CN108303253A - 基于长短时记忆循环神经网络的轴承早期故障识别方法 - Google Patents

基于长短时记忆循环神经网络的轴承早期故障识别方法 Download PDF

Info

Publication number
CN108303253A
CN108303253A CN201711273124.7A CN201711273124A CN108303253A CN 108303253 A CN108303253 A CN 108303253A CN 201711273124 A CN201711273124 A CN 201711273124A CN 108303253 A CN108303253 A CN 108303253A
Authority
CN
China
Prior art keywords
network
bearing
recognition
recurrent neural
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711273124.7A
Other languages
English (en)
Other versions
CN108303253B (zh
Inventor
张斌
李巍华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201711273124.7A priority Critical patent/CN108303253B/zh
Publication of CN108303253A publication Critical patent/CN108303253A/zh
Application granted granted Critical
Publication of CN108303253B publication Critical patent/CN108303253B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology

Abstract

本发明公开了一种基于长短时记忆循环神经网络的轴承早期故障识别方法,包括步骤:对轴承全寿命振动信号进行采集后提取常用的时域特征;构建波形熵特征,并利用平方解调方法验证波形熵的有效性;利用时域特征和熵特征构建特征数据集,选取正常数据集和深度故障数据集;将正常数据集和深度故障数据集作为训练样本对LSTM循环神经网络进行训练;将在线轴承振动信号进行时域特征和熵特征提取后输入训练好的LSTM循环神经网络对故障发生时刻进行识别。本发明将振动信号的传统特征和熵特征进行结合,在保证振动特征量物理意义的情况下,准确反映轴承当前状态。所采用的循环神经网络能有效运用退化历史数据,从而对轴承故障发生时刻进行有效识别。

Description

基于长短时记忆循环神经网络的轴承早期故障识别方法
技术领域
本发明属于故障智能诊断领域,具体涉及一种基于长短时记忆循环神经网络的轴承早期故障识别方法。
背景技术
轴承作为旋转机械的重要组成部分,需要对其健康状态进行有效的监测。故障诊断是轴承故障智能诊断领域的重要研究内容。构造一个有效的退化指标,同时利用故障发展的历史数据对故障状态进行判断是这项工作的关键。轴承在发生缺陷损伤之后产生的振动信号是轴承故障诊断的重要依据,振动信号的时频域特征也是传统故障诊断方法的重要手段。
对于数据驱动的智能诊断方法来说,一方面相对于传统时频域特征,众多新提出的特征量与轴承故障程度的对应关系不明确;另一方面对于故障的阈值特别是早期故障出现的阈值没有明确的界定,如何避免人为确定失效阈值带来的盲目性和不确定性成为故障区分的难点。当前的轴承退化评估研究还存在以下一些问题:缺少能全面反应轴承退化趋势的特征量;对退化过程历史信号的利用不足。
发明内容
本发明旨在至少解决上述技术问题之一。
为此,本发明的目的在于提出一种基于循环神经网络的轴承早期故障识别方法。构建基于熵特征的轴承退化指标,通过解调分析验证了所提轴承熵指标的有效性,证明所提指标全面有效地反映轴承退化过程。将所提熵指标结合传统时域指标作为LSTM循环神经网络的输入,利用该网络对时序信号的处理能力,对轴承故障状态进行有效识别。
为了实现上述目的,本发明采用以下技术方案:
一种基于长短时记忆循环神经网络的轴承早期故障识别方法,包括以下步骤:
对轴承全寿命振动信号进行采集,振动信号预处理后提取常用的时域特征;
选取时域特征中的波形因子构建波形熵特征,并利用频谱分析中的平方解调方法验证波形熵的有效性;
利用时域特征和熵特征构建特征数据集,通过时域信号和频谱分析的判断,选取正常数据集和深度故障数据集;
将正常数据集和深度故障数据集作为训练样本对LSTM循环神经网络进行训练,网络主要参数通过粒子群算法(PSO)进行优化;
将在线轴承振动信号进行时域特征和熵特征提取后输入训练好的 LSTM循环神经网络对故障发生时刻进行识别。
优选地,所述轴承全寿命振动信号是指新轴承从装机运行到损坏的全过程的轴承振动信号。
优选地,所述的振动信号预处理是采用小波降噪的方法对轴承信号进行预处理。
优选地,所述常用的时域特征包括:绝对均值、有效值、峭度和波性因子。
优选地,所述波形熵特征的构建具体是采用了基于无量纲时域指标波形因子构建熵特征,其具体构建方式为:
其中,WEt为当前时刻的波形熵,Wt-i为t-i时刻的波形因子,M为计算波形熵的时间步长。
优选地,所述正常数据集的选取标准为:时域振动幅值较小且平稳,解调谱未发现对应的故障特征频率;所述深度故障数据集的选取标准为:时域振动幅值较大且存在波动,解调谱存在明显的故障特征频率且故障频率幅值较大。
优选地,所述LSTM循环神经网络的结构参数遵从的规则包括:
网络输入节点数:网络的输入节点数由网络输入的特征数决定;
网络输出节点数:网络输出节点数由所定义的风机状态的数量决定;
网络隐藏层的数量:隐层数量越多,特征的抽象程度越高;
隐层节点数:在tensorflow中采用多层长短时记忆网络,网络的所有隐层由同一隐层堆叠而成,故所有隐层的节点数相同;
时间步长:时间步长决定了所利用的网络输入的时间长度。
优选地,所述网络主要参数通过粒子群算法(PSO)进行优化的过程具体为:
所述网络隐藏层数、隐藏层节点数、时间步长由PSO算法优化,确定粒子群的种群数量N、最大迭代次数M,若满足例子更新条件迭代次数k<M,按以下公式更新每个粒子的速度和位置:
其中,表示第k次迭代粒子的位置,表示第k次迭代粒子的速度,w是惯性因子,c1和c2是学习因子,通常c1=c2=2,r1和r2是取值(0,1)之间的均匀分布随机数。
优选地,所述LSTM循环神经网络的所有隐层节点均为长短时记忆单元,与传统的隐层节点相比,长短时记忆单元包括增加了用于控制网络计算量级的输入门,遗忘门和输出门,从而降低了循环网络由于循环层数增加而导致激活函数进入梯度饱和区的风险,在长短时记忆循环网络中,具体的计算过程如下:
gs=φ(Wgx*x+Wgh*ht-1+bg)
is=σ(Wix*x+Wih*ht-1+bi)
fs=σ(Wfx*x+Wfh*ht-1+bf)
os=σ(Wox*x+Woh*ht-1+bo)
其中,ht表示LSTM网络隐藏层在时刻t的输出,gs、is、fs、os分别表示记忆单元内部输入节点、输入门、遗忘门和输出门的输出值,所述输出值是网络输入和网络反馈值的加权和;Wgx、Wix、Wfx和Wox分别表示输入节点、输入门、遗忘门、输出门与网络输入之间的权值;Wgh、Wih、Wfh和Woh分别表示输入节点、输入门、遗忘门、输出门与网络隐层之间的权值;bg、bi,、bf、bo表示加权求和时的网络偏置;St表示LSTM单元的状态值;表示逐点求积运算。
优选地,所述将在线轴承振动信号进行时域特征和熵特征提取后输入训练好的LSTM循环神经网络对故障发生时刻进行识别的步骤具体包括:
采集在线轴承振动信号;
对采集的在线轴承振动信号进行预处理;
对预处理后的在线轴承振动信号进行时域特征和熵特征的提取;
将提取的所述时域特征和熵特征同时输入训练好的LSTM循环神经网络对轴承状态进行判断,完成对故障发生时刻的识别。
相比现有技术,本发明的有益效果包括:
本发明通过构建熵特征,在保留特征物理意义的情况下,有效全面地反映轴承故障程度。熵指标的有效性经过解调分析进行验证。循环神经网络能够有效利用轴承退化历史数据,通过网络二分类的方法,避免了人工阈值选取和复杂的频谱分析方法,同时能准确识别轴承故障发生时刻。
附图说明
图1a是本发明轴承早期故障识别方法的LSTM循环神经网络训练流程图。
图1b是本发明轴承早期故障识别方法的测试识别流程图。
图2a是本发明所用循环神经网络的结构图示意图。
图2b是本发明所用循环神经网络的时间连接的隐层反馈权值示意图。
图3是本发明所用循环神经网络的长短时记忆单元结构示意图。
图4a是本发明实施例的轴承1所提波形熵。
图4b是本发明实施例的轴承3所提波形熵。
图5a是实例中轴承3的轴承信号解调分析的包络谱总图。
图5b是图5a中时间500处的包络谱图。
图5c是图5a中时间550处的包络谱图。
图5d是图5a中时间600处的包络谱图。
图5e是图5a中时间704处的包络谱图。
图5f是图5a中时间745处的包络谱图。
图6a是本发明实例中轴承1选取的轴承故障发生时刻训练样本。
图6b是本发明实例中轴承2选取的轴承故障发生时刻训练样本。
图6c是本发明实例中轴承3选取的轴承故障发生时刻训练样本。
图7a本发明实例中轴承1第一次轴承故障发生时刻的识别结果。
图7b本发明实例中轴承2第一次轴承故障发生时刻的识别结果。
图7c本发明实例中轴承3第一次轴承故障发生时刻的识别结果。
图8a本发明实例中轴承1第二次轴承故障发生时刻的识别结果。
图8b本发明实例中轴承2第二次轴承故障发生时刻的识别结果。
图8c本发明实例中轴承3第二次轴承故障发生时刻的识别结果。
具体实施方式
下面根据说明书附图并结合具体实施例对本发明的技术方案进行进一步详细说明。
如图1a~图1b所示,一种基于长短时记忆循环神经网络的轴承早期故障识别方法,包括以下步骤:
S1、对轴承全寿命振动信号进行采集,振动信号预处理后提取常用的时域特征;
S2、选取时域特征中的波形因子构建波形熵特征,并利用频谱分析中的平方解调方法验证波形熵的有效性;
S3、利用时域特征和熵特征构建特征数据集,通过时域信号和频谱分析的判断,选取正常数据集和深度故障数据集;
S4、将正常数据集和深度故障数据集作为训练样本对LSTM循环神经网络进行训练,网络主要参数通过粒子群算法(PSO)进行优化(见图 1a);
S5、将在线轴承振动信号进行时域特征和熵特征提取后输入训练好的LSTM循环神经网络对故障发生时刻进行测试识别。
本发明分为训练和测试两部分。训练过程主要分为振动信号预处理、振动特征提取、LSTM网络训练三个部分。
本实施例中,所述轴承全寿命振动信号是指新轴承从装机运行到损坏的全过程的轴承振动信号。所述的振动信号预处理是采用小波降噪的方法对轴承信号进行预处理。所述常用的时域特征包括:绝对均值、有效值、峭度和波性因子,具体如表一所示。
表一
所述波形熵特征的构建具体是采用了基于无量纲时域指标波形因子构建熵特征,其具体构建方式为:
其中,WEt为当前时刻的波形熵,Wt-i为t-i时刻的波形因子,M为计算波形熵的时间步长。
所述正常数据集的选取标准为:时域振动幅值较小且平稳,解调谱未发现对应的故障特征频率;所述深度故障数据集的选取标准为:时域振动幅值较大且存在波动,解调谱存在明显的故障特征频率且故障频率幅值较大。
优选地,所述LSTM循环神经网络的结构参数遵从的规则包括:
网络输入节点数:网络的输入节点数由网络输入的特征数决定;
网络输出节点数:网络输出节点数由所定义的风机状态的数量决定;
网络隐藏层的数量:隐层数量越多,特征的抽象程度越高;
隐层节点数:在tensorflow中采用多层长短时记忆网络,网络的所有隐层由同一隐层堆叠而成,故所有隐层的节点数相同;
时间步长:时间步长决定了所利用的网络输入的时间长度。
本实施例中,下面结合图2对本发明的循环神经网络加以说明:
LSTM循环神经网络具体结构如下:x1,x2,...,xm表示网络的输入, y1,y2,...,yn表示网络的输出。W(1),W(2),W(3)表示网络在相邻隐藏层之间的权值,在图中用实线表示。Wt (1),Wt (1),Wt (1)表示时间连接的隐层反馈的权值,在图中用虚线表示。
具体而言,所述网络主要参数通过粒子群算法(PSO)进行优化的过程具体为:
所述网络隐藏层数、隐藏层节点数、时间步长由PSO算法优化,确定粒子群的种群数量N、最大迭代次数M,若满足例子更新条件迭代次数k<M,按以下公式更新每个粒子的速度和位置:
其中,表示第k次迭代粒子的位置,表示第k次迭代粒子的速度,w是惯性因子,c1和c2是学习因子,通常c1=c2=2。r1和r2是取值(0,1)之间的均匀分布随机数。
如图3所示,所述LSTM循环神经网络的所有隐层节点均为长短时记忆单元,与传统的隐层节点相比,长短时记忆单元包括增加了用于控制网络计算量级的输入门,遗忘门和输出门,从而降低了循环网络由于循环层数增加而导致激活函数进入梯度饱和区的风险,在长短时记忆循环网络中,具体的计算过程如下:
gs=φ(Wgx*x+Wgh*ht-1+bg)
is=σ(Wix*x+Wih*ht-1+bi)
fs=σ(Wfx*x+Wfh*ht-1+bf)
os=σ(Wox*x+Woh*ht-1+bo)
其中,ht表示LSTM网络隐藏层在时刻t的输出,gs、is、fs、os分别表示记忆单元内部输入节点、输入门、遗忘门和输出门的输出值,所述输出值是网络输入和网络反馈值的加权和;Wgx、Wix、Wfx和Wox分别表示输入节点、输入门、遗忘门、输出门与网络输入之间的权值;Wgh、Wih、Wfh和Woh分别表示输入节点、输入门、遗忘门、输出门与网络隐层之间的权值;bg、bi,、bf、bo表示加权求和时的网络偏置;St表示LSTM单元的状态值;表示逐点求积运算。
如图1b所示,步骤S5中,所述将在线轴承振动信号进行时域特征和熵特征提取后输入训练好的LSTM循环神经网络对故障发生时刻进行识别的步骤具体包括:
S51、采集在线轴承振动信号;
S52、对采集的在线轴承振动信号进行预处理;
S53、对预处理后的在线轴承振动信号进行时域特征和熵特征的提取;
S54、将提取的所述时域特征和熵特征同时输入训练好的LSTM循环神经网络对轴承状态进行判断,完成对故障发生时刻的识别。
下面结合一实例对本发明做进一步说明:
本实例数据来源于辛辛那提大学轴承全寿命实验。3个故障轴承数据如表2所示。
表2轴承全寿命数据介绍
下面结合图4a和图4b对本发明的波形熵特征做简要说明:
轴承3的波形熵如图4b所示。波形熵具备良好的单调性,特别是在早期故障时波形熵能有明显的变化趋势。
下面结合图5a~图5f对本发明的轴承退化特征验证方法做简要说明:
本发明的退化特征验证采用平方解调的方法。以轴承3为例,其包络谱如图5所示。对比所提出波形熵特征,解调谱故障频率处的幅值变化趋势与波形熵的变化一致,表明波形熵能良好地反映轴承的故障状态。同时对于早期故障比较敏感,能够良好地识别早期故障,在出现明显的故障频率之前出现拐点。
本发明故障发生时刻识别的基本思路是选取正常状态和深度故障状态样本,对过渡阶段样本进行测试判断。以3个全寿命轴承退化数据为例,训练样本如图6a~图6c所示。采取了循环验证的方式对同一数据集进行故障发生时刻识别,共进行了两次故障发生时刻识别测试。第1次使用轴承2,轴承3的训练样本。第二次使用轴承1,轴承2 的训练样本。
下面结合图7a~图7c、图8a~图8c对实例的轴承故障发生时刻的识别结果做简要说明:
第1次轴承故障发生时刻识别结果如图7a~图7c所示,3个故障轴承的故障起始点分别识别为1816,1573,603。第2次轴承故障发生时刻识别结果如图8a~图8c所示,3个故障轴承的早期故障发生时刻分别识别为1789,1479,619。
两次故障发生时刻识别结果接近,且对比轴承3解调分析结果, 600时间点左右确实存在故障特征频率。故障幅值较小,属于早期故障。所用方法对早期故障的识别是准确有效的。
本发明采用的网络二分类的基本思路是选取正常状态和深度故障状态样本,对过渡阶段样本进行测试判断。采取了循环验证的方式对同一数据集进行故障发生时刻识别,并对比解调分析的结果,比二分类识别结果的有效性进行验证。
需要说明的是,上述实施方式只是本发明的一个实例,不是用来限制发明的实施与权利范围,根据上述说明书的揭示和阐述,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些等同修改和变更也应当在本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

1.一种基于长短时记忆循环神经网络的轴承早期故障识别方法,其特征在于,包括以下步骤:
对轴承全寿命振动信号进行采集,振动信号预处理后提取常用的时域特征;
选取时域特征中的波形因子构建波形熵特征,并利用频谱分析中的平方解调方法验证波形熵的有效性;
利用时域特征和熵特征构建特征数据集,通过时域信号和频谱分析的判断,选取正常数据集和深度故障数据集;
将正常数据集和深度故障数据集作为训练样本对LSTM循环神经网络进行训练,网络主要参数通过粒子群算法进行优化;
将在线轴承振动信号进行时域特征和熵特征提取后输入训练好的LSTM循环神经网络对故障发生时刻进行识别。
2.根据权利要求1所述的基于长短时循环神经网络的轴承早期故障识别方法,其特征在于:
所述轴承全寿命振动信号是指新轴承从装机运行到损坏的全过程的轴承振动信号。
3.根据权利要求1所述的基于长短时循环神经网络的轴承早期故障识别方法,其特征在于:
所述的振动信号预处理是采用小波降噪的方法对轴承信号进行预处理。
4.根据权利要求1所述的基于长短时循环神经网络的轴承早期故障识别方法,其特征在于:
所述常用的时域特征包括:绝对均值、有效值、峭度和波性因子。
5.根据权利要求1所述的基于长短时循环神经网络的轴承早期故障识别方法,其特征在于:
所述波形熵特征的构建具体是采用了基于无量纲时域指标波形因子构建熵特征,其具体构建方式为:
其中,WEt为当前时刻的波形熵,Wt-i为t-i时刻的波形因子,M为计算波形熵的时间步长。
6.根据权利要求1所述的基于长短时循环神经网络的轴承早期故障识别方法,其特征在于:
所述正常数据集的选取标准为:时域振动幅值较小且平稳,解调谱未发现对应的故障特征频率;所述深度故障数据集的选取标准为:时域振动幅值较大且存在波动,解调谱存在明显的故障特征频率且故障频率幅值较大。
7.根据权利要求1所述的基于长短时循环神经网络的轴承早期故障识别方法,其特征在于,所述LSTM循环神经网络的结构参数遵从的规则包括:
网络输入节点数:网络的输入节点数由网络输入的特征数决定;
网络输出节点数:网络输出节点数由所定义的风机状态的数量决定;
网络隐藏层的数量:隐层数量越多,特征的抽象程度越高;
隐层节点数:在tensorflow中采用多层长短时记忆网络,网络的所有隐层由同一隐层堆叠而成,故所有隐层的节点数相同;
时间步长:时间步长决定了所利用的网络输入的时间长度。
8.根据权利要求7所述的基于长短时循环神经网络的轴承早期故障识别方法,其特征在于:所述网络主要参数通过粒子群算法进行优化的过程具体为:
所述网络隐藏层数、隐藏层节点数、时间步长由PSO算法优化,确定粒子群的种群数量N、最大迭代次数M,若满足例子更新条件迭代次数k<M,按以下公式更新每个粒子的速度和位置:
其中,表示第k次迭代粒子的位置,表示第k次迭代粒子的速度,w是惯性因子,c1和c2是学习因子,通常c1=c2=2,r1和r2是取值(0,1)之间的均匀分布随机数。
9.根据权利要求7所述的基于长短时循环神经网络的轴承早期故障识别方法,其特征在于:所述LSTM循环神经网络的所有隐层节点均为长短时记忆单元,所述长短时记忆单元包括用于控制网络计算量级的输入门,遗忘门和输出门,在长短时记忆循环网络中,具体的计算过程如下:
gs=φ(Wgx*x+Wgh*ht-1+bg)
is=σ(Wix*x+Wih*ht-1+bi)
fs=σ(Wfx*x+Wfh*ht-1+bf)
os=σ(Wox*x+Woh*ht-1+bo)
其中,ht表示LSTM网络隐藏层在时刻t的输出,gs、is、fs、os分别表示记忆单元内部输入节点、输入门、遗忘门和输出门的输出值,所述输出值是网络输入和网络反馈值的加权和;Wgx、Wix、Wfx和Wox分别表示输入节点、输入门、遗忘门、输出门与网络输入之间的权值;Wgh、Wih、Wfh和Woh分别表示输入节点、输入门、遗忘门、输出门与网络隐层之间的权值;bg、bi,、bf、bo表示加权求和时的网络偏置;St表示LSTM单元的状态值;表示逐点求积运算。
10.根据权利要求1所述的基于长短时循环神经网络的轴承早期故障识别方法,其特征在于:所述将在线轴承振动信号进行时域特征和熵特征提取后输入训练好的LSTM循环神经网络对故障发生时刻进行识别的步骤具体包括:
采集在线轴承振动信号;
对采集的在线轴承振动信号进行预处理;
对预处理后的在线轴承振动信号进行时域特征和熵特征的提取;
将提取的所述时域特征和熵特征同时输入训练好的LSTM循环神经网络对轴承状态进行判断,完成对故障发生时刻的识别。
CN201711273124.7A 2017-12-06 2017-12-06 基于长短时记忆循环神经网络的轴承早期故障识别方法 Active CN108303253B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711273124.7A CN108303253B (zh) 2017-12-06 2017-12-06 基于长短时记忆循环神经网络的轴承早期故障识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711273124.7A CN108303253B (zh) 2017-12-06 2017-12-06 基于长短时记忆循环神经网络的轴承早期故障识别方法

Publications (2)

Publication Number Publication Date
CN108303253A true CN108303253A (zh) 2018-07-20
CN108303253B CN108303253B (zh) 2019-10-18

Family

ID=62869750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711273124.7A Active CN108303253B (zh) 2017-12-06 2017-12-06 基于长短时记忆循环神经网络的轴承早期故障识别方法

Country Status (1)

Country Link
CN (1) CN108303253B (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108986470A (zh) * 2018-08-20 2018-12-11 华南理工大学 粒子群算法优化lstm神经网络的行程时间预测方法
CN109213122A (zh) * 2018-08-10 2019-01-15 合肥工业大学 用于冲压设备的故障诊断方法及计算机存储介质
CN109299827A (zh) * 2018-09-30 2019-02-01 南京地铁集团有限公司 基于长短时记忆循环神经网络的城轨设备故障预测方法
CN109409567A (zh) * 2018-09-17 2019-03-01 西安交通大学 基于双层长短期记忆网络的复杂设备剩余寿命预测方法
CN109635677A (zh) * 2018-11-23 2019-04-16 华南理工大学 基于多标签分类卷积神经网络的复合故障诊断方法及装置
CN109883699A (zh) * 2018-12-20 2019-06-14 上海理工大学 一种基于长短时记忆网络的滚动轴承剩余寿命预测方法
CN109946080A (zh) * 2019-04-08 2019-06-28 西安交通大学 一种基于嵌入式循环网络的机械设备健康状态识别方法
CN110261109A (zh) * 2019-04-28 2019-09-20 洛阳中科晶上智能装备科技有限公司 一种基于双向记忆循环神经网络的滚动轴承故障诊断方法
CN110413227A (zh) * 2019-06-22 2019-11-05 华中科技大学 一种硬盘设备的剩余使用寿命在线预测方法和系统
CN111272436A (zh) * 2020-02-11 2020-06-12 上海交通大学 一种燃气轮机NOx预测排放监测系统和方法
CN111307452A (zh) * 2020-03-05 2020-06-19 江苏天沃重工科技有限公司 一种时变转速下旋转机械智能故障诊断方法
RU2727470C2 (ru) * 2018-11-12 2020-07-21 Ринат Габдулхакович Кудояров Способ оперативной диагностики модулей металлообрабатывающих станков
CN111538947A (zh) * 2020-05-18 2020-08-14 中车永济电机有限公司 风力发电机轴承故障分类模型的构建方法
CN111881627A (zh) * 2020-08-05 2020-11-03 哈尔滨工程大学 一种核动力装置故障诊断方法和系统
CN111914735A (zh) * 2020-07-29 2020-11-10 天津大学 一种基于tqwt和熵特征的癫痫脑电信号特征提取方法
CN112001113A (zh) * 2020-07-02 2020-11-27 浙江大学 一种基于粒子群优化长短时记忆网络的电池寿命预测方法
CN112022149A (zh) * 2020-09-04 2020-12-04 无锡博智芯科技有限公司 一种基于心电信号的房颤检测方法
WO2020244134A1 (zh) * 2019-06-05 2020-12-10 华南理工大学 一种基于多任务特征共享神经网络的智能故障诊断方法
CN112129534A (zh) * 2020-09-17 2020-12-25 上海交通大学 一种机床主轴轴承寿命预测方法及系统
CN112990258A (zh) * 2021-02-01 2021-06-18 山东建筑大学 一种冷水机组故障诊断方法及系统
CN113112039A (zh) * 2021-04-13 2021-07-13 合肥工业大学 基于时频记忆递归神经网络的主动配电系统初期故障识别方法
CN113326590A (zh) * 2021-07-16 2021-08-31 北京博华信智科技股份有限公司 基于深度学习模型的滚动轴承寿命预测方法和装置
WO2021232655A1 (zh) * 2020-05-20 2021-11-25 国网河北省电力有限公司电力科学研究院 一种基于振动特征的高压并联电抗器机械状态评估方法
CN113720376A (zh) * 2020-12-29 2021-11-30 宇力源(深圳)科技有限公司 一种具有系统自检功能的模块化爬行器及其自检方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106682688A (zh) * 2016-12-16 2017-05-17 华南理工大学 基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法
CN106842161A (zh) * 2017-01-04 2017-06-13 北京环境特性研究所 基于置信度评价的微动周期提取方法
CN106934126A (zh) * 2017-02-28 2017-07-07 西安交通大学 基于循环神经网络融合的机械零部件健康指标构造方法
CN107044349A (zh) * 2017-04-17 2017-08-15 清华大学深圳研究生院 一种发动机的故障预测方法
CN107091737A (zh) * 2017-06-06 2017-08-25 太原理工大学 一种基于电流信号的转子系统典型故障诊断方法
CN107219457A (zh) * 2017-06-15 2017-09-29 河北工业大学 基于操作附件电流的框架式断路器故障诊断及程度评估方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106682688A (zh) * 2016-12-16 2017-05-17 华南理工大学 基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法
CN106842161A (zh) * 2017-01-04 2017-06-13 北京环境特性研究所 基于置信度评价的微动周期提取方法
CN106934126A (zh) * 2017-02-28 2017-07-07 西安交通大学 基于循环神经网络融合的机械零部件健康指标构造方法
CN107044349A (zh) * 2017-04-17 2017-08-15 清华大学深圳研究生院 一种发动机的故障预测方法
CN107091737A (zh) * 2017-06-06 2017-08-25 太原理工大学 一种基于电流信号的转子系统典型故障诊断方法
CN107219457A (zh) * 2017-06-15 2017-09-29 河北工业大学 基于操作附件电流的框架式断路器故障诊断及程度评估方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘忠 等著: "《水下自组织网络及军事应用》", 31 January 2015, 国防工业出版社 *
童创明、包战主编: "《雷达目标微波成像方法》", 31 January 2014, 西北工业出版社 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109213122A (zh) * 2018-08-10 2019-01-15 合肥工业大学 用于冲压设备的故障诊断方法及计算机存储介质
CN108986470A (zh) * 2018-08-20 2018-12-11 华南理工大学 粒子群算法优化lstm神经网络的行程时间预测方法
CN108986470B (zh) * 2018-08-20 2022-03-29 华南理工大学 粒子群算法优化lstm神经网络的行程时间预测方法
CN109409567A (zh) * 2018-09-17 2019-03-01 西安交通大学 基于双层长短期记忆网络的复杂设备剩余寿命预测方法
CN109409567B (zh) * 2018-09-17 2022-03-08 西安交通大学 基于双层长短期记忆网络的复杂设备剩余寿命预测方法
CN109299827A (zh) * 2018-09-30 2019-02-01 南京地铁集团有限公司 基于长短时记忆循环神经网络的城轨设备故障预测方法
RU2727470C2 (ru) * 2018-11-12 2020-07-21 Ринат Габдулхакович Кудояров Способ оперативной диагностики модулей металлообрабатывающих станков
CN109635677A (zh) * 2018-11-23 2019-04-16 华南理工大学 基于多标签分类卷积神经网络的复合故障诊断方法及装置
CN109635677B (zh) * 2018-11-23 2022-12-16 华南理工大学 基于多标签分类卷积神经网络的复合故障诊断方法及装置
CN109883699A (zh) * 2018-12-20 2019-06-14 上海理工大学 一种基于长短时记忆网络的滚动轴承剩余寿命预测方法
CN109946080B (zh) * 2019-04-08 2020-06-16 西安交通大学 一种基于嵌入式循环网络的机械设备健康状态识别方法
CN109946080A (zh) * 2019-04-08 2019-06-28 西安交通大学 一种基于嵌入式循环网络的机械设备健康状态识别方法
CN110261109A (zh) * 2019-04-28 2019-09-20 洛阳中科晶上智能装备科技有限公司 一种基于双向记忆循环神经网络的滚动轴承故障诊断方法
CN110261109B (zh) * 2019-04-28 2020-12-08 洛阳中科晶上智能装备科技有限公司 一种基于双向记忆循环神经网络的滚动轴承故障诊断方法
US11640521B2 (en) 2019-06-05 2023-05-02 South China University Of Technology Intelligent fault diagnosis method based on multi-task feature sharing neural network
WO2020244134A1 (zh) * 2019-06-05 2020-12-10 华南理工大学 一种基于多任务特征共享神经网络的智能故障诊断方法
CN110413227A (zh) * 2019-06-22 2019-11-05 华中科技大学 一种硬盘设备的剩余使用寿命在线预测方法和系统
CN110413227B (zh) * 2019-06-22 2021-06-11 华中科技大学 一种硬盘设备的剩余使用寿命在线预测方法和系统
CN111272436A (zh) * 2020-02-11 2020-06-12 上海交通大学 一种燃气轮机NOx预测排放监测系统和方法
CN111307452A (zh) * 2020-03-05 2020-06-19 江苏天沃重工科技有限公司 一种时变转速下旋转机械智能故障诊断方法
CN111307452B (zh) * 2020-03-05 2022-01-28 江苏天沃重工科技有限公司 一种时变转速下旋转机械智能故障诊断方法
CN111538947B (zh) * 2020-05-18 2022-06-14 中车永济电机有限公司 风力发电机轴承故障分类模型的构建方法
CN111538947A (zh) * 2020-05-18 2020-08-14 中车永济电机有限公司 风力发电机轴承故障分类模型的构建方法
WO2021232655A1 (zh) * 2020-05-20 2021-11-25 国网河北省电力有限公司电力科学研究院 一种基于振动特征的高压并联电抗器机械状态评估方法
CN112001113B (zh) * 2020-07-02 2023-12-19 浙江大学 一种基于粒子群优化长短时记忆网络的电池寿命预测方法
CN112001113A (zh) * 2020-07-02 2020-11-27 浙江大学 一种基于粒子群优化长短时记忆网络的电池寿命预测方法
CN111914735A (zh) * 2020-07-29 2020-11-10 天津大学 一种基于tqwt和熵特征的癫痫脑电信号特征提取方法
CN111881627B (zh) * 2020-08-05 2023-07-18 哈尔滨工程大学 一种核动力装置故障诊断方法和系统
CN111881627A (zh) * 2020-08-05 2020-11-03 哈尔滨工程大学 一种核动力装置故障诊断方法和系统
CN112022149B (zh) * 2020-09-04 2022-10-04 无锡博智芯科技有限公司 一种基于心电信号的房颤检测方法
CN112022149A (zh) * 2020-09-04 2020-12-04 无锡博智芯科技有限公司 一种基于心电信号的房颤检测方法
CN112129534B (zh) * 2020-09-17 2021-10-29 上海交通大学 一种机床主轴轴承寿命预测方法及系统
CN112129534A (zh) * 2020-09-17 2020-12-25 上海交通大学 一种机床主轴轴承寿命预测方法及系统
CN113720376A (zh) * 2020-12-29 2021-11-30 宇力源(深圳)科技有限公司 一种具有系统自检功能的模块化爬行器及其自检方法
CN112990258A (zh) * 2021-02-01 2021-06-18 山东建筑大学 一种冷水机组故障诊断方法及系统
CN113112039B (zh) * 2021-04-13 2022-11-25 合肥工业大学 基于时频记忆递归神经网络的主动配电系统初期故障识别方法
CN113112039A (zh) * 2021-04-13 2021-07-13 合肥工业大学 基于时频记忆递归神经网络的主动配电系统初期故障识别方法
CN113326590B (zh) * 2021-07-16 2021-10-29 北京博华信智科技股份有限公司 基于深度学习模型的滚动轴承寿命预测方法和装置
CN113326590A (zh) * 2021-07-16 2021-08-31 北京博华信智科技股份有限公司 基于深度学习模型的滚动轴承寿命预测方法和装置

Also Published As

Publication number Publication date
CN108303253B (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
CN108303253B (zh) 基于长短时记忆循环神经网络的轴承早期故障识别方法
Wang et al. An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition
Wang et al. Application of parameter optimized variational mode decomposition method in fault diagnosis of gearbox
CN107526853B (zh) 基于层叠卷积网络的滚动轴承故障模式识别方法及装置
CN105973594B (zh) 一种基于连续深度置信网络的滚动轴承故障预测方法
CN108106844B (zh) 一种自适应参数调节的自动编码机的轴承故障诊断方法
CN109100143A (zh) 基于ceemdan和cfsfdp的滚动轴承故障诊断方法及设备
CN109000930B (zh) 一种基于堆叠去噪自编码器的涡轮发动机性能退化评估方法
Lin et al. Hyper-spherical distance discrimination: A novel data description method for aero-engine rolling bearing fault detection
Cui et al. Improved fault size estimation method for rolling element bearings based on concatenation dictionary
CN106197999B (zh) 一种行星齿轮故障诊断方法
CN106323636A (zh) 栈式稀疏自动编码深度神经网络的机械故障程度特征自适应提取与诊断方法
CN107122790A (zh) 基于混合神经网络和集成学习的非侵入式负荷识别算法
CN109001557A (zh) 一种基于随机卷积神经网络的飞机机电系统故障识别方法
CN108398268A (zh) 一种基于堆叠去噪自编码器和自组织映射的轴承性能退化评估方法
CN105572572B (zh) 基于wknn-lssvm的模拟电路故障诊断方法
CN107101829A (zh) 一种航空发动机结构类故障的智能诊断方法
CN106093724A (zh) 一种基于混合粒子群的局部放电小波去噪方法
CN112729834B (zh) 一种轴承故障的诊断方法、装置和系统
CN109060347A (zh) 基于堆叠消噪自动编码器和门控循环单元神经网络的行星齿轮故障识别方法
CN110414666A (zh) 基于改进的lstm网络的泵站机组故障识别方法
Delgado et al. A novel condition monitoring scheme for bearing faults based on curvilinear component analysis and hierarchical neural networks
Lu et al. Unbalanced bearing fault diagnosis under various speeds based on spectrum alignment and deep transfer convolution neural network
Li et al. A new adaptive parallel resonance system based on cascaded feedback model of vibrational resonance and stochastic resonance and its application in fault detection of rolling bearings
Zhou et al. Fault diagnosis method of the construction machinery hydraulic system based on artificial intelligence dynamic monitoring

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant