈值;f(·)表示三层感知器的传递函数;
在该三层感知器的离线训练阶段,当输出层的误差被计算后,反向传播更新三层感知器的所有权值和阈值,更新过程如下:
其中dj,k为第j个神经元的期望输出;α和β分别表示三层感知器权值和阈值更新的学习率。
在本发明所述的基于位置指纹的WLAN室内定位误差修正系统中,
当位置指纹图建立完成且未实时更新时,
利用基于ANN的EC算法离线标记预设数量的训练点,并记录训练点的坐标和在训练点采集到的预设数量RSS样本;
然后利用近邻选择算法将训练点的RSS样本和静态位置指纹图中的RSS样本相匹配计算定位坐标,在训练点的坐标已知的情况下计算出定位误差,获得训练三层感知器的输入和输出数据,并利用遗传算法和反向传播算法优化三层感知器的权值和阈值。
在本发明所述的基于位置指纹的WLAN室内定位误差修正系统中,当位置指纹图建立完成且未实时更新时,
利用基于ANN的EC算法离线标记预设数量的训练点,并记录训练点的坐标和在训练点采集到的预设数量RSS样本;
然后利用近邻选择算法将训练点的RSS样本和静态位置指纹图中的RSS样本相匹配计算定位坐标,在训练点的坐标已知的情况下计算出定位误差,获得训练三层感知器的输入和输出数据,并利用遗传算法和反向传播算法优化三层感知器的权值和阈值包括:
在EC算法的离线阶段,标记预设数量的训练点,在训练点上采集RSS样本;
令表示RSS训练样本,表示训练点的位置坐标,i=1,2,…,Q,其中Q表示RSS训练样本和训练点位置坐标的数量;表示第i个训练样本中第N个RSS样本;第i个训练样本首先被近邻选择算法用来计算训练点的定位结果则训练点的定位误差通过如下公式获取:
ei Tr=ti Tr-pi Tr,i=1,2,···,Q;
当计算出三层感知器的所有输入和输出后,由函数F(·)获得,利用Q对输入和输出训练样本训练该非线性关系;利用遗传算法搜索最优初始权值和阈值,利用反向传播算法优化和更新各层的权值和阈值,获得优化的用于估计定位误差的三层感知器。
在本发明所述的基于位置指纹的WLAN室内定位误差修正系统中,
所述在线单元中在线定位时,当用户接收到N个RSS样本利用近邻选择位置指纹定位算法计算用户的定位坐标将获得的定位坐标与在线接收的RSS样本融合成一个三层感知器的输入向量,并将输入的离线阶段训练的三层感知器后获得定位误差修正后的定位结果通过如下公式获得:
实施本发明提供的基于位置指纹的WLAN室内定位误差修正方法及系统与现有技术相比具有以下有益效果:
本发明利用多层感知器融合RSS样本和定位坐标两种不同的数据,建立它们与定位误差之间的非线性关系,然后利用这种非线性关系在线估计定位误差,从而修正定位结果,提高定位精度。
可以理解的是,对于本领域的普通技术人员来说,可以根据本发明的技术构思做出其它各种相应的改变与变形,而所有这些改变与变形都应属于本发明权利要求的保护范围。
Claims (10)
1.一种基于位置指纹的WLAN室内定位误差修正方法,其特征在于,其包括如下步骤:
S1、在位置指纹图已经建立后,选取预设数量的训练点并记录其位置坐标,在训练点上采集RSS样本建立训练点数据库;利用近邻选择算法将RSS样本和静态位置指纹图匹配计算定位结果,并利用训练点的位置坐标计算定位误差;并利用人工神经网络ANN融合训练点的RSS样本和定位坐标作为ANN的输入数据,将训练点的定位误差作为其输出数据建立输入与输出之间的非线性映射关系;利用遗传算法优化ANN的初始权值和阈值并利用反向传播算法迭代更新权值和阈值使误差平方和最小;
S2、在线定位时,当用户接收到来自各个AP的RSS样本时,利用近邻选择算法计算定位坐标,然后将在线RSS样本和定位坐标输入到在离线阶段训练的ANN模型中估计定位误差;根据所估计的定位误差修正定位结果,以减少静态位置指纹图和参考点分布等因素对定位精度的影响。
2.如权利要求1所述的基于位置指纹的WLAN室内定位误差修正方法,
所述步骤S1中ANN构建方式如下:
令室内环境中AP的数量和用于定位的在线RSS样本数量分别为M和N,将每一个RSS样本中的数值都输入三层感知器时,则该网络共有M×N+2个输入,包括M×N个RSS数值输入和2个分别为X轴和Y轴定位坐标的输入;
当用户接收到N个M维的RSS样本时,将这N个M维的RSS样本合并为一个维度为1行M×N列的向量
作为三层感知器输入的一部分,
其中
将RSS向量和定位坐标作为三层传感器的输入,定位误差(δx,δy)作为网络的输出,因此网络输入和输出之间的非线性关系通过如下函数F(·)表示:
当将第k个输入向量输入到所构建的三层感知器中时,三层感知器各层的输出如下:
其中表示来自第(l-1)层的第i个神经元的输入,表示第l层第j个神经元的输出;表示从(l-1)层第i个神经元到第l个神经元的权值;表示第l层第j个神经元的阈值;f(·)表示三层感知器的传递函数;
在该三层感知器的离线训练阶段,当输出层的误差被计算后,反向传播更新三层感知器的所有权值和阈值,更新过程如下:
其中dj,k为第j个神经元的期望输出;α和β分别表示三层感知器权值和阈值更新的学习率。
3.如权利要求2所述的基于位置指纹的WLAN室内定位误差修正方法,其特征在于,
当位置指纹图建立完成且未实时更新时,
利用基于ANN的EC算法离线标记预设数量的训练点,并记录训练点的坐标和在训练点采集到的预设数量RSS样本;
然后利用近邻选择算法将训练点的RSS样本和静态位置指纹图中的RSS样本相匹配计算定位坐标,在训练点的坐标已知的情况下计算出定位误差,获得训练三层感知器的输入和输出数据,并利用遗传算法和反向传播算法优化三层感知器的权值和阈值。
4.如权利要求3所述的基于位置指纹的WLAN室内定位误差修正方法,其特征在于,当位置指纹图建立完成且未实时更新时,
利用基于ANN的EC算法离线标记预设数量的训练点,并记录训练点的坐标和在训练点采集到的预设数量RSS样本;
然后利用近邻选择算法将训练点的RSS样本和静态位置指纹图中的RSS样本相匹配计算定位坐标,在训练点的坐标已知的情况下计算出定位误差,获得训练三层感知器的输入和输出数据,并利用遗传算法和反向传播算法优化三层感知器的权值和阈值包括:
在EC算法的离线阶段,标记预设数量的训练点,在训练点上采集RSS样本;
令表示RSS训练样本,表示训练点的位置坐标,i=1,2,…,Q,其中Q表示RSS训练样本和训练点位置坐标的数量;表示第i个训练样本中第N个RSS样本;第i个训练样本首先被近邻选择算法用来计算训练点的定位结果则训练点的定位误差通过如下公式获取:
ei Tr=ti Tr-pi Tr,i=1,2,…,Q;
当计算出三层感知器的所有输入和输出后,由函数F(·)获得,利用Q对输入和输出训练样本训练该非线性关系;利用遗传算法搜索最优初始权值和阈值,利用反向传播算法优化和更新各层的权值和阈值,获得优化的用于估计定位误差的三层感知器。
5.如权利要求4所述的基于位置指纹的WLAN室内定位误差修正方法,其特征在于,
所述步骤S2中在线定位时,当用户接收到N个RSS样本利用近邻选择位置指纹定位算法计算用户的定位坐标将获得的定位坐标与在线接收的RSS样本融合成一个三层感知器的输入向量,并将输入的离线阶段训练的三层感知器后获得定位误差修正后的定位结果通过如下公式获得:
6.一种基于位置指纹的WLAN室内定位误差修正系统,其特征在于,其包括如下单元:
离线单元,用于在位置指纹图已经建立后,选取预设数量的训练点并记录其位置坐标,在训练点上采集RSS样本建立训练点数据库;利用近邻选择算法将RSS样本和静态位置指纹图匹配计算定位结果,并利用训练点的位置坐标计算定位误差;并利用人工神经网络ANN融合训练点的RSS样本和定位坐标作为ANN的输入数据,将训练点的定位误差作为其输出数据建立输入与输出之间的非线性映射关系;利用遗传算法优化ANN的初始权值和阈值并利用反向传播算法迭代更新权值和阈值使误差平方和最小;
在线单元,用于在线定位时,当用户接收到来自各个AP的RSS样本时,利用近邻选择算法计算定位坐标,然后将在线RSS样本和定位坐标输入到在离线阶段训练的ANN模型中估计定位误差;根据所估计的定位误差修正定位结果,以减少静态位置指纹图和参考点分布等因素对定位精度的影响。
7.如权利要求6所述的基于位置指纹的WLAN室内定位误差修正系统,
所述离线单元中ANN构建方式如下:
令室内环境中AP的数量和用于定位的在线RSS样本数量分别为M和N,将每一个RSS样本中的数值都输入三层感知器时,则该网络共有M×N+2个输入,包括M×N个RSS数值输入和2个分别为X轴和Y轴定位坐标的输入;
当用户接收到N个M维的RSS样本时,将这N个M维的RSS样本合并为一个维度为1行M×N列的向量
作为三层感知器输入的一部分,其中
将RSS向量和定位坐标作为三层传感器的输入,定位误差(δx,δy)作为网络的输出,因此网络输入和输出之间的非线性关系通过如下函数F(·)表示:
当将第k个输入向量输入到所构建的三层感知器中时,三层感知器各层的输出如下:
其中表示来自第(l-1)层的第i个神经元的输入,表示第l层第j个神经元的输出;表示从(l-1)层第i个神经元到第l个神经元的权值;表示第l层第j个神经元的阈值;f(·)表示三层感知器的传递函数;
在该三层感知器的离线训练阶段,当输出层的误差被计算后,反向传播更新三层感知器的所有权值和阈值,更新过程如下:
其中dj,k为第j个神经元的期望输出;α和β分别表示三层感知器权值和阈值更新的学习率。
8.如权利要求7所述的基于位置指纹的WLAN室内定位误差修正系统,其特征在于,
当位置指纹图建立完成且未实时更新时,
利用基于ANN的EC算法离线标记预设数量的训练点,并记录训练点的坐标和在训练点采集到的预设数量RSS样本;
然后利用近邻选择算法将训练点的RSS样本和静态位置指纹图中的RSS样本相匹配计算定位坐标,在训练点的坐标已知的情况下计算出定位误差,获得训练三层感知器的输入和输出数据,并利用遗传算法和反向传播算法优化三层感知器的权值和阈值。
9.如权利要求8所述的基于位置指纹的WLAN室内定位误差修正系统,其特征在于,当位置指纹图建立完成且未实时更新时,
利用基于ANN的EC算法离线标记预设数量的训练点,并记录训练点的坐标和在训练点采集到的预设数量RSS样本;
然后利用近邻选择算法将训练点的RSS样本和静态位置指纹图中的RSS样本相匹配计算定位坐标,在训练点的坐标已知的情况下计算出定位误差,获得训练三层感知器的输入和输出数据,并利用遗传算法和反向传播算法优化三层感知器的权值和阈值包括:
在EC算法的离线阶段,标记预设数量的训练点,在训练点上采集RSS样本;
令表示RSS训练样本,表示训练点的位置坐标,i=1,2,…,Q,其中Q表示RSS训练样本和训练点位置坐标的数量;表示第i个训练样本中第N个RSS样本;第i个训练样本首先被近邻选择算法用来计算训练点的定位结果则训练点的定位误差通过如下公式获取:
当计算出三层感知器的所有输入和输出后,由函数F(·)获得,利用Q对输入和输出训练样本训练该非线性关系;利用遗传算法搜索最优初始权值和阈值,利用反向传播算法优化和更新各层的权值和阈值,获得优化的用于估计定位误差的三层感知器。
10.如权利要求9所述的基于位置指纹的WLAN室内定位误差修正系统,其特征在于,
所述在线单元中在线定位时,当用户接收到N个RSS样本利用近邻选择位置指纹定位算法计算用户的定位坐标将获得的定位坐标与在线接收的RSS样本融合成一个三层感知器的输入向量,并将输入的离线阶段训练的三层感知器后获得定位误差修正后的定位结果通过如下公式获得:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711437260.5A CN108303672B (zh) | 2017-12-26 | 2017-12-26 | 基于位置指纹的wlan室内定位误差修正方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711437260.5A CN108303672B (zh) | 2017-12-26 | 2017-12-26 | 基于位置指纹的wlan室内定位误差修正方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108303672A true CN108303672A (zh) | 2018-07-20 |
CN108303672B CN108303672B (zh) | 2021-12-24 |
Family
ID=62867477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711437260.5A Active CN108303672B (zh) | 2017-12-26 | 2017-12-26 | 基于位置指纹的wlan室内定位误差修正方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108303672B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109348403A (zh) * | 2018-10-08 | 2019-02-15 | 内蒙古大学 | 一种异构网络环境中面向指纹定位的基站部署优化方法 |
CN109413578A (zh) * | 2018-11-02 | 2019-03-01 | 桂林电子科技大学 | 一种基于wifi与pdr融合的室内定位方法 |
CN110225460A (zh) * | 2019-06-05 | 2019-09-10 | 三维通信股份有限公司 | 一种基于深度神经网络的室内定位方法及装置 |
CN111239715A (zh) * | 2020-01-13 | 2020-06-05 | 哈尔滨工业大学 | 一种联合灰色关联和神经网络的指纹定位方法 |
CN111885699A (zh) * | 2020-05-21 | 2020-11-03 | 北京嘀嘀无限科技发展有限公司 | 一种确定用户当前位置的方法和系统 |
US20220360944A1 (en) * | 2019-09-25 | 2022-11-10 | Nokia Solutions And Networks Oy | Method and apparatus for sensor selection for localization and tracking |
EP4435461A1 (en) * | 2023-03-21 | 2024-09-25 | Siemens Aktiengesellschaft | A computer-implemented method for generating a predictor for localization errors of different radio technologies |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2442950A1 (en) * | 2003-09-26 | 2005-03-26 | Chahe Nerguizian | Method and system for indoor geolocation using an impulse response fingerprinting technique |
WO2005032189A1 (en) * | 2003-09-26 | 2005-04-07 | Universite Du Quebec En Abitibi-Temiscamingue (Uqat) | Method and system for indoor geolocation using an impulse response fingerprinting technique |
CN101639527A (zh) * | 2009-09-03 | 2010-02-03 | 哈尔滨工业大学 | 基于rss-p的k近邻模糊聚类wlan室内定位方法 |
CN103476118A (zh) * | 2013-09-29 | 2013-12-25 | 哈尔滨工业大学 | 一种用于实时监控的wlan室内位置指纹定位方法 |
CN103945332A (zh) * | 2014-04-28 | 2014-07-23 | 清华大学 | 一种接收信号强度和多径信息联合神经网络室内定位方法 |
CN106482738A (zh) * | 2016-11-09 | 2017-03-08 | 江南大学 | 基于在线增量超限学习机的室内指纹定位算法 |
CN107396312A (zh) * | 2017-07-18 | 2017-11-24 | 浪潮天元通信信息系统有限公司 | 基于神经网络的用户位置精准识别方法 |
-
2017
- 2017-12-26 CN CN201711437260.5A patent/CN108303672B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2442950A1 (en) * | 2003-09-26 | 2005-03-26 | Chahe Nerguizian | Method and system for indoor geolocation using an impulse response fingerprinting technique |
WO2005032189A1 (en) * | 2003-09-26 | 2005-04-07 | Universite Du Quebec En Abitibi-Temiscamingue (Uqat) | Method and system for indoor geolocation using an impulse response fingerprinting technique |
CN101639527A (zh) * | 2009-09-03 | 2010-02-03 | 哈尔滨工业大学 | 基于rss-p的k近邻模糊聚类wlan室内定位方法 |
CN103476118A (zh) * | 2013-09-29 | 2013-12-25 | 哈尔滨工业大学 | 一种用于实时监控的wlan室内位置指纹定位方法 |
CN103945332A (zh) * | 2014-04-28 | 2014-07-23 | 清华大学 | 一种接收信号强度和多径信息联合神经网络室内定位方法 |
CN106482738A (zh) * | 2016-11-09 | 2017-03-08 | 江南大学 | 基于在线增量超限学习机的室内指纹定位算法 |
CN107396312A (zh) * | 2017-07-18 | 2017-11-24 | 浪潮天元通信信息系统有限公司 | 基于神经网络的用户位置精准识别方法 |
Non-Patent Citations (2)
Title |
---|
ZHOU CAIFA,ETC: "Application of backpropagation neural networks to both stages of fingerprinting based WIPS", 《IEEE UPINLBS 2016》 * |
葛柳飞: "基于多层神经网络的室内定位算法研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109348403A (zh) * | 2018-10-08 | 2019-02-15 | 内蒙古大学 | 一种异构网络环境中面向指纹定位的基站部署优化方法 |
CN109348403B (zh) * | 2018-10-08 | 2020-07-07 | 内蒙古大学 | 一种异构网络环境中面向指纹定位的基站部署优化方法 |
CN109413578A (zh) * | 2018-11-02 | 2019-03-01 | 桂林电子科技大学 | 一种基于wifi与pdr融合的室内定位方法 |
CN109413578B (zh) * | 2018-11-02 | 2020-10-23 | 桂林电子科技大学 | 一种基于wifi与pdr融合的室内定位方法 |
CN110225460A (zh) * | 2019-06-05 | 2019-09-10 | 三维通信股份有限公司 | 一种基于深度神经网络的室内定位方法及装置 |
CN110225460B (zh) * | 2019-06-05 | 2021-03-23 | 三维通信股份有限公司 | 一种基于深度神经网络的室内定位方法及装置 |
US20220360944A1 (en) * | 2019-09-25 | 2022-11-10 | Nokia Solutions And Networks Oy | Method and apparatus for sensor selection for localization and tracking |
US12015966B2 (en) * | 2019-09-25 | 2024-06-18 | Nokia Solutions And Networks Oy | Method and apparatus for sensor selection for localization and tracking |
CN111239715A (zh) * | 2020-01-13 | 2020-06-05 | 哈尔滨工业大学 | 一种联合灰色关联和神经网络的指纹定位方法 |
CN111885699A (zh) * | 2020-05-21 | 2020-11-03 | 北京嘀嘀无限科技发展有限公司 | 一种确定用户当前位置的方法和系统 |
CN111885699B (zh) * | 2020-05-21 | 2022-09-30 | 北京嘀嘀无限科技发展有限公司 | 一种确定用户当前位置的方法和系统 |
EP4435461A1 (en) * | 2023-03-21 | 2024-09-25 | Siemens Aktiengesellschaft | A computer-implemented method for generating a predictor for localization errors of different radio technologies |
Also Published As
Publication number | Publication date |
---|---|
CN108303672B (zh) | 2021-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108303672A (zh) | 基于位置指纹的wlan室内定位误差修正方法及系统 | |
US10674090B2 (en) | Method and device for controlling photography of unmanned aerialvehicle, andwearable device | |
CN104270816B (zh) | Led可见光室内定位系统的自适应动态指纹库构建方法 | |
CN106714336A (zh) | 一种基于改进克里金算法的无线传感网温度监测方法 | |
CN109059907A (zh) | 轨迹数据处理方法、装置、计算机设备和存储介质 | |
CN113657028B (zh) | 一种基于多源信息的气溶胶光学厚度在线预测方法 | |
CN104105067A (zh) | 基于地磁信息的实时定位系统及方法 | |
CN109028488A (zh) | 一种空调控制方法、系统及存储介质 | |
CN111009179B (zh) | 剥蚀厚度的确定方法及装置 | |
US20230271325A1 (en) | Industrial internet of things systems for monitoring collaborative robots with dual identification, control methods and storage media thereof | |
CN103889053B (zh) | 一种自生长式的指纹图自主建立方法 | |
CN112833919B (zh) | 一种多余度的惯性测量数据的管理方法及其系统 | |
CN107273659A (zh) | 一种基于ransac算法改进的用于空间碎片光电跟踪的轨迹预测方法 | |
CN117519365A (zh) | 基于多路pid温度控制器的温度控制方法及系统 | |
CN110057364B (zh) | 一种水田拖拉机位姿检测和偏航角提取方法及装置 | |
CN111854745A (zh) | 一种基于物联网室内定位的时钟预测方法 | |
KR102500534B1 (ko) | 순환신경망 기반 수자원 정보 생성 장치 및 방법 | |
CN115414621B (zh) | 一种消防水炮的智能控制方法及相关装置 | |
CN115775025A (zh) | 一种面向时空数据异构场景的轻量化联邦学习方法及系统 | |
KR20070014270A (ko) | 기지국 정보 관리 시스템 및 방법 | |
CN110515884B (zh) | 基于图像分析的施工现场钢筋测距装置 | |
CN114861750A (zh) | 基于多输出的多传感器在线航迹融合方法 | |
CN105804472B (zh) | 一种杆塔位置的定位方法和装置 | |
KR20230026302A (ko) | 자력계 보정 오차 균등화를 통한 자기 실내 위치확인 | |
CN114111798A (zh) | 一种基于仿射因子补偿的改进iccp方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |