CN106682688A - 基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法 - Google Patents

基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法 Download PDF

Info

Publication number
CN106682688A
CN106682688A CN201611164059.XA CN201611164059A CN106682688A CN 106682688 A CN106682688 A CN 106682688A CN 201611164059 A CN201611164059 A CN 201611164059A CN 106682688 A CN106682688 A CN 106682688A
Authority
CN
China
Prior art keywords
network
noise reduction
fault diagnosis
sdae
bearing fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611164059.XA
Other languages
English (en)
Other versions
CN106682688B (zh
Inventor
侯文擎
李巍华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201611164059.XA priority Critical patent/CN106682688B/zh
Publication of CN106682688A publication Critical patent/CN106682688A/zh
Application granted granted Critical
Publication of CN106682688B publication Critical patent/CN106682688B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques

Abstract

本发明公开了一种基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法,提出一种改进的堆叠降噪自编码网络SDAE轴承故障诊断方法,利用粒子群算法PSO对SDAE网络超参数如网络的隐含层节点数,稀疏参数,输入数据随机置零比例进行自适应的选取来确定SDAE网络结构,据此得到故障状态的高层特征表示,输入到Soft‑max分类器中进行故障分类识别;本发明不仅具有较好的特征学习能力,而且相较与普通的稀疏自编码器学习的特征更加具有鲁棒性,并且通过粒子群算法优化降噪自编码深度网络结构的超参数,构建了具有多隐含层的SDAE诊断模型,从而最终提升故障分类的正确率。

Description

基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法
技术领域
本发明属于机械制造技术领域,涉及一种机械故障诊断技术,具体涉及一种基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法。
背景技术
滚动轴承作为旋转机械装置常用的零部件,在工作过程中一旦发生故障,可能会造成重大的经济损失,因此对滚动轴承故障进行有效的诊断处置,对保证机器的正常运转具有重要的意义。
基于人工智能的故障诊断方法,已经广泛的应用于旋转机械的故障诊断并取得了较好的效果。现阶段,滚动轴承故障诊断大多是通过对各种状态参数的检测和分析来判断其运行的状态,确定故障位置和磨损程度。一般轴承故障诊断可通过振动信号的采集、特征提取、分类来完成。而分类过程可由反向传播神经网络、支持向量机(SVM)等机器学习算法来实现,上述智能诊断方法均是采用监督式学习的训练模式,这种方式训练得到的模型参数很大程度上受到参数初始化取值的影响,而不同的参数初始化方式不仅会影响模型的训练时间而且会决定模型参数能否收敛到最优解。
在深度网络训练过程中,降噪自编码在稀疏自编码网络的结构基础上融入去噪编码方法,提升编码器性能,通过对输入数据添加“损伤噪声”训练编码器,即对输入数据的一部分随机置0,可以从“有噪声的数据”中重构出“纯净的原始输入”。相比SAE网络,学习到的特征具有更好的鲁棒性。
而SDAE网络其结构超参数的选取将直接影响SDAE网络的分类性能,如网络的隐含层节点数,稀疏参数,输入数据随机置零比例等。而目前其超参数的确定大多是通过经验枚举多种超参数组合来获得其中较优的一组超参数,对于故障诊断问题,特别是对于不同领域的故障分类问题,泛化性能较弱。因此需要寻找一种有效的方法来自适应选取网络的超参数。
发明内容
基于上述原因,本发明的目的是提供一种泛化性能好、诊断准确性高的基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法,该方法不仅具有较好的特征学习能力,而且相较与普通的稀疏自编码器学习的特征更加具有鲁棒性,其通过粒子群算法优化降噪自编码深度网络结构的超参数,构建了具有多隐含层的SDAE诊断模型,从而最终提升故障分类的正确率,解决了现有机械故障诊断技术存在的上述问题。
本发明所采用的技术方案是,一种基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法,所述方法利用粒子群算法PSO对SDAE网络超参数的隐含层节点数,稀疏参数,输入数据随机置零比例进行自适应的选取,来确定SDAE网络结构,据此得到故障状态的高层特征表示,输入到Soft-max分类器中进行故障分类识别;该方法包括以下步骤:
:步骤1:对混合工况下的滚动轴承的原始振动信号预处理,采用去趋势项,五点三次平滑法对采集的时域信号预处理;
步骤2:提取经过预处理后的轴承振动信号的14个时域特征、4个频域特征,并对特征集进行线性归一化处理;
步骤3:把预处理后的每一类特征集按照一定比例随机分为训练集和测试集;
步骤4:确定粒子群的种群个数N,最大迭代次数M,和合适的目标分类错误率error;
步骤5:根据每个粒子的给定的位置和速度范围,初始化粒子的位置Xi k=0和速度Vi k =0
步骤6:将训练特征集输入到SDAE网络模型中,计算每个粒子的适应度值(错误分类率),同时找出历史记录的单个粒子最优Xk pbest和整个粒子群的最优Xk gbest
步骤7:更新每个粒子的速度和位置,判断条件gbeset<error或k>M是否满足,如果满足判别条件,则退出循环,输出优化后的堆叠降噪自编码网络超参数,否则转到第6步,k=k+1,循环执行第6,7步,直到满足判别条件,退出循环;
步骤8:把测试集输入到优化后的SDAE网络,得到轴承故障状态的分类结果。
本发明所述的基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法,其特征还在于:
在所述步骤1中,采用多项式最小二乘法,先将影响信号正确性的趋势项去除,然后采用五点三次平滑法对时域信号平滑处理,减少混入振动信号的高频随机噪声。
所述轴承故障诊断方法为避免了粒子群收敛速度快,陷入局部最优的问题,采用作了如下改进的粒子群算法,随着迭代次数增加,惯性因子ω由最大值线性减小到最小值,即:
惯性因子的更新公式为:
式中,k为当前迭代次数,M为总的迭代次数,ωmax为惯性因子最大值,ωmin为惯性因子最小值。
所述轴承故障诊断方法是一种基于粒子群算法的SDAE网络超参数选取方法,对SDAE网络训练来自适应选取降噪自编码网络的隐含层节点数、稀疏参数以及输入数据置零比例;针对混合工况下的滚动轴承故障问题,构建了SDAE轴承故障诊断模型。
本发明基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法,与现有技术相比具有如下优点:本方法不仅具有较好的特征学习能力,而且相较与普通的稀疏自编码器学习的特征更加具有鲁棒性,并且通过粒子群算法优化降噪自编码深度网络结构的超参数,构建了具有多隐含层的SDAE诊断模型,从而最终提升故障分类的正确率。
使用本发明的方法进行轴承故障处理,实现了混合工况下的轴承故障诊断,准确率都达到了95%以上。与稀疏自编码网络方法相比,本发明对轴承故障分类的准确率有较大提升,对滚动轴承的智能故障诊断具有重要的意义。
附图说明
图1是本发明方法中SDAE混合工况下轴承故障诊断流程图;
图2是本发明方法中堆叠降噪自编码的原理图;
图3是本发明方法中PSO算法优化堆叠降噪自编码原理图;
图4是本发明方法中实验平台原理简图;
图5是本发明方法中不同故障类型振动时域图;
图6是本发明方法中PSO算法优化适应度曲线;
图7a、图7b是本发明方法故障特征聚类效果图;
图8是本发明方法中故障诊断直方图;
图9是本发明方法故障诊断混淆矩阵图。
图中,1.变频调速电机,2.传动带,3.轴承座,4.轴承,5.加速度传感器,6.转轴。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
一种基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法,如图1所示,所述方利用粒子群算法(Particle Swarm Optimization)PSO对(Stacked Denoising AutoEncoder)SDAE网络超参数的隐含层节点数,稀疏参数,输入数据随机置零比例进行自适应的选取,来确定SDAE网络结构,据此得到故障状态的高层特征表示,输入到Soft-max分类器中进行故障分类识别;该方法包括以下步骤:
步骤1:对混合工况下的滚动轴承的原始振动信号预处理,采用去趋势项,五点三次平滑法对采集的时域信号预处理;
步骤2:提取经过预处理后的轴承振动信号的14个时域特征、4个频域特征,并对特征集进行线性归一化处理;
步骤3:把预处理后的每一类特征集按照一定比例随机分为训练集和测试集;
步骤4:确定粒子群的种群个数N,最大迭代次数M,和合适的目标分类错误率error;
步骤5:根据每个粒子的给定的位置和速度范围,初始化粒子的位置Xi k=0和速度Vi k =0
步骤6:将训练特征集输入到SDAE网络模型中,计算每个粒子的适应度值(错误分类率),同时找出历史记录的单个粒子最优Xk pbest和整个粒子群的最优Xk gbest
步骤7:更新每个粒子的速度和位置,判断条件gbeset<error或k>M是否满足,如果满足判别条件,则退出循环,输出优化后的堆叠降噪自编码网络超参数,否则转到第6步,k=k+1,循环执行第6,7步,直到满足判别条件,退出循环;
步骤8:把测试集输入到优化后的SDAE网络,得到轴承故障状态的分类结果。
对本发明的几点说明:
1、对稀疏自编码器(Auto Encoder,AE)、降噪自编码器(Denoising AutoEncoder,DAE)的说明:
AE是一种无监督学习,通过对输入数据的编码和解码过程得到表征输入数据的隐含层特征,从而达到降维及提升数据分类效果的目的,而DAE在AE的基础上,对训练数据加入噪声,AE必须学习去去除这种噪声而获得真正的没有被噪声污染过的输入。因此,这就迫使编码器去学习输入信号的更加鲁棒的表达,这也是它的泛化能力比一般AE强的原因。本方法中采用的即为多个DAE叠加的SDAE模型,结构见图2所示。
2、对基于SDAE模型深度学习的预训练过程和微调过程的说明:
a、预训练
编码时将符合统计特性的噪声加入样本数据进行编码,解码时再从未受干扰的数据中估计出加噪输入的原始形式。第一级降噪自编码器的隐含层输出经过“加噪”损伤作为第二级降噪自编码器的输入,第二级降噪自编码器的隐含层输出“加噪”损伤作为第三级降噪自编码器的输入,以此类推;通过对振动数据的逐层学习完成深度神经网络预训练。
为了使每个隐含层输出尽可能的表示输入的模式,采用梯度下降算法,通过不断的修正权重参数D,W使得代价函数最小:
式中第一项和第二项为编码过程,第三项为解码过程,Wi+1,Di+1
xi,zi+1分别代表第i个隐含层的编码权重,解码权重,第i个隐含层的输入,第i个隐含层的输出(第i+1隐含层的输入),当i=0时,x0=I,λ用于控制稀疏惩罚项的相对重要性,为L2范数,用于控制输出的稀疏程度,σ为Sigmoid激活函数,表达式如下:
b、微调
在完成SDAE的预训练后,所得SDAE网络的参数以及Soft-max分类器的参数作为网络的初始参数,这些参数可以看作接近全局最优的网络参数采用梯度下降算法可对网络的全部参数再次更新来改善整个模型的分类效果,此过程称为“微调”。
应用梯度下降算法进行微调时,算法的流程如下:
对输出层的每一个节点i,残差公式为:
对于隐含层l=nl-1,nl-2,…,2,其残差表达式为:
代价函数对W,b取偏导数:
进行参数更新:
式中η参数更新时的学习率,微调1到l层的网络参数。
3、对在本发明中所用粒子群算法的说明
PSO是由Eberhart等提出的一种全局优化算法,尤其适用于解决高维问题的多模态函数极值点的优化,已经成功应用于许多研究领域。文中将SDAE诊断网络的错误分类率作为SDAE网络超参数(隐含层节点数、稀疏参数以及输入数据随机置零比例)的多模态函数,通过粒子群的粒子训练SDAE网络,根据错误分类率的极小值来确定优化的网络超参数,从而得到适用于滚动轴承故障诊断的PSO-SDAE深度神经网络模型。
更新每个粒子的速度和位置的公式如下:
Vi k+1=ωVi k+c1r1(Xk ipbest-Xi k)+c2r2(Xk gbest-Xi k)
Xi k+1=Xi k+Vi k+1
公式中c1和c2称为学习因子,取值范围c∈[0,2],通常c1=c2=2。r1和r2是取值(0,1)之间服从均匀分布的随机数。
采用改进的粒子群算法,避免了粒子群收敛速度快,陷入局部最优的问题,作了如下改进,随着迭代次数增加,惯性因子ω由最大值线性减小到最小值。即:
惯性因子的更新公式为:
式中,k为当前迭代次数;M为总的迭代次数;ωmax为惯性因子最大值;ωmin为惯性因子最小值。
实施案例:
(1)试验数据
利用旋转机械试验台进行轴承故障试验,实验平台的结构如图4所示。由变频调速电机1,传动带2,轴承座3,轴承4、加速度传感器5及转轴6.组成,故障轴承4装在2号位固定安装转轴6的轴承座3中,在2号位轴承座3上装有加速度传感器5;用装在轴承座3上的加速度传感器5采集轴承4振动信号。在该轴承4的外圈和内圈用线切割加工深度为0.5mm,宽度分别为0.5mm,1mm和2mm三种不同的切槽,分别模拟不同部位轴承的轻度、中度和重度故障,采集了转速为800,1100,1400r/min的轴承振动信号,采样频率fs=12kHz,每次采样时间持续20s,总共采集了21种振动信号,实验工况描述如表1所示。
表1实验工况描述
类别 故障位置 故障尺寸/mm 故障程度
1 0 正常
2 内圈 宽0.5,深0.5 轻度
3 内圈 宽1,深0.5 中度
4 内圈 宽2,深0.5 重度
5 外圈 宽0.5,深0.5 轻度
6 外圈 宽1,深0.5 中度
7 外圈 宽2,深0.5 重度
图5显示了n=1100r/min轴承正常状态、内圈、外圈宽度为0.5mm的故障类别的振动信号。从图中的时域波形中可以看到实验采集到的轴承振动信号与轴承仿真信号有很大不同,三种类型的时域波形都包含有很大的噪声,振动信号淹没在噪声中。
(2)粒子群优化堆叠降噪自编码网络的训练过程
选取转轴转一圈的样本点作为一个样本的长度,首先把截取好的每一类振动信号样本集经过数据预处理和特征提取得到总的特征集,每类故障在每种工况下的数据集为300组,共有三种不同转速工况,因此每类特征集共900组,从每类总特征集中随机选择样本数的60%作为训练集,其余样本作为测试集。
以轴承振动信号的18个时域和频域特征作为网络的输入,设置SDAE网络的输入层节点数为18,针对7种不同类型的轴承状态,设置网络的输出层节点数为7,利用PSO算法来寻找网络每个隐含层的节点数、稀疏参数和输入数据置零比例,PSO优化后SDAE网络的结构超参数见表2,PSO算法优化的适应度曲线见图6所示。
表2 PSO优化SDAE的网络结构超参数
参数 超参数符号 优化参数值
损伤比例 P 0.04
第一个隐含层节点数 m1 20
第二个隐含层节点数 m2 20
第三个隐含层节点数 m3 25
第一个隐含层稀疏参数 ρ1 0.2684
第二个隐含层稀疏参数 ρ2 0.3317
第三个隐含层稀疏参数 ρ3 0.1514
(3)故障特征聚类效果
优化后的堆叠降噪自编码网络参数为表2所示,权重衰减系数α=1e-3,稀疏惩罚系数β=3,每层DAE以及Soft-max分类层网络参数更新的最大迭代次数均设置为100,微调优化的最大迭代次数设置为150。而普通的稀疏自编码网络采用与优化后的堆叠降噪自编码网络相同的结构超参数,保留隐含层特征前三维的主成分,其聚类效果如图7a、图7b所示,对于混合工况下轴承故障特征聚类效果,普通的稀疏自编码网络的第二类和第七类错分的类别相较与优化后的SDAE较多,SDAE的第二类和第七类的聚类更加紧凑。低维空间肉眼观测能明显线性可分,类内间距离最短,类外距离最长,说明经粒子群优化后的SDAE网络提取的特征具有更好的鲁棒性和泛化性。
(4)分类效果
图8为优化后SDAE网络和普通的稀疏自编码网络对于混合工况下轴承故障10次测试的分类正确率对比图,从直方图可以明显的看出,经过优化后SDAE网络的分类正确率均优于稀疏自编码网络。
为了清晰地表示优化后的SDAE网络对混合工况下的每一类故障的具体诊断情况,图9显示了测试集最后一次的故障分类混淆矩阵。混淆矩阵横轴代表预测类别,纵轴代表实际类别,对角线处的数值表示SDAE网络在每一类测试样本的分类正确率,非对角线位置的数值表示网络对每一类的错误分类率。例如:第五行第三列的元素值1.7%,表示实际类别为第五类,错分到第三类的比例为1.7%。
从图9的实验结果可以看出,其中第1类、第2类、第3类、第4类、第5类、第6类、第7类的分类正确率分别为95%,98.3%,98.3%,100%,98.3%,97.5%,99.2%,整个测试集的平均分类正确率为97.97%,轴承每个类别的分类正确率都在95%以上,说明该算法对于混合工况下的轴承故障状态有很好的分类识别效果。
综上所述,经本文发明所提方法处理后,实现了混合工况下的轴承故障诊断,准确率都达到了95%以上。与稀疏自编码网络方法相比,本发明对轴承故障分类的准确率有较大提升,对滚动轴承的智能故障诊断具有重要的意义。
最后需要说明的是,上述实施方式只是对本发明一个优选实施例所作的描述,并非对本发明保护范围进行的限定,在不脱离本发明设计精神的前提下,本领域技术人员对本发明的技术方案作出的各种等效的变化、修饰和改进,均应包括在本发明申请专利范围内。

Claims (4)

1.一种基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法,其特征在于,所述方法利用粒子群算法PSO对SDAE网络超参数的隐含层节点数,稀疏参数,输入数据随机置零比例进行自适应的选取,来确定SDAE网络结构,据此得到故障状态的高层特征表示,输入到Soft-max分类器中进行故障分类识别;该方法包括以下步骤:
步骤1:对混合工况下的滚动轴承的原始振动信号预处理,采用去趋势项,五点三次平滑法对采集的时域信号预处理;
步骤2:提取经过预处理后的轴承振动信号的14个时域特征、4个频域特征,并对特征集进行线性归一化处理;
步骤3:把预处理后的每一类特征集按照一定比例随机分为训练集和测试集;
步骤4:确定粒子群的种群个数N,最大迭代次数M,和合适的目标分类错误率error;
步骤5:根据每个粒子的给定的位置和速度范围,初始化粒子的位置Xi k=0和速度Vi k=0
步骤6:将训练特征集输入到SDAE网络模型中,计算每个粒子的适应度值(错误分类率),同时找出历史记录的单个粒子最优Xk pbest和整个粒子群的最优Xk gbest
步骤7:更新每个粒子的速度和位置,判断条件gbeset<error或k>M是否满足,如果满足判别条件,则退出循环,输出优化后的堆叠降噪自编码网络超参数,否则转到第6步,k=k+1,循环执行第6,7步,直到满足判别条件,退出循环;
步骤8:把测试集输入到优化后的SDAE网络,得到轴承故障状态的分类结果。
2.根据权利要求1所述的基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法,其特征在于:在所述步骤1中,采用多项式最小二乘法,先将影响信号正确性的趋势项去除,然后采用五点三次平滑法对时域信号平滑处理,减少混入振动信号的高频随机噪声。
3.根据权利要求1所述的基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法,其特征在于:所述轴承故障诊断方法为避免了粒子群收敛速度快,陷入局部最优的问题,采用作了如下改进的粒子群算法,随着迭代次数增加,惯性因子ω由最大值线性减小到最小值,即:
惯性因子的更新公式为:
式中,k为当前迭代次数,M为总的迭代次数,ωmax为惯性因子最大值,ωmin为惯性因子最小值。
4.根据权利要求1所述的基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法,其特征在于,所述轴承故障诊断方法是一种基于粒子群算法的SDAE网络超参数选取方法,对SDAE网络训练来自适应选取降噪自编码网络的隐含层节点数、稀疏参数以及输入数据置零比例;针对混合工况下的滚动轴承故障问题,构建了SDAE轴承故障诊断模型。
CN201611164059.XA 2016-12-16 2016-12-16 基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法 Active CN106682688B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611164059.XA CN106682688B (zh) 2016-12-16 2016-12-16 基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611164059.XA CN106682688B (zh) 2016-12-16 2016-12-16 基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法

Publications (2)

Publication Number Publication Date
CN106682688A true CN106682688A (zh) 2017-05-17
CN106682688B CN106682688B (zh) 2020-07-28

Family

ID=58869509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611164059.XA Active CN106682688B (zh) 2016-12-16 2016-12-16 基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法

Country Status (1)

Country Link
CN (1) CN106682688B (zh)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108154239A (zh) * 2017-12-27 2018-06-12 郑州云海信息技术有限公司 一种机器学习方法及其装置
CN108303253A (zh) * 2017-12-06 2018-07-20 华南理工大学 基于长短时记忆循环神经网络的轴承早期故障识别方法
CN108363382A (zh) * 2018-02-09 2018-08-03 哈尔滨工业大学(威海) 一种复杂装备故障诊断方法及系统
CN108376286A (zh) * 2018-02-26 2018-08-07 上海理工大学 一种设备故障诊断装置及系统
CN108460392A (zh) * 2018-03-09 2018-08-28 西安电子科技大学 基于网络结构优化的sar图像变化区域检测方法
CN108760305A (zh) * 2018-06-13 2018-11-06 中车青岛四方机车车辆股份有限公司 一种轴承故障检测方法、装置及设备
CN108956142A (zh) * 2018-05-28 2018-12-07 常州信息职业技术学院 一种轴承故障识别方法
CN109000930A (zh) * 2018-06-04 2018-12-14 哈尔滨工业大学 一种基于堆叠去噪自编码器的涡轮发动机性能退化评估方法
CN109213753A (zh) * 2018-08-14 2019-01-15 西安理工大学 一种基于在线pca的工业系统监测数据恢复方法
CN109211546A (zh) * 2018-08-28 2019-01-15 电子科技大学 基于降噪自动编码器及增量学习的旋转机械故障诊断方法
CN109241695A (zh) * 2018-11-16 2019-01-18 沈阳化工大学 基于新颖pso-sade的滚动轴承可靠性多目标优化设计方法
CN109635677A (zh) * 2018-11-23 2019-04-16 华南理工大学 基于多标签分类卷积神经网络的复合故障诊断方法及装置
CN109800875A (zh) * 2019-01-08 2019-05-24 华南理工大学 基于粒子群优化和降噪稀疏编码机的化工故障检测方法
CN109858345A (zh) * 2018-12-25 2019-06-07 华中科技大学 一种适用于胀管设备的智能故障诊断方法
CN110082106A (zh) * 2019-04-17 2019-08-02 武汉科技大学 一种基于Yu范数的深度度量学习的轴承故障诊断方法
CN110110768A (zh) * 2019-04-24 2019-08-09 西安电子科技大学 基于并行特征学习和多分类器的滚动轴承故障诊断方法
CN110146281A (zh) * 2019-06-06 2019-08-20 南京航空航天大学 一种基于vmd-sdae的行星齿轮箱故障诊断方法
CN110261080A (zh) * 2019-06-06 2019-09-20 湃方科技(北京)有限责任公司 基于多模态数据的异构旋转型机械异常检测方法及系统
CN110286279A (zh) * 2019-06-05 2019-09-27 武汉大学 基于极端随机森林与堆栈式稀疏自编码算法的电力电子电路故障诊断方法
CN110412872A (zh) * 2019-07-11 2019-11-05 中国石油大学(北京) 往复压缩机故障诊断优化方法及装置
CN110646203A (zh) * 2019-08-23 2020-01-03 中国地质大学(武汉) 基于奇异值分解和自编码器的轴承故障特征提取方法
CN110657091A (zh) * 2019-09-20 2020-01-07 中国农业大学 一种循环泵轴承故障诊断方法及系统
CN110701087A (zh) * 2019-09-25 2020-01-17 杭州电子科技大学 基于单分类超限学习机的轴流压气机气动失稳检测方法
CN110751108A (zh) * 2019-10-23 2020-02-04 武汉理工大学 一种地铁分布式振动信号相似度确定方法
CN110929843A (zh) * 2019-10-29 2020-03-27 国网福建省电力有限公司 一种基于改进深度自编码网络的异常用电行为辨识方法
CN110953488A (zh) * 2019-12-30 2020-04-03 中国海洋石油集团有限公司 基于堆栈自编码的气液两相流管道泄漏声发射检测方法
CN111080607A (zh) * 2019-12-12 2020-04-28 哈尔滨市科佳通用机电股份有限公司 一种基于图像识别的滚动轴承甩油故障检测方法
CN111122160A (zh) * 2019-09-25 2020-05-08 江苏省水文水资源勘测局 一种基于堆栈降噪自编码器的异常信号检测方法
CN111310830A (zh) * 2020-02-17 2020-06-19 湖北工业大学 一种联合收割机堵塞故障诊断系统及方法
CN111323220A (zh) * 2020-03-02 2020-06-23 武汉大学 风力发电机齿轮箱故障诊断方法及系统
CN111401136A (zh) * 2020-02-22 2020-07-10 上海交通大学 一种柱塞泵空化程度检测方法、装置及终端
CN111444780A (zh) * 2020-03-06 2020-07-24 同济大学 一种基于深度稀疏降噪自编码网络的轴承故障诊断方法
CN111476263A (zh) * 2019-12-27 2020-07-31 江苏科技大学 基于sdae和改进gwo-svm的轴承缺陷识别方法
CN112431726A (zh) * 2020-11-22 2021-03-02 华能国际电力股份有限公司 一种风电机组齿轮箱轴承状态监测方法
CN112597705A (zh) * 2020-12-28 2021-04-02 哈尔滨工业大学 一种基于scvnn的多特征健康因子融合方法
CN112948916A (zh) * 2021-01-30 2021-06-11 同济大学 一种岩土体力学参数获取方法
CN113176093A (zh) * 2021-04-27 2021-07-27 合肥工业大学 基于isca-sdae的滚动轴承故障诊断方法及系统
CN113660236A (zh) * 2021-08-10 2021-11-16 和安科技创新有限公司 一种基于优化堆叠降噪卷积自编码网络的异常流量检测方法、存储器和处理器
CN113676858A (zh) * 2021-08-26 2021-11-19 杭州北斗时空研究院 一种兼顾非视距识别的无线信号室内定位
CN114819108A (zh) * 2022-06-22 2022-07-29 中国电力科学研究院有限公司 一种综合能源系统故障识别方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792530A (zh) * 2015-04-15 2015-07-22 北京航空航天大学 一种基于SDA和Softmax回归的深度学习滚动轴承故障诊断方法
CN105973595A (zh) * 2016-04-27 2016-09-28 清华大学深圳研究生院 一种滚动轴承故障的诊断方法
CN106124212A (zh) * 2016-06-16 2016-11-16 燕山大学 基于稀疏编码器和支持向量机的滚动轴承故障诊断方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792530A (zh) * 2015-04-15 2015-07-22 北京航空航天大学 一种基于SDA和Softmax回归的深度学习滚动轴承故障诊断方法
CN105973595A (zh) * 2016-04-27 2016-09-28 清华大学深圳研究生院 一种滚动轴承故障的诊断方法
CN106124212A (zh) * 2016-06-16 2016-11-16 燕山大学 基于稀疏编码器和支持向量机的滚动轴承故障诊断方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANDERSON TENÓRIO SERGIO等: ""Deep Learning for Wind Speed Forecasting in Northeastern Region of Brazil"", 《2015 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS》 *
CHEN LU等: ""Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification"", 《SIGNAL PROCESSING》 *
PASCAL VINCENT 等: ""Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion"", 《THE JOURNAL OF MACHINE LEARNING RESEARCH》 *
SHENG LI等: ""Deep Collaborative Filtering via Marginalized Denoising Auto-encoder"", 《THE 24TH ACM INTERNATIONAL》 *
丛爽 著: "《智能控制系统及其应用》", 31 August 2013 *
张成刚 等: ""一种稀疏降噪自编码神经网络研究"", 《内蒙古民族大学学报(自然科学版)》 *
张玲玲等编著: "《柴油机发动机故障诊断技术》", 31 December 2015 *

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108303253A (zh) * 2017-12-06 2018-07-20 华南理工大学 基于长短时记忆循环神经网络的轴承早期故障识别方法
CN108154239A (zh) * 2017-12-27 2018-06-12 郑州云海信息技术有限公司 一种机器学习方法及其装置
CN108363382A (zh) * 2018-02-09 2018-08-03 哈尔滨工业大学(威海) 一种复杂装备故障诊断方法及系统
CN108376286A (zh) * 2018-02-26 2018-08-07 上海理工大学 一种设备故障诊断装置及系统
CN108460392A (zh) * 2018-03-09 2018-08-28 西安电子科技大学 基于网络结构优化的sar图像变化区域检测方法
CN108460392B (zh) * 2018-03-09 2020-04-07 西安电子科技大学 基于网络结构优化的sar图像变化区域检测方法
CN108956142A (zh) * 2018-05-28 2018-12-07 常州信息职业技术学院 一种轴承故障识别方法
CN109000930A (zh) * 2018-06-04 2018-12-14 哈尔滨工业大学 一种基于堆叠去噪自编码器的涡轮发动机性能退化评估方法
CN108760305A (zh) * 2018-06-13 2018-11-06 中车青岛四方机车车辆股份有限公司 一种轴承故障检测方法、装置及设备
CN109213753A (zh) * 2018-08-14 2019-01-15 西安理工大学 一种基于在线pca的工业系统监测数据恢复方法
CN109213753B (zh) * 2018-08-14 2022-01-07 西安理工大学 一种基于在线pca的工业系统监测数据恢复方法
CN109211546A (zh) * 2018-08-28 2019-01-15 电子科技大学 基于降噪自动编码器及增量学习的旋转机械故障诊断方法
CN109211546B (zh) * 2018-08-28 2020-05-26 电子科技大学 基于降噪自动编码器及增量学习的旋转机械故障诊断方法
CN109241695B (zh) * 2018-11-16 2022-10-28 沈阳化工大学 基于新颖pso-sade的滚动轴承可靠性多目标优化设计方法
CN109241695A (zh) * 2018-11-16 2019-01-18 沈阳化工大学 基于新颖pso-sade的滚动轴承可靠性多目标优化设计方法
CN109635677B (zh) * 2018-11-23 2022-12-16 华南理工大学 基于多标签分类卷积神经网络的复合故障诊断方法及装置
CN109635677A (zh) * 2018-11-23 2019-04-16 华南理工大学 基于多标签分类卷积神经网络的复合故障诊断方法及装置
CN109858345A (zh) * 2018-12-25 2019-06-07 华中科技大学 一种适用于胀管设备的智能故障诊断方法
CN109858345B (zh) * 2018-12-25 2021-06-11 华中科技大学 一种适用于胀管设备的智能故障诊断方法
CN109800875A (zh) * 2019-01-08 2019-05-24 华南理工大学 基于粒子群优化和降噪稀疏编码机的化工故障检测方法
CN110082106A (zh) * 2019-04-17 2019-08-02 武汉科技大学 一种基于Yu范数的深度度量学习的轴承故障诊断方法
CN110082106B (zh) * 2019-04-17 2021-08-31 武汉科技大学 一种基于Yu范数的深度度量学习的轴承故障诊断方法
CN110110768A (zh) * 2019-04-24 2019-08-09 西安电子科技大学 基于并行特征学习和多分类器的滚动轴承故障诊断方法
CN110286279B (zh) * 2019-06-05 2021-03-16 武汉大学 基于极端树与堆栈式稀疏自编码算法的电力电子电路故障诊断方法
CN110286279A (zh) * 2019-06-05 2019-09-27 武汉大学 基于极端随机森林与堆栈式稀疏自编码算法的电力电子电路故障诊断方法
CN110261080A (zh) * 2019-06-06 2019-09-20 湃方科技(北京)有限责任公司 基于多模态数据的异构旋转型机械异常检测方法及系统
CN110146281A (zh) * 2019-06-06 2019-08-20 南京航空航天大学 一种基于vmd-sdae的行星齿轮箱故障诊断方法
CN110412872A (zh) * 2019-07-11 2019-11-05 中国石油大学(北京) 往复压缩机故障诊断优化方法及装置
CN110646203A (zh) * 2019-08-23 2020-01-03 中国地质大学(武汉) 基于奇异值分解和自编码器的轴承故障特征提取方法
CN110657091A (zh) * 2019-09-20 2020-01-07 中国农业大学 一种循环泵轴承故障诊断方法及系统
CN111122160A (zh) * 2019-09-25 2020-05-08 江苏省水文水资源勘测局 一种基于堆栈降噪自编码器的异常信号检测方法
CN111122160B (zh) * 2019-09-25 2022-01-04 江苏省水文水资源勘测局 一种基于堆栈降噪自编码器的异常信号检测方法
CN110701087A (zh) * 2019-09-25 2020-01-17 杭州电子科技大学 基于单分类超限学习机的轴流压气机气动失稳检测方法
CN110751108A (zh) * 2019-10-23 2020-02-04 武汉理工大学 一种地铁分布式振动信号相似度确定方法
CN110751108B (zh) * 2019-10-23 2022-10-14 武汉理工大学 一种地铁分布式振动信号相似度确定方法
CN110929843A (zh) * 2019-10-29 2020-03-27 国网福建省电力有限公司 一种基于改进深度自编码网络的异常用电行为辨识方法
CN111080607A (zh) * 2019-12-12 2020-04-28 哈尔滨市科佳通用机电股份有限公司 一种基于图像识别的滚动轴承甩油故障检测方法
CN111080607B (zh) * 2019-12-12 2020-10-09 哈尔滨市科佳通用机电股份有限公司 一种基于图像识别的滚动轴承甩油故障检测方法
CN111476263A (zh) * 2019-12-27 2020-07-31 江苏科技大学 基于sdae和改进gwo-svm的轴承缺陷识别方法
CN111476263B (zh) * 2019-12-27 2024-02-09 江苏科技大学 一种基于sdae和改进gwo-svm的轴承缺陷识别方法
WO2021128510A1 (zh) * 2019-12-27 2021-07-01 江苏科技大学 基于sdae和改进gwo-svm的轴承缺陷识别方法
CN110953488B (zh) * 2019-12-30 2021-04-02 中国海洋石油集团有限公司 基于堆栈自编码的气液两相流管道泄漏声发射检测方法
CN110953488A (zh) * 2019-12-30 2020-04-03 中国海洋石油集团有限公司 基于堆栈自编码的气液两相流管道泄漏声发射检测方法
CN111310830A (zh) * 2020-02-17 2020-06-19 湖北工业大学 一种联合收割机堵塞故障诊断系统及方法
CN111401136A (zh) * 2020-02-22 2020-07-10 上海交通大学 一种柱塞泵空化程度检测方法、装置及终端
CN111323220A (zh) * 2020-03-02 2020-06-23 武汉大学 风力发电机齿轮箱故障诊断方法及系统
CN111444780A (zh) * 2020-03-06 2020-07-24 同济大学 一种基于深度稀疏降噪自编码网络的轴承故障诊断方法
CN112431726A (zh) * 2020-11-22 2021-03-02 华能国际电力股份有限公司 一种风电机组齿轮箱轴承状态监测方法
CN112597705A (zh) * 2020-12-28 2021-04-02 哈尔滨工业大学 一种基于scvnn的多特征健康因子融合方法
CN112597705B (zh) * 2020-12-28 2022-05-24 哈尔滨工业大学 一种基于scvnn的多特征健康因子融合方法
CN112948916A (zh) * 2021-01-30 2021-06-11 同济大学 一种岩土体力学参数获取方法
CN112948916B (zh) * 2021-01-30 2022-09-20 同济大学 一种岩土体力学参数获取方法
CN113176093B (zh) * 2021-04-27 2023-07-18 合肥工业大学 基于isca-sdae的滚动轴承故障诊断方法及系统
CN113176093A (zh) * 2021-04-27 2021-07-27 合肥工业大学 基于isca-sdae的滚动轴承故障诊断方法及系统
CN113660236B (zh) * 2021-08-10 2023-05-09 和安科技创新有限公司 一种基于优化堆叠降噪卷积自编码网络的异常流量检测方法、存储器和处理器
CN113660236A (zh) * 2021-08-10 2021-11-16 和安科技创新有限公司 一种基于优化堆叠降噪卷积自编码网络的异常流量检测方法、存储器和处理器
CN113676858A (zh) * 2021-08-26 2021-11-19 杭州北斗时空研究院 一种兼顾非视距识别的无线信号室内定位
CN113676858B (zh) * 2021-08-26 2024-01-02 杭州北斗时空研究院 一种兼顾非视距识别的无线信号室内定位方法
CN114819108B (zh) * 2022-06-22 2022-10-04 中国电力科学研究院有限公司 一种综合能源系统故障识别方法及装置
CN114819108A (zh) * 2022-06-22 2022-07-29 中国电力科学研究院有限公司 一种综合能源系统故障识别方法及装置

Also Published As

Publication number Publication date
CN106682688B (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
CN106682688A (zh) 基于粒子群优化的堆叠降噪自编码网络轴承故障诊断方法
CN109102005B (zh) 基于浅层模型知识迁移的小样本深度学习方法
CN110162018B (zh) 基于知识蒸馏与隐含层共享的增量式设备故障诊断方法
Gao et al. Rolling bearing fault diagnosis based on SSA optimized self-adaptive DBN
Rajabi et al. Fault diagnosis in industrial rotating equipment based on permutation entropy, signal processing and multi-output neuro-fuzzy classifier
CN104792530B (zh) 一种基于SDA和Softmax回归的深度学习滚动轴承故障诊断方法
CN106124212B (zh) 基于稀疏编码器和支持向量机的滚动轴承故障诊断方法
CN107784325A (zh) 基于数据驱动增量融合的螺旋式故障诊断模型
CN110617966A (zh) 一种基于半监督生成对抗网络的轴承故障诊断方法
CN108398268B (zh) 一种轴承性能退化评估方法
CN107657250B (zh) 轴承故障检测及定位方法及检测定位模型实现系统和方法
CN110516305B (zh) 基于注意机制元学习模型的小样本下故障智能诊断方法
CN108062572A (zh) 一种基于DdAE深度学习模型的水电机组故障诊断方法与系统
CN109597401A (zh) 一种基于数据驱动的设备故障诊断方法
CN106886660A (zh) EEMD‑Hilbert包络谱与DBN相结合的变负载下滚动轴承状态识别方法
CN108869145B (zh) 基于复合特征指标和深度极限学习机的泵站机组诊断方法
Xie et al. Learning features from high speed train vibration signals with deep belief networks
CN106628097A (zh) 一种基于改进径向基神经网络的船舶设备故障诊断方法
CN114358123B (zh) 一种基于深度对抗迁移网络的广义开放集故障诊断方法
CN110647830A (zh) 基于卷积神经网络和高斯混合模型的轴承故障诊断方法
CN112132102B (zh) 一种深度神经网络结合人工蜂群优化的智能故障诊断方法
CN111504644A (zh) 基于嵌入区分性的条件对抗域自适应的轴承故障诊断方法
CN113705424A (zh) 基于时间卷积降噪网络的演艺装备故障诊断模型构建方法
CN109187022A (zh) 一种基于随机共振与自动编码器的滚动轴承故障诊断方法
CN115392333A (zh) 一种基于改进端到端ResNet-BiLSTM双通道模型的设备故障诊断方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant