CN108300884B - A kind of hypoeutectic Al-Mg2The rotten and thinning method of Si alloy - Google Patents
A kind of hypoeutectic Al-Mg2The rotten and thinning method of Si alloy Download PDFInfo
- Publication number
- CN108300884B CN108300884B CN201810037556.6A CN201810037556A CN108300884B CN 108300884 B CN108300884 B CN 108300884B CN 201810037556 A CN201810037556 A CN 201810037556A CN 108300884 B CN108300884 B CN 108300884B
- Authority
- CN
- China
- Prior art keywords
- alloy
- melt
- hypoeutectic
- modification
- refinement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000676 Si alloy Inorganic materials 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000000155 melt Substances 0.000 claims abstract description 91
- 229910019018 Mg 2 Si Inorganic materials 0.000 claims abstract description 82
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 62
- 239000000956 alloy Substances 0.000 claims abstract description 62
- 238000012986 modification Methods 0.000 claims abstract description 56
- 230000004048 modification Effects 0.000 claims abstract description 56
- 229910018134 Al-Mg Inorganic materials 0.000 claims abstract description 55
- 229910018467 Al—Mg Inorganic materials 0.000 claims abstract description 55
- 229910052751 metal Inorganic materials 0.000 claims abstract description 34
- 239000002184 metal Substances 0.000 claims abstract description 34
- 239000004576 sand Substances 0.000 claims abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 23
- 229910002804 graphite Inorganic materials 0.000 claims description 23
- 239000010439 graphite Substances 0.000 claims description 23
- 238000007670 refining Methods 0.000 claims description 23
- 238000003756 stirring Methods 0.000 claims description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 claims description 14
- 238000005266 casting Methods 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 11
- 238000007872 degassing Methods 0.000 claims description 10
- VHHHONWQHHHLTI-UHFFFAOYSA-N hexachloroethane Chemical compound ClC(Cl)(Cl)C(Cl)(Cl)Cl VHHHONWQHHHLTI-UHFFFAOYSA-N 0.000 claims description 10
- 239000011888 foil Substances 0.000 claims description 7
- 238000004140 cleaning Methods 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 230000005496 eutectics Effects 0.000 abstract description 26
- 229910052797 bismuth Inorganic materials 0.000 abstract description 22
- 229910052726 zirconium Inorganic materials 0.000 abstract description 19
- 239000003607 modifier Substances 0.000 abstract description 9
- 230000008569 process Effects 0.000 abstract description 6
- 239000013078 crystal Substances 0.000 abstract description 5
- 230000008901 benefit Effects 0.000 abstract description 4
- 238000001816 cooling Methods 0.000 abstract description 4
- 230000007774 longterm Effects 0.000 abstract description 3
- 229910019752 Mg2Si Inorganic materials 0.000 abstract 4
- 239000000835 fiber Substances 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 73
- 239000011777 magnesium Substances 0.000 description 27
- 238000010586 diagram Methods 0.000 description 22
- 230000000694 effects Effects 0.000 description 21
- 210000001787 dendrite Anatomy 0.000 description 17
- 239000000203 mixture Substances 0.000 description 9
- 229910052749 magnesium Inorganic materials 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 230000012010 growth Effects 0.000 description 6
- 229910007880 ZrAl Inorganic materials 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 230000006911 nucleation Effects 0.000 description 5
- 238000010899 nucleation Methods 0.000 description 5
- 238000003723 Smelting Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- 229910018580 Al—Zr Inorganic materials 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910018566 Al—Si—Mg Inorganic materials 0.000 description 2
- 229910018575 Al—Ti Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- -1 compound salts Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000006023 eutectic alloy Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005551 mechanical alloying Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/06—Making non-ferrous alloys with the use of special agents for refining or deoxidising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Continuous Casting (AREA)
Abstract
一种亚共晶Al‑Mg2Si合金的变质及细化方法,以Bi和Zr对Mg2Si含量为4~12.5wt.%的亚共晶Al‑Mg2Si合金进行变质及细化处理,处理后,使熔体中的Bi含量为0.1~0.6%,Zr含量为0.05~0.2%。经Bi变质处理后合金中的共晶Mg2Si由粗大的汉字状转变为细小的纤维状,Zr细化处理后合金中的初生α‑Al由柱状晶转变为等轴晶,力学性能得到大幅提高,细化、变质后合金的抗拉强度及伸长率分别提高34%和239%。对不同含量Mg2Si的亚共晶Al‑Mg2Si合金进行变质、细化处理后组织均得到显著细化。同时,Bi的变质和Zr的细化效果不受冷却速度的影响,既适用于金属型,也适用于砂型。并且Bi变质剂和Zr细化剂还具有优良的长效性、处理工艺简单及无污染等优点。A modification and refinement method of a hypoeutectic Al-Mg 2 Si alloy, using Bi and Zr to modify and refine a hypoeutectic Al-Mg2Si alloy with a Mg 2 Si content of 4 to 12.5wt.%. Finally, the Bi content in the melt is 0.1-0.6%, and the Zr content is 0.05-0.2%. The eutectic Mg2Si in the alloy changed from thick Chinese characters to fine fibers after Bi modification treatment, and the primary α-Al in the alloy changed from columnar crystals to equiaxed crystals after Zr refinement treatment, and the mechanical properties were greatly improved. The tensile strength and elongation of the alloy increased by 34% and 239% respectively after refinement and modification. The microstructures of hypoeutectic Al‑Mg2Si alloys with different contents of Mg2Si are significantly refined after modification and refinement treatment. At the same time, the modification of Bi and the refinement of Zr are not affected by the cooling rate, which is suitable for both metal molds and sand molds. Moreover, the Bi modifier and the Zr refiner also have the advantages of excellent long-term effect, simple treatment process and no pollution.
Description
技术领域technical field
本发明属于铝合金铸造与熔炼技术领域,特别涉及一种亚共晶Al-Mg2Si合金的变质及细化方法。The invention belongs to the technical field of aluminum alloy casting and smelting, and in particular relates to a modification and refinement method of a hypoeutectic Al-Mg 2 Si alloy.
背景技术Background technique
在传统的Al-Si-Mg合金中,Mg2Si作为第二相是通过固溶-时效热处理弥散析出而强化Al基体的。近年来,从铝液中直接析出Mg2Si相而形成的Al-Mg2Si合金,这在过共晶成分也被称为原位自生Mg2Si/Al的复合材料,受到国内外学者的广泛关注。这种材料与传统的Al-Si-Mg合金相比,含Mg量及Mg2Si相体积分数更高,具有更高的比刚度、比强度及耐磨性等优良性能,作为航天航空及汽车等领域的新型轻量化材料具有更广泛的应用前景。然而,铸态下析出的Mg2Si相较粗大,初生Mg2Si呈粗大的、带孔的枝晶状,而共晶Mg2Si则呈粗大的汉字状、网状、棒状及片状,严重地割裂Al基体,导致应力集中,形成裂纹源,恶化合金的力学性能。另外,对于亚共晶成分的Al-Mg2Si合金,其组织由初生α-Al和Mg2Si+α-Al共晶相组成,其中初生α-Al在铸态下的形貌为粗大的树枝晶状,宏观上为柱状晶,导致合金力学性能和补缩性、抗裂性等铸造性能的下降。In traditional Al-Si-Mg alloys, Mg 2 Si, as the second phase, is dispersed and precipitated through solid solution-aging heat treatment to strengthen the Al matrix. In recent years, the Al-Mg 2 Si alloy formed by directly precipitating the Mg 2 Si phase from the aluminum liquid, which is also called the in-situ self-generated Mg 2 Si/Al composite material in the hypereutectic composition, has been favored by scholars at home and abroad. extensive attention. Compared with the traditional Al-Si-Mg alloy, this material has higher Mg content and Mg 2 Si phase volume fraction, and has higher specific stiffness, specific strength and wear resistance. The new lightweight materials in the field of materials and other fields have broader application prospects. However, the precipitated Mg 2 Si in the as-cast state is relatively coarse, and the primary Mg 2 Si is in the form of coarse dendrites with holes, while the eutectic Mg 2 Si is in the form of coarse Chinese characters, nets, rods and flakes. Severely split the Al matrix, resulting in stress concentration, the formation of crack sources, and deterioration of the mechanical properties of the alloy. In addition, for the Al-Mg 2 Si alloy with hypoeutectic composition, its microstructure is composed of primary α-Al and Mg 2 Si+α-Al eutectic phase, and the morphology of primary α-Al in the as-cast state is coarse Dendritic, columnar crystals macroscopically, leading to a decline in the mechanical properties of the alloy, feeding properties, crack resistance and other casting properties.
近年来,人们采用各种工艺方法如机械合金化、热挤压、轧制、热处理、快速凝固及变质处理等控制Mg2Si相的尺寸与形貌。在这些方法中,变质处理具有操作简单、成本低、变质效果显著等优点,通过向合金熔体中加入P、La、Nd、Y、Sr、Na、Ni、Zr及B等变质剂元素,增加Mg2Si相的形核率或改变晶体的生长方式,进而能够有效地细化Mg2Si相,提高合金的力学性能。In recent years, various techniques such as mechanical alloying, hot extrusion, rolling, heat treatment, rapid solidification and modification have been used to control the size and morphology of Mg 2 Si phase. Among these methods, modification treatment has the advantages of simple operation, low cost, and significant modification effect. By adding modification elements such as P, La, Nd, Y, Sr, Na, Ni, Zr, and B to the alloy melt, the increase The nucleation rate of the Mg 2 Si phase may change the growth mode of the crystal, which can effectively refine the Mg 2 Si phase and improve the mechanical properties of the alloy.
至今为止,人们对过共晶Al-Mg2Si合金即原位自生Mg2Si/Al复合材料的变质处理等工艺方法进行了大量研究,而对亚共晶Al-Mg2Si合金的研究鲜有报道。与过共晶Al-Mg2Si合金相比,亚共晶Al-Mg2Si合金的塑性和韧性更好,具有更优良的综合力学性能,预计会有更广泛的应用场合。前提是粗大的汉字状、网状及片状的共晶Mg2Si相得到有效的细化。同时细化初生α-Al枝晶,使合金力学性能及铸造性能得到进一步改善。So far, people have done a lot of research on the modification treatment of hypereutectic Al-Mg 2 Si alloy, that is, in situ authigenic Mg 2 Si/Al composite material, while the research on hypoeutectic Al-Mg 2 Si alloy is scarce. There are reports. Compared with the hypereutectic Al-Mg 2 Si alloy, the hypoeutectic Al-Mg 2 Si alloy has better plasticity and toughness, and has better comprehensive mechanical properties, and is expected to have wider applications. The premise is that the coarse Chinese character-like, network-like and sheet-like eutectic Mg 2 Si phases are effectively refined. At the same time, the primary α-Al dendrites are refined, so that the mechanical properties and casting properties of the alloy are further improved.
目前对于亚共晶Al-Mg2Si合金的研究鲜有报道。天津大学的Li等人对亚共晶Al-10Mg2Si合金进行520℃×6h固溶及随后的200℃×6h的时效处理,发现处理后合金中的共晶Mg2Si相由长的棒状转变为短的纤维状和球状,拉伸强度由186 MPa 提高到234.6 MPa,见Journal of Alloys and Compounds, 2016, 663(5):15-19。他们的研究还表明,亚共晶Al-10Mg2Si合金在3.5 wt.% NaCl溶液中的耐腐蚀性也得到了改善,见MaterialsCharacterization, 2016, 122(12):142-147。韩国材料科学研究所的Lee等人对AlMg5Si2Mn压铸合金在均匀化处理前做冷轧处理,使相互连接的粗大的共晶Mg2Si相破碎成细小的碎片,从而使合金的力学性能得到有效改善,见Materials Science andEngineering A, 2017, 685(8):244-252。这些方法虽然能够细化共晶Mg2Si,提高合金力学、耐腐蚀等性能,但存在工序多、工艺复杂及成本高等缺点。因此,迫切需要研究和开发既简便又经济,适用于亚共晶Al-Mg2Si合金的变质剂、细化剂及变质、细化方法。At present, there are few reports on the study of hypoeutectic Al-Mg 2 Si alloys. Li et al. from Tianjin University carried out a solution treatment on the hypoeutectic Al - 10Mg 2 Si alloy at 520°C×6h followed by an aging treatment at 200°C×6h. Transformed into short fibrous and spherical shapes, the tensile strength increased from 186 MPa to 234.6 MPa, see Journal of Alloys and Compounds, 2016, 663(5):15-19. Their research also showed that the corrosion resistance of the hypoeutectic Al-10Mg 2 Si alloy in 3.5 wt.% NaCl solution was also improved, see MaterialsCharacterization, 2016, 122(12):142-147. Lee et al. of the Korea Institute of Materials Science performed cold rolling on the AlMg5Si2Mn die-casting alloy before the homogenization treatment, so that the interconnected coarse eutectic Mg 2 Si phases were broken into fine fragments, so that the mechanical properties of the alloy were effectively improved. , see Materials Science and Engineering A, 2017, 685(8):244-252. Although these methods can refine the eutectic Mg 2 Si and improve the properties of the alloy such as mechanics and corrosion resistance, they have the disadvantages of many processes, complex processes and high costs. Therefore, there is an urgent need to research and develop simple and economical modifiers, refiners and modification and refinement methods suitable for hypoeutectic Al-Mg 2 Si alloys.
至今为止尚未见到有细化亚共晶Al-Mg2Si合金初生α-Al枝晶的报道。对于铸造Al-Si合金主要是通过向合金熔体中添加细化剂细化初生α-Al枝晶。目前常用的细化剂有Al-Ti、Al-B、Al-Ti-B、Al-Ti-C、Al-Zr等中间合金以及KBF4、K2TiF6、TiC及K2ZrF6等单一或复合盐类。Al–Ti 、Al–5Ti–1B及Al–Ti–C等Ti类细化剂适用于纯铝及含硅量小于1.5%的铝硅合金,对于含硅量≥5%的亚共晶铸造铝硅合金细化效果并不明显,这是由于(Ti1-x Six )Al3化合物的产生减少了作为生核剂的Al3Ti和TiB2的量。研究表明,Al-3B、Al–3Ti–3B等B类细化剂对含硅量>4%的亚共晶铸造铝硅合金具有较好的细化效果,但B易与变质元素Sr反应,生成SrB6,消耗Sr和B。对于Al-Mg2Si合金,由于其中含有较高的Mg量,细化元素更易与Mg及变质元素等形成非生核化合物,削弱变质和细化效果或造成铸造缺陷的产生。伊朗德黑兰大学的Fakhraei等人发现,在Al-20Mg合金中加入过量的B或Zr会产生气孔,导致合金拉伸性能的降低,见Materials & Design, 2014, 56 (4):557-564。So far, there is no report on the refinement of primary α-Al dendrites in hypoeutectic Al-Mg 2 Si alloys. For cast Al-Si alloys, primary α-Al dendrites are mainly refined by adding a refiner to the alloy melt. At present, the commonly used refiners include Al-Ti, Al-B, Al-Ti-B, Al-Ti-C, Al-Zr and other master alloys, as well as KBF 4 , K 2 TiF 6 , TiC and K 2 ZrF 6 or compound salts. Ti-based refiners such as Al–Ti, Al–5Ti–1B, and Al–Ti–C are suitable for pure aluminum and aluminum-silicon alloys with a silicon content of less than 1.5%, and for hypoeutectic cast aluminum with a silicon content of ≥5%. The refining effect of silicon alloy is not obvious, which is because the production of (Ti 1-x Six )Al 3 compound reduces the amount of Al 3 Ti and TiB 2 as nucleating agents. Studies have shown that Al-3B, Al-3Ti-3B and other B-type refining agents have a good refining effect on hypoeutectic cast aluminum-silicon alloys with a silicon content > 4%, but B is easy to react with the metamorphic element Sr, Generate SrB 6 , consume Sr and B. For the Al-Mg 2 Si alloy, due to the high content of Mg in it, the refining elements are more likely to form non-nucleating compounds with Mg and modification elements, which weakens the modification and refinement effect or causes casting defects. Fakhraei et al. from the University of Tehran in Iran found that adding too much B or Zr to the Al-20Mg alloy would produce pores, resulting in a decrease in the tensile properties of the alloy. See Materials & Design, 2014, 56 (4): 557-564.
发明内容Contents of the invention
本发明的目的是克服现有技术存在的问题,提供一种变质、细化效果佳、抗衰退性好、适用性强,金属型、砂型都适用、生产工艺简单的亚共晶Al-Mg2Si合金的变质及细化方法。The purpose of the present invention is to overcome the problems existing in the prior art, and to provide a hypoeutectic Al-Mg2 with metamorphism, good refining effect, good decay resistance, strong applicability, applicable to both metal molds and sand molds, and simple production process Modification and refinement method of Si alloy.
本发明的技术解决方案是:Technical solution of the present invention is:
(1)按含质量百分比4-12.5wt. %Mg2Si相的亚共晶Al-Mg2Si合金配料,其中Mg的添加量为:计算量+10~30%的烧损量;(1) According to the batching of hypoeutectic Al-Mg 2 Si alloy containing 4-12.5wt.% Mg 2 Si phase by mass percentage, the amount of Mg added is: calculated amount + 10~30% of burning loss;
(2)将步骤(1)配好的纯Al、铝硅中间合金清洗干燥后,放入电阻炉的石墨坩埚中,在电阻炉中加热,待完全熔化后,在720 ℃,将铝箔包裹、预热300℃的纯Mg块用预热300℃的石墨钟罩压入熔体中,直至熔化,静置5min;(2) After cleaning and drying the pure Al and aluminum-silicon intermediate alloy prepared in step (1), put them into the graphite crucible of the resistance furnace and heat them in the resistance furnace. After they are completely melted, wrap them in aluminum foil at 720 °C Press the pure Mg block preheated at 300°C into the melt with a graphite bell jar preheated at 300°C until it melts, and let it stand for 5 minutes;
(3)将占熔体质量0.05~0.2%的六氯乙烷用预热300℃的石墨钟罩压入步骤(2)得到的熔体中,进行精炼除气,在670℃~780℃温度下搅拌1~5 min,除去熔体表面的浮渣,得到精炼后的熔体;(3) Press hexachloroethane, which accounts for 0.05~0.2% of the mass of the melt, into the melt obtained in step (2) with a graphite bell jar preheated at 300°C for refining and degassing. Stir at low temperature for 1~5 min, remove the scum on the surface of the melt, and obtain the refined melt;
(4)对步骤(3)得到的熔体在温度为670℃~730℃的条件下加入Bi颗粒,静置1~3min,得到Bi含量为0.1-0.6wt. %质量百分比的熔体;(4) Add Bi particles to the melt obtained in step (3) at a temperature of 670°C to 730°C, and let it stand for 1 to 3 minutes to obtain a melt with a Bi content of 0.1-0.6wt.% by mass;
(5)对步骤(4)得到的熔体在温度为720℃~800℃的条件下加入Al-10Zr中间合金或含Zr化合物,静置5~15min,待其熔化后,搅拌熔体2~5 min,使Zr均匀分布,得到Zr含量为0.05-0.2wt. %质量百分比的熔体;(5) Add Al-10Zr master alloy or Zr-containing compound to the melt obtained in step (4) at a temperature of 720°C~800°C, let it stand for 5~15min, and stir the melt for 2~ 5 min, Zr is evenly distributed to obtain a melt with a Zr content of 0.05-0.2wt.% mass percent;
(6)按步骤(3)对步骤(5)得到的熔体进行精炼处理,在温度为700℃~780℃下将熔体浇注到铸型中,成为铸件或铸坯。(6) Refining the melt obtained in step (5) according to step (3), pouring the melt into a mold at a temperature of 700°C to 780°C to become a casting or a slab.
步骤(4)所述的Bi以纯金属形式加入。The Bi described in step (4) is added in the form of pure metal.
步骤(5)所述的Zr以中间合金或化合物形式加入。The Zr described in step (5) is added in the form of an intermediate alloy or compound.
步骤(6)所述的铸型为砂型或预热250℃的金属型及其他铸型。The casting mold described in step (6) is a sand mold or a metal mold preheated at 250°C or other casting molds.
本发明技术方案的优点主要体现在:The advantage of technical solution of the present invention is mainly reflected in:
1、采用Bi纯金属颗粒作为变质剂,可有效变质亚共晶Al-Mg2Si合金中的Mg2Si相,在亚共晶Al-Mg2Si合金中添加适量的Bi后,显著地改变了共晶Mg2Si的形貌与大小,Mg2Si相由粗大的汉字状、网状及片状转变为细小的颗粒状、纤维状,且初生α-Al相体积分数增加,出现明显的变质特征与效果,Bi在Al 中的溶解度极低,当亚共晶与共晶成分的熔体达到共晶反应点时,极易在吸附并聚集在先析出的共晶Mg2Si相的生长界面前沿,共晶生长中不断封锁共晶Mg2Si原有孪晶台阶,而又不断促发大量新的凹角孪晶,使共晶Mg2Si分枝比未变质的要频繁得多,而且,孪晶密度的显著增大使得共晶Mg2Si生长特性由原先的各向异性转变为各向同性,于是,共晶Mg2Si由变质前分枝有限且粗片状发展的模式锐变为大量频繁分枝的纤维状生长,最终共晶Mg2Si的形貌及尺寸均有了质的改变;另外,Bi在液固界面前沿的富集造成成分过冷,结果使得界面前沿处液体的平衡结晶温度大为降低,因而减小了液相实际过冷度,降低共晶组织的生长速度,从而达到细化共晶Mg2Si的目的。1. Using Bi pure metal particles as a modifier can effectively modify the Mg 2 Si phase in the hypoeutectic Al-Mg 2 Si alloy. After adding an appropriate amount of Bi to the hypoeutectic Al-Mg 2 Si alloy, it can significantly change The morphology and size of the eutectic Mg 2 Si were confirmed. The Mg 2 Si phase changed from coarse Chinese character, network and sheet to fine granular and fibrous, and the volume fraction of the primary α-Al phase increased, showing obvious Metamorphic characteristics and effects, the solubility of Bi in Al is extremely low, when the melt of hypoeutectic and eutectic components reaches the eutectic reaction point, it is very easy to adsorb and gather at the growth interface of the eutectic Mg 2 Si phase that precipitated earlier At the frontier, the eutectic Mg 2 Si is constantly blocked from the original twin steps of the eutectic Mg 2 Si, and a large number of new reentrant twins are continuously promoted, so that the branching of the eutectic Mg 2 Si is much more frequent than that of the unmodified one, and, The significant increase of the twin density makes the eutectic Mg 2 Si growth characteristics change from the original anisotropy to isotropy, so the eutectic Mg 2 Si changes sharply from the mode of limited branching and coarse sheet development before modification to A large number of frequently branched fibrous growths lead to qualitative changes in the morphology and size of the final eutectic Mg 2 Si; in addition, the enrichment of Bi at the front of the liquid-solid interface causes the composition to be supercooled, resulting in the liquid at the front of the interface. The equilibrium crystallization temperature is greatly reduced, thereby reducing the actual undercooling of the liquid phase and reducing the growth rate of the eutectic structure, thereby achieving the purpose of refining the eutectic Mg 2 Si.
2、采用Al-Zr中间合金或含Zr化合物对亚共晶Al-Mg2Si合金中的初生α-Al相具有显著的细化作用,在亚共晶Al-Mg2Si合金中添加适量的Zr后,显著地改变了初生α-Al相的形貌与大小,使其由粗大的柱状树枝晶转变为细小的等轴晶,Zr与合金熔体中的Al结合,生成ZrAl3相。ZrAl3相与初生α-Al相的晶格常数接近,两者之间的错配度仅为0.925%,根据异质形核理论,错配度越小,两者原子间的结合力越强,越容易在其衬底形核,因此,ZrAl3可以作为初生α-Al的异质形核核心,从而细化初生α-Al相。2. The use of Al-Zr master alloy or Zr-containing compound has a significant refining effect on the primary α-Al phase in the hypoeutectic Al-Mg 2 Si alloy, and an appropriate amount of After Zr, the morphology and size of the primary α-Al phase are significantly changed, making it change from coarse columnar dendrites to fine equiaxed crystals. Zr combines with Al in the alloy melt to form ZrAl 3 phase. The lattice constant of the ZrAl 3 phase is close to that of the primary α-Al phase, and the mismatch between them is only 0.925%. According to the heterogeneous nucleation theory, the smaller the mismatch, the stronger the bonding force between the two atoms , the easier it is to nucleate on its substrate. Therefore, ZrAl 3 can be used as the heterogeneous nucleation core of primary α-Al, thereby refining the primary α-Al phase.
3、对不同含量Mg2Si 的亚共晶Al-Mg2Si合金均具有优良的变质、细化效果,扩大了该类合金的应用范围。3. It has excellent modification and refinement effects on hypoeutectic Al-Mg 2 Si alloys with different contents of Mg 2 Si, which expands the application range of this type of alloy.
4、Bi变质剂和Zr细化剂均具有长效性,变质、细化效果,对冷却速度不敏感,适用于金属型、砂型、压铸等各种铸造生产工艺,由于Bi在共晶Mg2Si相生长界面前沿的吸附并聚集状态受冷却速度的影响较小,因此Bi加入熔体中,无论是浇注在金属型中,还是在砂型中,共晶Mg2Si都能得到有效的细化,即Bi在亚共晶Al-Mg2Si合金中对共晶Mg2Si相的变质效果受冷却速度的影响较小;另外,由于铋与氧不易发生化学反应,故在熔体长期保温、浇注过程中,不易烧损,确保了熔体中变质共晶Mg2Si的最低Bi的残留量,使得Bi的变质效果具有长效性。4. Both Bi modifier and Zr refiner have long-term effects, modification and refinement effects, and are not sensitive to cooling speed. They are suitable for various casting production processes such as metal molds, sand molds, and die - casting. The adsorption and aggregation state of the Si phase growth interface front is less affected by the cooling rate, so when Bi is added to the melt, whether it is cast in a metal mold or in a sand mold, the eutectic Mg 2 Si can be effectively refined , that is, the modification effect of Bi on the eutectic Mg 2 Si phase in the hypoeutectic Al-Mg 2 Si alloy is less affected by the cooling rate; in addition, because the chemical reaction between bismuth and oxygen is not easy to occur, it is necessary to keep the melt for a long time, During the pouring process, it is not easy to burn out, and ensures the lowest Bi residual amount of the metamorphic eutectic Mg 2 Si in the melt, so that the metamorphic effect of Bi has a long-term effect.
5、Bi变质剂和Zr细化剂还具有易于操作、成本低廉及安全环保等优点。5. Bi modifier and Zr refiner also have the advantages of easy operation, low cost, safety and environmental protection.
附图说明Description of drawings
图1为100倍下金属型未细化、变质含10wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Figure 1 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy containing 10wt.% Mg 2 Si phase without refinement of the metal type and modification at 100 times;
图2为500倍下金属型未细化、变质含10wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Fig. 2 is the metallographic microstructure diagram of the hypoeutectic Al-Mg 2 Si alloy containing 10wt.% Mg 2 Si phase without refinement of the metal type and modification at 500 times;
图3为100倍下金属型0.13%Zr细化、0.41%Bi变质含10wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Figure 3 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy with 0.13% Zr refinement of the metal type and 0.41% Bi modification containing 10wt.% Mg 2 Si phase at 100 times;
图4为500倍下金属型0.13%Zr细化、0.41%Bi变质含10wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Figure 4 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy with 0.13% Zr refinement of the metal type and 0.41% Bi modification containing 10wt.% Mg 2 Si phase at 500 times;
图5为100倍下金属型未细化、变质含4wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Fig. 5 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy containing 4wt.% Mg 2 Si phase without refinement of the metal type and modification at 100 times;
图6为500倍下金属型未细化、变质含4wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Fig. 6 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy containing 4wt.% Mg 2 Si phase without refinement and modification of the metal type under 500 times;
图7为100倍下金属型0.09%Zr细化、0.1%Bi变质含4wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Figure 7 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy with 0.09% Zr refinement of the metal type and 0.1% Bi modification containing 4wt.% Mg 2 Si phase at 100 times;
图8为500倍下金属型0.09%Zr细化、0.1%Bi变质含4wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Figure 8 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy with 0.09% Zr refinement of the metal type and 0.1% Bi modification containing 4wt.% Mg 2 Si phase at 500 times;
图9为100倍下金属型未细化、变质含12.5wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Fig. 9 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy containing 12.5wt.% Mg 2 Si phase without refinement and modification of the metal type at 100 times;
图10为500倍下金属型未细化、变质含12.5wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Figure 10 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy containing 12.5wt.% Mg 2 Si phase without refinement and modification of the metal type at 500 times;
图11为100倍下金属型0.2%Zr细化、0.36%Bi变质含12.5wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Figure 11 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy with 0.2% Zr refinement of the metal type and 0.36% Bi modification containing 12.5wt.% Mg 2 Si phase at 100 times;
图12为500倍下金属型0.2%Zr细化、0.36%Bi变质含12.5wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Figure 12 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy with 0.2% Zr refinement of the metal type and 0.36% Bi modification containing 12.5wt.% Mg 2 Si phase at 500 times;
图13为100倍下砂型未细化、变质含10wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Figure 13 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy containing 10wt.% Mg 2 Si phase without refinement of the sand mold at 100 times;
图14为500倍下砂型未细化、变质含10wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Fig. 14 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy containing 10wt.% Mg 2 Si phase without refinement and modification of the sand mold under 500 times;
图15为100倍下砂型0.17Zr细化、0.6%Bi变质含10wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Figure 15 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy with 0.17Zr refinement of the sand mold and 0.6% Bi modification containing 10wt.% Mg 2 Si phase under 100 times;
图16为500倍下砂型0.17Zr细化、0.6%Bi变质含10wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Figure 16 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy with 0.17Zr refinement of the sand mold and 0.6% Bi modification containing 10wt.% Mg 2 Si phase under 500 times;
图17为500倍下金属型未变质含13.5wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Figure 17 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy containing 13.5wt.% Mg 2 Si phase without modification of the metal type under 500 times;
图18为500倍下金属型0.44%Bi变质含13.5wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Figure 18 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy containing 13.5wt.% Mg 2 Si phase modified by 0.44% Bi of the metal type under 500 times;
图19为500倍下金属型0.06%Bi变质含10wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Fig. 19 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy containing 10wt.% Mg 2 Si phase modified by metal type 0.06% Bi at 500 times;
图20为500倍下金属型0.87%Bi变质含10wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Figure 20 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy containing 10wt.% Mg 2 Si phase modified by 0.87% Bi of the metal type under 500 times;
图21为100倍下金属型0.02%Zr细化含10wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Fig. 21 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy containing 10wt.% Mg 2 Si phase refined by metal type 0.02% Zr under 100 times;
图22为500倍下金属型0.64%Zr细化、0.47% Bi变质含10wt. %Mg2Si相的亚共晶Al-Mg2Si合金金相显微组织图;Figure 22 is a metallographic microstructure diagram of a hypoeutectic Al-Mg 2 Si alloy with 0.64% Zr refinement of the metal type and 0.47% Bi modification containing 10wt.% Mg 2 Si phase at 500 times;
图23为合金的应力-应变曲线。Figure 23 is the stress-strain curve of the alloy.
具体实施方式Detailed ways
本发明对于亚共晶Al-Mg2Si合金均适用,其中包括加入各种合金化元素、外加及内生增强相的情况,本发明以下实施方式只是为了详细的举例说明,但本发明并不局限于以下实施方式,凡是本发明的核心技术条件下的各种修改和替换,均属于本发明的范围之内。The present invention is applicable to hypoeutectic Al-Mg 2 Si alloys, including the addition of various alloying elements, external and endogenous reinforcement phases, the following embodiments of the present invention are only for detailed illustration, but the present invention does not Limited to the following embodiments, all modifications and replacements under the core technical conditions of the present invention fall within the scope of the present invention.
下面对本发明涉及的亚共晶Al-Mg2Si合金成分、变质剂、细化剂及熔炼和铸造工艺条件进行说明:The hypoeutectic Al-Mg 2 Si alloy composition, modifier, refiner and melting and casting process conditions involved in the present invention are described below:
合金成分:本发明Al-Mg2Si合金中的Mg2Si的成分限定在4~12.5wt. %,Al-Mg2Si为共晶点为13.9%的共晶型合金,合金中共晶Mg2Si相为强化相,其数量、形貌、大小及分布对其力学性能影响很大,当Mg2Si<4wt. %时,Mg2Si相量低,合金强度过低;当Mg2Si=13.9wt.%(共晶成分)和12.5wt. %<Mg2Si<13.9wt. %(近共晶成分)时,我们的试验表明,Bi虽然能消除铸态下出现的少量块状的初生Mg2Si相,但对共晶Mg2Si相的变质效果不明显,见图17、图18;Mg2Si在4~12.5wt. %范围内,随着Mg2Si量的增加,合金强度、硬度增加,塑性、韧性减小;实际应用中,可根据工件力学性能的要求合理选择Mg2Si相的数量,从而确定最终的合金成分。Alloy composition: the composition of Mg 2 Si in the Al-Mg 2 Si alloy of the present invention is limited to 4~12.5wt.%, Al-Mg 2 Si is a eutectic alloy with a eutectic point of 13.9%, and the eutectic Mg 2 Si phase is a strengthening phase, and its quantity, shape, size and distribution have a great influence on its mechanical properties. When Mg 2 Si<4wt.%, the Mg 2 Si phase is low and the alloy strength is too low; when Mg 2 Si= 13.9wt.% (eutectic composition) and 12.5wt.%<Mg 2 Si<13.9wt.% (near eutectic composition), our experiments show that although Bi can eliminate a small amount of blocky primary Mg 2 Si phase, but the modification effect on eutectic Mg 2 Si phase is not obvious, see Figure 17 and Figure 18; Mg 2 Si is in the range of 4~12.5wt.%, with the increase of Mg 2 Si content, the alloy strength , hardness increases, plasticity and toughness decrease; in practical applications, the number of Mg 2 Si phases can be reasonably selected according to the requirements of the mechanical properties of the workpiece, so as to determine the final alloy composition.
变质剂:Bi变质剂对Al-Mg2Si合金中Mg2Si相的变质效果主要取决于Bi的含量,熔体中Bi含量为0.1~0.6%时具有最佳变质效果,当熔体中Bi含量<0.1%时,Mg2Si相虽然汉字状消失,出现纤维状,但仍存在众多的条状、片状,表现出变质的不足,见图19;当熔体中Bi含量>0.6%时,Mg2Si相大部分仍为未纤维状,但出现部分条状、片状,表现过变质现象,见图20。Modifier: The modification effect of Bi modifier on Mg 2 Si phase in Al-Mg 2 Si alloy mainly depends on the content of Bi. The best modification effect is when the Bi content in the melt is 0.1~0.6%. When the content is less than 0.1%, the Mg 2 Si phase disappears in the form of Chinese characters and appears fibrous, but there are still many strips and flakes, showing the lack of deterioration, as shown in Figure 19; when the Bi content in the melt is greater than 0.6% , most of the Mg 2 Si phase is still not fibrous, but some strips and flakes appear, showing a metamorphic phenomenon, as shown in Figure 20.
细化剂:Zr细化剂对Al-Mg2Si合金中初生α-Al相的细化效果主要取决于Zr的含量,即作为初生α-Al的异质形核核心ZrAl3的生成量的多少,熔体Zr含量为0.05~0.2%时具有最佳细化效果,当熔体中Zr含量<0.05%时,熔体中形成的ZrAl3太少,初生α-Al相形核位置少,α-Al仍为树枝晶,表现出细化的不足,见图21;当熔体中Zr含量>0.2%时,不但不会增强细化效果,过量的Zr反而易与变质剂Bi形成ZrBi两元化合物或Al-Zr-Bi三元化合物,消耗熔体中的Bi原子,造成变质的不足,虽然形成一些纤维状Mg2Si相,但大部分仍为条状、片状,见图22。Refining agent: The refining effect of Zr refining agent on the primary α-Al phase in Al-Mg 2 Si alloy mainly depends on the content of Zr, that is, the amount of ZrAl 3 generated as the heterogeneous nucleation core of primary α-Al When the Zr content in the melt is 0.05~0.2%, it has the best refinement effect. When the Zr content in the melt is less than 0.05%, there is too little ZrAl 3 formed in the melt, and there are few nucleation sites for the primary α-Al phase. -Al is still a dendrite, showing insufficient refinement, as shown in Figure 21; when the Zr content in the melt is >0.2%, not only will the refinement effect not be enhanced, but the excessive Zr will easily form a ZrBi binary with the modifier Bi Al-Zr-Bi compound or Al-Zr-Bi ternary compound consumes Bi atoms in the melt, resulting in insufficient modification. Although some fibrous Mg 2 Si phases are formed, most of them are still strips and flakes, as shown in Figure 22.
熔炼工艺:Al-Mg2Si系列合金含Mg量较高,本发明为大气下熔炼工艺,无需气体保护或在真空下熔炼,但应严格控制Mg的烧损,措施为:300℃预热Mg块,并用铝箔包裹,用预热300℃的石墨钟罩压入熔体中,直至熔化,之后加入Bi,略加搅拌后,即加入Al-Zr中间合金,目的是避免高温下镁块与空气中的氧气直接接触,缩短镁的熔化及熔体的保温时间,使镁的烧损量控制在10~30%,因纯Bi的熔点低,加入铝液中即可熔化,无需静置,但Al-10Zr中间合金相对熔点高,加入后需静置5~15分钟,且待其熔化后,搅拌熔体2~5 min,使Zr均匀分布。Smelting process: Al-Mg 2 Si series alloys contain relatively high Mg content. This invention is a smelting process under the atmosphere, without gas protection or smelting under vacuum, but the burning loss of Mg should be strictly controlled. The measures are: preheat Mg at 300°C and wrap it with aluminum foil, press it into the melt with a graphite bell jar preheated at 300°C until it melts, then add Bi, after a little stirring, add the Al-Zr intermediate alloy, the purpose is to avoid the magnesium block and air at high temperature Direct contact with the oxygen in the solution shortens the melting of magnesium and the holding time of the melt, so that the burning loss of magnesium is controlled at 10~30%. Because of the low melting point of pure Bi, it can be melted by adding it to molten aluminum without standing still, but The Al-10Zr master alloy has a relatively high melting point. After adding it, it needs to stand still for 5-15 minutes, and after it melts, stir the melt for 2-5 minutes to make the Zr evenly distributed.
实施例1:Example 1:
1、采用Al-15Si中间合金、纯Al和纯Mg配制亚共晶Al-Mg2Si合金,其中Mg和Si按10.wt %Mg2Si的比例加入,Mg的添加量为:计算量+10%的烧损量,余量为纯Al;1. Use Al-15Si master alloy, pure Al and pure Mg to prepare hypoeutectic Al-Mg 2 Si alloy, in which Mg and Si are added in a proportion of 10.wt% Mg 2 Si, and the amount of Mg added is: calculated amount + 10% of the burning loss, the balance is pure Al;
2、将步骤1配好的纯Al、铝硅中间合金清洗干燥后,放入电阻炉的石墨坩埚中,在电阻炉中将纯Al和Al-15Si中间合金加热,待完全熔化后,在720 ℃,将铝箔包裹、预热300℃的纯Mg块用预热300℃的石墨钟罩压入熔体中,直至熔化,静置5min;2. After cleaning and drying the pure Al and aluminum-silicon master alloy prepared in step 1, put them into the graphite crucible of the resistance furnace, heat the pure Al and Al-15Si master alloy in the resistance furnace, and heat them at 720°C after they are completely melted. ℃, press the pure Mg block wrapped in aluminum foil and preheated to 300℃ into the melt with a graphite bell jar preheated to 300℃, until it melts, and let it stand for 5min;
3、将占熔体质量0.1%的六氯乙烷用预热300℃的石墨钟罩压入步骤2得到的熔体中,进行精炼除气,在740℃温度下搅拌3min,除去熔体表面的浮渣,得到精炼后的熔体;3. Press 0.1% of the mass of hexachloroethane into the melt obtained in step 2 with a graphite bell jar preheated at 300°C, carry out refining and degassing, stir at 740°C for 3 minutes, and remove the surface of the melt The scum of the obtained refined melt;
4、对步骤3得到的熔体在710℃温度下向熔体中加入纯金属Bi颗粒,静置2 min,得到Bi含量为0.41wt. %质量百分比的熔体;4. For the melt obtained in step 3, add pure metal Bi particles to the melt at a temperature of 710 ° C, and let it stand for 2 minutes to obtain a melt with a Bi content of 0.41wt.% mass percentage;
5、对步骤4得到的熔体在温度为750℃的条件下加入Al-10Zr中间合金,静置10min,待其熔化后,搅拌熔体3 min,使Zr均匀分布,得到Zr含量为0.13wt. %质量百分比的熔体;5. Add Al-10Zr master alloy to the melt obtained in step 4 at a temperature of 750°C, and let it stand for 10 minutes. After it melts, stir the melt for 3 minutes to make Zr evenly distributed, and obtain a Zr content of 0.13wt .% mass percentage of the melt;
6、将占熔体质量0.05%的六氯乙烷用预热300℃的石墨钟罩压入步骤5得到的熔体中,进行精炼除气,在740℃温度下搅拌,精炼、扒渣后,在740℃温度下浇入预热250℃的金属型中,成为铸件。6. Press hexachloroethane accounting for 0.05% of the mass of the melt into the melt obtained in step 5 with a graphite bell jar preheated at 300°C, carry out refining and degassing, stir at a temperature of 740°C, and refine and remove slag , poured into a metal mold preheated at 250°C at a temperature of 740°C to become a casting.
具体变质效果见图1、图2、图3和图4,未添加Bi、Zr合金中的初生α-Al相为粗大的树枝晶,见图1,Mg2Si相为粗大的汉字、板条状,见图2;添加Bi、Zr后合金中的初生α-Al相由粗大的树枝晶状转变为细小的等轴枝晶状,见图3,Mg2Si相变为纤维状和极少量的细小条状,见图4;细化、变质前合金的抗拉强度及伸长率分别为214.37MPa和2.01%,细化、变质后分别提高到279.44MPa和7.02%,见图23。The specific modification effect is shown in Figure 1, Figure 2, Figure 3 and Figure 4. The primary α-Al phase in the alloy without Bi and Zr is a thick dendrite, as shown in Figure 1, and the Mg 2 Si phase is thick Chinese characters and laths. shape, see Figure 2; after the addition of Bi and Zr, the primary α-Al phase in the alloy changes from coarse dendrites to fine equiaxed dendrites, see Figure 3, and the Mg 2 Si phase changes to fibrous and very small The thin strips are shown in Figure 4; the tensile strength and elongation of the alloy were 214.37MPa and 2.01% before refinement and modification, respectively, and increased to 279.44MPa and 7.02% after refinement and modification, as shown in Figure 23.
实施例2:Example 2:
1、采用Al-15Si中间合金、纯Al和纯Mg配制亚共晶Al-Mg2Si合金,其中Mg和Si按4.wt %Mg2Si的比例加入,Mg的添加量为:计算量+20%的烧损量,余量为纯Al;1. Use Al-15Si master alloy, pure Al and pure Mg to prepare hypoeutectic Al-Mg 2 Si alloy, in which Mg and Si are added in the proportion of 4.wt% Mg 2 Si, and the amount of Mg added is: calculated amount + 20% of burning loss, the balance is pure Al;
2、将步骤1配好的纯Al、铝硅中间合金清洗干燥后,放入电阻炉的石墨坩埚中,在电阻炉中将纯Al和Al-15Si中间合金加热,待完全熔化后,在720 ℃,将铝箔包裹、预热300℃的纯Mg块用预热300℃的石墨钟罩压入熔体中,直至熔化,静置5min;2. After cleaning and drying the pure Al and aluminum-silicon master alloy prepared in step 1, put them into the graphite crucible of the resistance furnace, heat the pure Al and Al-15Si master alloy in the resistance furnace, and heat them at 720°C after they are completely melted. ℃, press the pure Mg block wrapped in aluminum foil and preheated to 300℃ into the melt with a graphite bell jar preheated to 300℃, until it melts, and let it stand for 5min;
3、将占熔体质量0.05%的六氯乙烷用预热300℃的石墨钟罩压入步骤2得到的熔体中,进行精炼除气,在780℃温度下搅拌1min,除去熔体表面的浮渣,得到精炼后的熔体;3. Press hexachloroethane accounting for 0.05% of the mass of the melt into the melt obtained in step 2 with a graphite bell jar preheated at 300°C, carry out refining and degassing, stir at 780°C for 1 min, and remove the surface of the melt The scum of the obtained refined melt;
4、对步骤3得到的熔体在730℃温度下向熔体中加入纯金属Bi颗粒,静置3 min,得到Bi含量为0. 1wt. %质量百分比的熔体;4. For the melt obtained in step 3, add pure metal Bi particles to the melt at a temperature of 730 ° C, and let it stand for 3 minutes to obtain a melt with a Bi content of 0.1wt.% mass percentage;
5、对步骤4得到的熔体在温度为800℃的条件下加入Al-10Zr中间合金,静置5min,待其熔化后,搅拌熔体2 min,使Zr均匀分布,得到Zr含量为0.09wt. %质量百分比的熔体;5. Add Al-10Zr master alloy to the melt obtained in step 4 at a temperature of 800°C, and let it stand for 5 minutes. After it melts, stir the melt for 2 minutes to make Zr evenly distributed, and obtain a Zr content of 0.09wt .% mass percentage of the melt;
6、将占熔体质量0.2%的六氯乙烷用预热300℃的石墨钟罩压入步骤5得到的熔体中,进行精炼除气,在780℃温度下搅拌,精炼、扒渣后,在780℃温度下浇入预热250℃的金属型中,成为铸件。6. Press 0.2% of the mass of hexachloroethane into the melt obtained in step 5 with a graphite bell jar preheated at 300°C, carry out refining and degassing, stir at a temperature of 780°C, and refine and remove slag , poured into a metal mold preheated at 250°C at a temperature of 780°C to become a casting.
具体变质效果见图5、图6、图7和图8,未添加Bi、Zr合金中的初生α-Al相为粗大的树枝晶,见图5,Mg2Si相为粗大的汉字、板条状,见图6;添加Bi、Zr后合金中的初生α-Al相由粗大的树枝晶状转变为细小的等轴枝晶状,见图7,Mg2Si相变为纤维状和极少量的细小条状,见图8;细化、变质前合金的抗拉强度及伸长率分别为214.37MPa和2.01%,细化、变质后分别提高到255.67MPa和9.25%,见图23。The specific modification effect is shown in Figure 5, Figure 6, Figure 7 and Figure 8. The primary α-Al phase in the alloy without Bi and Zr is a thick dendrite, as shown in Figure 5, and the Mg 2 Si phase is thick Chinese characters and laths. shape, as shown in Figure 6; after adding Bi and Zr, the primary α-Al phase in the alloy changes from coarse dendrites to fine equiaxed dendrites, as shown in Figure 7, and the Mg 2 Si phase changes to fibrous and very small The thin strips are shown in Figure 8; the tensile strength and elongation of the alloy before refinement and modification were 214.37MPa and 2.01%, respectively, and increased to 255.67MPa and 9.25% after refinement and modification, as shown in Figure 23.
实施例3:Example 3:
1、采用Al-15Si中间合金、纯Al和纯Mg配制亚共晶Al-Mg2Si合金,其中Mg和Si按12.5wt %Mg2Si的比例加入,Mg的添加量为:计算量+30%的烧损量,余量为纯Al;1. Use Al-15Si master alloy, pure Al and pure Mg to prepare hypoeutectic Al-Mg 2 Si alloy, in which Mg and Si are added in a ratio of 12.5wt% Mg 2 Si, and the amount of Mg added is: calculated amount + 30 % of burning loss, the balance is pure Al;
2、将步骤1配好的纯Al、铝硅中间合金清洗干燥后,放入电阻炉的石墨坩埚中,在电阻炉中将纯Al和Al-15Si中间合金加热,待完全熔化后,在720 ℃,将铝箔包裹、预热300℃的纯Mg块用预热300℃的石墨钟罩压入熔体中,直至熔化,静置5min;2. After cleaning and drying the pure Al and aluminum-silicon master alloy prepared in step 1, put them into the graphite crucible of the resistance furnace, heat the pure Al and Al-15Si master alloy in the resistance furnace, and heat them at 720°C after they are completely melted. ℃, press the pure Mg block wrapped in aluminum foil and preheated to 300℃ into the melt with a graphite bell jar preheated to 300℃, until it melts, and let it stand for 5min;
3、将占熔体质量0.2%的六氯乙烷用预热300℃的石墨钟罩压入步骤2得到的熔体中,进行精炼除气,在670℃温度下搅拌5min,除去熔体表面的浮渣,得到精炼后的熔体;3. Press 0.2% of the mass of hexachloroethane into the melt obtained in step 2 with a graphite bell jar preheated at 300°C, carry out refining and degassing, stir at 670°C for 5 minutes, and remove the surface of the melt The scum of the obtained refined melt;
4、对步骤3得到的熔体在730℃温度下向熔体中加入纯金属Bi颗粒,静置1 min,得到Bi含量为0.36wt. %质量百分比的熔体;4. For the melt obtained in step 3, add pure metal Bi particles to the melt at a temperature of 730° C., and let it stand for 1 min to obtain a melt with a Bi content of 0.36wt.% mass percent;
5、对步骤4得到的熔体在温度为720℃的条件下加入含Zr化合物,静置15min,待其熔化后,搅拌熔体5 min,使Zr均匀分布,得到Zr含量为0.2wt. %质量百分比的熔体;5. Add a Zr-containing compound to the melt obtained in step 4 at a temperature of 720°C, and let it stand for 15 minutes. After it melts, stir the melt for 5 minutes to make Zr evenly distributed, and obtain a Zr content of 0.2wt.%. Melt in mass percent;
6、将占熔体质量0.1%的六氯乙烷用预热300℃的石墨钟罩压入步骤5得到的熔体中,进行精炼除气,在700℃温度下搅拌,精炼、扒渣后,在700℃温度下浇入预热250℃的金属型中,成为铸件。6. Press hexachloroethane accounting for 0.1% of the mass of the melt into the melt obtained in step 5 with a graphite bell jar preheated at 300°C, carry out refining and degassing, stir at a temperature of 700°C, and refine and remove slag , poured into a metal mold preheated at 250°C at a temperature of 700°C to become a casting.
具体变质效果见图9、图10、图11和图12,未添加Bi、Zr合金中的初生α-Al相为粗大的树枝晶,见图9,Mg2Si相为粗大的汉字、板条状,见图10;添加Bi、Zr后合金中的初生α-Al相由粗大的树枝晶状转变为细小的等轴枝晶状,见图11,Mg2Si相变为纤维状和极少量的细小条状,见图12;细化、变质前合金的抗拉强度及伸长率分别为221.61MPa和1.82%,细化、变质后分别提高到287.76MPa和6.81%,见图23。The specific modification effects are shown in Figure 9, Figure 10, Figure 11 and Figure 12. The primary α-Al phase in the alloy without Bi and Zr is a thick dendrite, as shown in Figure 9, and the Mg 2 Si phase is thick Chinese characters and laths. shape, as shown in Figure 10; after adding Bi and Zr, the primary α-Al phase in the alloy changes from coarse dendrites to fine equiaxed dendrites, as shown in Figure 11, and the Mg 2 Si phase changes to fibrous and very small The thin strips are shown in Figure 12; the tensile strength and elongation of the alloy before refinement and modification were 221.61MPa and 1.82%, respectively, and increased to 287.76MPa and 6.81% after refinement and modification, as shown in Figure 23.
实施例4:Example 4:
1、采用Al-15Si中间合金、纯Al和纯Mg配制亚共晶Al-Mg2Si合金,其中Mg和Si按10.wt %Mg2Si的比例加入,Mg的添加量为:计算量+15%的烧损量,余量为纯Al;1. Use Al-15Si master alloy, pure Al and pure Mg to prepare hypoeutectic Al-Mg 2 Si alloy, in which Mg and Si are added in a proportion of 10.wt% Mg 2 Si, and the amount of Mg added is: calculated amount + 15% of burning loss, the balance is pure Al;
2、将步骤1配好的纯Al、铝硅中间合金清洗干燥后,放入电阻炉的石墨坩埚中,在电阻炉中将纯Al和Al-15Si中间合金加热,待完全熔化后,在720 ℃,将铝箔包裹、预热300℃的纯Mg块用预热300℃的石墨钟罩压入熔体中,直至熔化,静置5min;2. After cleaning and drying the pure Al and aluminum-silicon master alloy prepared in step 1, put them into the graphite crucible of the resistance furnace, heat the pure Al and Al-15Si master alloy in the resistance furnace, and heat them at 720°C after they are completely melted. ℃, press the pure Mg block wrapped in aluminum foil and preheated to 300℃ into the melt with a graphite bell jar preheated to 300℃, until it melts, and let it stand for 5min;
3、将占熔体质量0.2%的六氯乙烷用预热300℃的石墨钟罩压入步骤2得到的熔体中,进行精炼除气,在750℃温度下搅拌4min,除去熔体表面的浮渣,得到精炼后的熔体;3. Press 0.2% of the mass of hexachloroethane into the melt obtained in step 2 with a graphite bell jar preheated at 300°C, carry out refining and degassing, stir at 750°C for 4 minutes, and remove the surface of the melt The scum of the obtained refined melt;
4、对步骤3得到的熔体在710℃温度下向熔体中加入纯金属Bi颗粒,静置3 min,得到Bi含量为0.6wt. %质量百分比的熔体;4. For the melt obtained in step 3, add pure metal Bi particles to the melt at a temperature of 710 ° C, and let it stand for 3 minutes to obtain a melt with a Bi content of 0.6wt. % mass percentage;
5、对步骤4得到的熔体在温度为760℃的条件下加入含Zr化合物,静置12min,待其熔化后,搅拌熔体4 min,使Zr均匀分布,得到Zr含量为0.05wt. %质量百分比的熔体;5. Add a Zr-containing compound to the melt obtained in step 4 at a temperature of 760°C, and let it stand for 12 minutes. After it melts, stir the melt for 4 minutes to make Zr evenly distributed, and obtain a Zr content of 0.05wt. % Melt in mass percent;
6、将占熔体质量0.05%的六氯乙烷用预热300℃的石墨钟罩压入步骤5得到的熔体中,进行精炼除气,在730℃温度下搅拌,精炼、扒渣后,在730℃温度下浇入砂型中。6. Press hexachloroethane accounting for 0.05% of the mass of the melt into the melt obtained in step 5 with a graphite bell jar preheated at 300°C, carry out refining and degassing, stir at a temperature of 730°C, and refine and remove slag , poured into the sand mold at a temperature of 730°C.
具体变质效果见图13、图14、图15和图16,与金属型相比,砂型条件下,未添加Bi、Zr合金中的初生α-Al相为树枝晶,且更为粗大,见图13,Mg2Si相为粗大的板条状,见图14;添加Bi、Zr后合金中的初生α-Al相转变为细小的等轴枝晶状,见图15,Mg2Si相变为细小的条状,见图16;细化、变质前合金的抗拉强度及伸长率分别为175.96MPa和1.23%,细化、变质后分别提高到244.69MPa和3.83%,见图23。The specific modification effects are shown in Fig. 13, Fig. 14, Fig. 15 and Fig. 16. Compared with the metal mold, under the sand mold condition, the primary α-Al phase in the alloy without adding Bi and Zr is a dendrite, and it is thicker, as shown in Fig. 13. The Mg 2 Si phase is thick and lath, as shown in Figure 14; after adding Bi and Zr, the primary α-Al phase in the alloy transforms into a fine equiaxed dendrite, as shown in Figure 15, and the Mg 2 Si phase changes to Thin strips, as shown in Figure 16; the tensile strength and elongation of the alloy before refinement and modification were 175.96MPa and 1.23%, respectively, and increased to 244.69MPa and 3.83% after refinement and modification, as shown in Figure 23.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810037556.6A CN108300884B (en) | 2018-01-16 | 2018-01-16 | A kind of hypoeutectic Al-Mg2The rotten and thinning method of Si alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810037556.6A CN108300884B (en) | 2018-01-16 | 2018-01-16 | A kind of hypoeutectic Al-Mg2The rotten and thinning method of Si alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108300884A CN108300884A (en) | 2018-07-20 |
CN108300884B true CN108300884B (en) | 2019-10-08 |
Family
ID=62869153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810037556.6A Active CN108300884B (en) | 2018-01-16 | 2018-01-16 | A kind of hypoeutectic Al-Mg2The rotten and thinning method of Si alloy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108300884B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109112368A (en) * | 2018-09-20 | 2019-01-01 | 辽宁工业大学 | One kind casting hypoeutectic Al-Mg containing Sc2Si alloy and its production method |
CN111060554B (en) * | 2019-12-10 | 2021-05-14 | 南昌航空大学 | A Rapid Analytical Method for Determining Phase Content in Subcooled Hypoeutectic Alloys |
CN111187950B (en) * | 2020-02-06 | 2021-09-21 | 广东宏锦新材料科技有限公司 | 6-series aluminum alloy, preparation method thereof and mobile terminal |
CN111411246A (en) * | 2020-04-27 | 2020-07-14 | 吉林化工学院 | A method of ultrasonic treatment and Bi composite refinement of hypoeutectic Al-Mg2Si alloy structure |
CN113755726B (en) * | 2021-08-30 | 2022-05-31 | 上海交通大学 | A kind of high modulus, high strength and toughness aluminum matrix composite material and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000017365A (en) * | 1998-06-29 | 2000-01-18 | Kobe Steel Ltd | Al-Mg-Si SERIES ALUMINUM ALLOY SHEET FOR FORMING |
CN104498787A (en) * | 2014-12-24 | 2015-04-08 | 辽宁工业大学 | A kind of preparation method of in-situ self-generated Mg2Si particle reinforced aluminum matrix composite |
CN105401012A (en) * | 2015-09-21 | 2016-03-16 | 辽宁工业大学 | Preparation method for novel pelletized hypereutectic Al-Si alloy |
JP2017179445A (en) * | 2016-03-30 | 2017-10-05 | 昭和電工株式会社 | Al-Mg-Si-BASED ALLOY SHEET |
-
2018
- 2018-01-16 CN CN201810037556.6A patent/CN108300884B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000017365A (en) * | 1998-06-29 | 2000-01-18 | Kobe Steel Ltd | Al-Mg-Si SERIES ALUMINUM ALLOY SHEET FOR FORMING |
CN104498787A (en) * | 2014-12-24 | 2015-04-08 | 辽宁工业大学 | A kind of preparation method of in-situ self-generated Mg2Si particle reinforced aluminum matrix composite |
CN105401012A (en) * | 2015-09-21 | 2016-03-16 | 辽宁工业大学 | Preparation method for novel pelletized hypereutectic Al-Si alloy |
JP2017179445A (en) * | 2016-03-30 | 2017-10-05 | 昭和電工株式会社 | Al-Mg-Si-BASED ALLOY SHEET |
Also Published As
Publication number | Publication date |
---|---|
CN108300884A (en) | 2018-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108300884B (en) | A kind of hypoeutectic Al-Mg2The rotten and thinning method of Si alloy | |
CN109881062B (en) | High-strength, high-toughness and high-modulus extrusion casting magnesium alloy and preparation method thereof | |
CN106148786B (en) | High-strength casting magnesium lithium alloy and preparation method thereof | |
CN103290264B (en) | A kind of containing strontium cast zinc alloy and preparation method thereof | |
CN104073699A (en) | Al-Si-Cu-Mg cast aluminum alloy and preparation method thereof | |
CN105087990B (en) | A Composite Treatment Method for Modified Mg2Si/Fe-rich Aluminum Matrix Composite Structure | |
CN106148787B (en) | Magnesium-lithium alloy suitable for sand casting and preparation method thereof | |
CN101760683A (en) | High-strength casting magnesium alloy and melting method thereof | |
CN108396204A (en) | Hypoeutectic aluminum-silicon alloy casting and process method for improving performance thereof | |
CN108559875B (en) | High-strength heat-resistant aluminum alloy material for engine piston and preparation method thereof | |
CN106676357A (en) | High-plasticity magnesium alloy and preparation method thereof | |
CN103882273B (en) | A kind of Mg-Mn wrought magnesium alloy and preparation method thereof | |
CN110438358A (en) | A kind of composite modifier and preparation method for hypereutectic al-si copper alloy | |
Yu et al. | Effect of calcium addition on microstructure, casting fluidity and mechanical properties of Mg-Zn-Ce-Zr magnesium alloy | |
CN101812620A (en) | magnesium-zinc-zirconium-yttrium-magnesium alloy | |
CN111636017A (en) | Semisolid forming aluminum alloy and preparation method thereof | |
CN115418535A (en) | Aluminum alloy material, preparation method and application thereof, and aluminum alloy product | |
JPWO2003023080A1 (en) | Aluminum alloy for casting, aluminum alloy casting, and method for manufacturing aluminum alloy casting | |
CN110029255B (en) | A kind of high strength, toughness and high modulus sand mold gravity casting magnesium alloy and preparation method thereof | |
CN109852856B (en) | High-strength, high-toughness and high-modulus metal mold gravity casting magnesium alloy and preparation method thereof | |
Liu et al. | Preparation technologies and applications of strontium-magnesium master alloys | |
CN100564561C (en) | The preparation method of gadolinium-containing die-casting thermostable high-zinc magnesium alloy | |
CN106591635A (en) | Method for modifying AlSi9Cu2 cast aluminum alloy by rare-earth Y | |
CN113528897B (en) | A kind of refining agent for aluminum-silicon alloy with low cooling rate sensitivity, its preparation method, aluminum-silicon alloy and its refining method | |
CN113151721B (en) | High-thermal-conductivity die-casting magnesium alloy and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210602 Address after: 121000 Room 201, building 46-15, Huanghai street, Songshan New District, Jinzhou City, Liaoning Province Patentee after: Jinzhou Jinke High-tech Development Co.,Ltd. Address before: 121001, 169 street, Guta District, Liaoning, Jinzhou Patentee before: LIAONING University OF TECHNOLOGY |
|
TR01 | Transfer of patent right | ||
CP02 | Change in the address of a patent holder |
Address after: 121000 room 205, 56 Songshan street, Songshan New District, Jinzhou City, Liaoning Province Patentee after: Jinzhou Jinke High-tech Development Co.,Ltd. Address before: 121000 Room 201, building 46-15, Huanghai street, Songshan New District, Jinzhou City, Liaoning Province Patentee before: Jinzhou Jinke High-tech Development Co.,Ltd. |
|
CP02 | Change in the address of a patent holder | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230608 Address after: Room 1206, Floor 12, Tus Cluster Innovation Building, No. 118, Rongtong Road, Huangdao District, Qingdao, Shandong 266000 Patentee after: Qingdao Liudian Bearing Technology Co.,Ltd. Address before: 121000 room 205, 56 Songshan street, Songshan New District, Jinzhou City, Liaoning Province Patentee before: Jinzhou Jinke High-tech Development Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250206 Address after: 3rd Floor, Building 188-1, Zhihui Third Street, Hunnan District, Shenyang City, Liaoning Province 110000 Patentee after: Shenyang Jinke High tech Materials Technology Co.,Ltd. Country or region after: China Address before: Room 1206, Floor 12, Tus Cluster Innovation Building, No. 118, Rongtong Road, Huangdao District, Qingdao, Shandong 266000 Patentee before: Qingdao Liudian Bearing Technology Co.,Ltd. Country or region before: China |