CN108297858A - 一种行星混联混合动力汽车发动机需求功率计算方法 - Google Patents

一种行星混联混合动力汽车发动机需求功率计算方法 Download PDF

Info

Publication number
CN108297858A
CN108297858A CN201810090728.6A CN201810090728A CN108297858A CN 108297858 A CN108297858 A CN 108297858A CN 201810090728 A CN201810090728 A CN 201810090728A CN 108297858 A CN108297858 A CN 108297858A
Authority
CN
China
Prior art keywords
soc
power
motor
loss
super capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810090728.6A
Other languages
English (en)
Other versions
CN108297858B (zh
Inventor
曾小华
崔臣
崔皓勇
杨南南
刘通
王振伟
肖尊元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201810090728.6A priority Critical patent/CN108297858B/zh
Publication of CN108297858A publication Critical patent/CN108297858A/zh
Application granted granted Critical
Publication of CN108297858B publication Critical patent/CN108297858B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0677Engine power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种行星混联混合动力汽车发动机需求功率计算方法,涉及汽车技术领域。发动机需求功率按用途分为超级电容需求充电功率、动力传输过程中的损失功率以及主减速器输入端整车驱动需求功率。该方法重点包括提出基于超级电容SOC实际值低于控制目标程度及SOC变化速率双反馈计算超级电容充电损失功率,以保证SOC在维持均衡、变化平缓的目的;将损失功率细致划分为电路径损失功率和机械路径损失功率并在两电机不同工作状态下精细化计算。基于精细化考虑损失和合理估算超级电容需求充电功率的计算结果能够准确反映动力系统的需求,应用在控制策略中能够提高其可靠性和响应速度,保证汽车性能。

Description

一种行星混联混合动力汽车发动机需求功率计算方法
技术领域
本发明属于混合动力汽车技术领域,特别涉及一种行星混联混合动力汽车发动机需求功率计算方法。
背景技术
随着能源与环境问题日益突出,节能与新能源汽车成为汽车行业发展的方向。纯电动汽车电池较低的能量密度,燃料电池汽车昂贵的制造、使用和维护成本以及复杂的配套设施限制了其各自发展,混合动力汽车作为向新能源汽车过渡的方案,既可保证动力性,又能改善发动机工作状况、减少有害物排放、节约燃油,经过多年的发展技术已经成熟可靠。油电混合动力汽车将电机和发动机结合在一起,常用的形式有串联式、并联式和混联式,其中混联式包括开关混联和行星混联。行星混联式混合动力汽车的发动机和两电机通过行星齿轮机构连接并向外输出动力,该形式可以通过电机调节发动机的转速和转矩,实现发动机转速转矩的解耦,使发动机在不同的工况需求下都能工作在最节油的状态。因此,行星混联油电混合动力汽车是目前各大汽车公司发展的优选车型。
现有技术中的行星混联式混合动力汽车的动力耦合系统可分为单行星排式和多行星排式,其中单行星排式耦合系统结构简单、成本较低、控制容易,因而获得了较为广泛的应用。针对行星混联式混合动力汽车的发动机、电动机与发电机三个动力源分别固定连接在行星排的行星架、齿圈与太阳轮上,齿圈同时用于向主减速器输出动力。针对行星混联构型的特点,在制定动力源能量分配控制策略时需要考虑复杂的耦合和解耦关系。现有控制策略以发动机最优为基本思想,非插电式(使用超级电容)则主要依靠发动机驱动车辆,超级电容、两电机起到调节发动机工作点的作用,即尽量让发动机承担整车驱动需求功率,同时负责给超级电容充电,因此对发动机需求功率的正确计算对于系统的快速响应和动力性的发挥以及超级电容电量的平衡起到至关重要的作用。
中国专利公开号为CN106894901A,公开日为2017-06-27,公开了一种发动机功率控制方法及系统,该方法仅适用传统内燃机汽车,直接根据加速踏板信号和车速解析发动机需求功率,较为简单;中国专利公开号为CN104343552A,公开日为2015-02-11,公开了一种发动机控制系统及方法,该方法基于对车辆载荷的识别,目的在于通过控制发动机功率在保证动力性的前提下实现较低的燃油消耗,同样只适用于传统内燃机汽车;而在多动力源且耦合关系较复杂的行星混联混合动力汽车领域则尚无相关发明。
发明内容
为克服现有技术存在的不足,本发明提供一种行星混联混合动力汽车发动机需求功率计算方法,充分考虑发动机发出功率在电路径和机械路径的损失,并提出基于超级电容SOC当前值低于控制目标程度及SOC变化速率双反馈的超级电容需求充电功率的计算,使得所求发动机需求功率接近系统真实需求,在提高控制系统响应速度和动力性发挥程度的同时保证超级电容电量的平衡。
为实现上述目的,根据本发明实施例的一种行星混联混合动力汽车发动机需求功率计算方法,将发动机需求功率分为超级电容需求充电功率、动力传输过程中的损失功率以及主减速器输入端整车驱动需求功率,包括以下内容:
I.超级电容需求充电功率基于超级电容SOC当前值低于超级电容SOC目标控制值程度及超级电容SOC变化速率双反馈计算,具体包括以下步骤:
①参数标定:
基于超级电容SOC平衡原则和寿命要求设定基础充电功率Pchg_bas。、超级电容SOC目标控制值SOCcontrol及SOC维持下限SOClow
超级电容SOC当前值SOCreal低于超级电容SOC目标控制值SOCcontrol时即开始充电,根据不同的SOCreal低于SOCcontrol的程度ΔSOC和不同的超级电容SOC变化速率δSOC,使用不同的充电倍率C;
当超级电容SOC处于下降段时,制定充电倍率C关于ΔSOC和δSOC的二维插值矩阵M1,该矩阵满足充电倍率C随着ΔSOC增大而增大,随着δSOC增大而增大;当超级电容SOC处于上升段时,超级电容需求充电功率的计算不考虑δSOC,即充电倍率C只和ΔSOC有关,同样制定C关于ΔSOC的一维插值矩阵M2,该矩阵满足充电倍率C随着ΔSOC增大而增大;
②数据获取:
超级电容状态检测,包括超级电容SOC当前值SOCreal、超级电容SOC上一步长值SOCpre、当前允许的最大充电功率Pchg_max;SOCreal、SOCpre及Pchg_max可从超级电容控制器处直接获取;由此计算ΔSOC与δSOC,公式如下:
ΔSOC=SOCreal-SOCcontrol (1)
δSOC=(SOCreal-SOCpre)/Δt (2)
式中Δt为计算步长;
③超级电容需求充电功率计算:
先利用ΔSOC和δSOC根据M1和M2插值得到充电倍率C,再结合基础充电功率Pchg_base得到需求充电功率Pchg_req,公式如下:
Pchg_req=C*Pchg_base (3)
④对需求充电功率Pchg_req进行修正:
SOCreal>SOCcontrol时,Pchg_req=0
SOCreal<SOClow时,Pchg_req=Pchg_max
II.发动机通过曲轴发出的功率在传输过程中的损失细致划分为电路径上的损失功率和机械路径上的损失功率,其中电路径损失功率Ploss_e分为电机MG1损失功率Ploss_MG1和电机MG2损失功率Ploss_MG2,计算公式如下:
Ploss_e=Ploss_MG1+Ploss_MG2 (4)
Ploss_MG1及Ploss_MG2均根据电机MG1功率PMG1及其能量转换效率ηMG1、电机MG2功率PMG2及其能量转换效率ηMG2计算得到;PMG1、ηMG1、PMG2、ηMG2可分别从两电机各自控制器处直接获取;PMG1、PMG2均为电功率且规定电机电动状态下功率为正,发电状态下功率为负;两电机损失功率Ploss_MG2、Ploss_MG1的计算分为以下四种情况:
A.电机MG1发电、电机MG2电动:
电机MG1所发出的电功率全部来自发动机,其损失功率计算公式如下:
Ploss_MG1=|PMG1|/ηMG1-|PMG1| (5)
电机MG2损失功率用两电机功率绝对值的较小值结合电机MG2的效率得到,计算公式如下:
Ploss_MG2=min{|PMG1|,|PMG2|}*(1-ηMG2) (6)
B.电机MG1电动、电机MG2发电:
电机MG2所发出的电功率全部来自发动机,其损失功率计算公式如下:
Ploss_MG2=|PMG2|/ηMG2-|PMG2| (7)
电机MG1损失功率用两电机功率绝对值的较小值结合电机MG1的效率得到,计算公式如下:
Ploss_MG1=min{|PMG1|,|PMG2|}*(1-ηMG1) (8)
C.电机MG1电动、电机MG2电动:
此时发动机在电路径上没有功率传输,故电路径损失为零:
Ploss_MG1=Poss_MG2=0 (9)
D.电机MG1发电、电机MG2发电:
两电机发出的电功率均全部来自发动机,其损失功率计算公式如下:
Ploss_MG1=|PMG1|/ηMG1-|PMG1| (10)
Ploss_MG2=|PMG2|/ηMG2-|PMG2| (11)
III.主减速器输入端需求整车驱动功率计算公式如下:
式中,6为旋转质量换算系数,单位1;m为整车质量,单位kg;a为车辆加速度,单位m/s2;f为滚动阻力系数,α为坡度,单位rad;CD为车辆空气阻力系数,单位1;A为车辆迎风面积,单位m2;ρ为空气密度,单位kg/m3;v为车辆速度,单位m/s;ηfinal为主减速器传动效率,单位1;
IV.发动机需求功率计算公式如下:
Preq=(Pchg_req+Ploss_e+Pdrv)/ηpg (13)
式中ηpg为行星排传动效率,单位1。
本发明与现有技术相比,更加适合行星混联混合动力汽车多动力源的特点;提出基于超级电容SOC当前值低于控制目标程度及SOC变化速率双反馈的超级电容需求充电功率的计算,能够保证超级电容SOC在各工况下的平衡及快速恢复;充分考虑发动机通过曲轴发出功率在电路径和机械路径的损失,使得所求发动机需求功率接近系统真实需求,在提高控制系统响应速度的同时保证动力性充分发挥。
附图说明
本发明的上述和/或附加的方面和优点结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明实施例的超级电容SOC处于下降阶段时,充电倍率C的二维插值矩阵M1示意图;
图2为根据本发明实施例的超级电容SOC处于上升阶段时,充电倍率C的一维插值矩阵M2示意图;
图3为根据本发明实施例的超级电容SOC处于下降阶段时,充电倍率C关于超级电容SOC低于控制目标程度ΔSOC及超级电容SOC变化速率δSOC的变化曲面示意图;
图4为根据本发明实施例的超级电容SOC处于上升阶段时,充电倍率C关于超级电容SOC低于控制目标程度ΔSOC的变化曲线示意图;
图5为根据本发明实施例的电机MG1发电、电机MG2电动时能量流动示意图;
图6为根据本发明实施例的电机MG1电动、电机MG2发电时能量流动示意图;
图7为根据本发明实施例的电机MG1电动、电机MG2电动时能量流动示意图;
图8为根据本发明实施例的电机MG1发电、电机MG2发电时能量流动示意图;
具体实施方式
下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。在本发明的描述中,需要理解的是,术语“行”、“列”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的数据必须具有特定的方位,因此不能理解为对本发明的限制。
由于行星混联混合动力汽车和行星齿轮的基本结构为本领域技术人员所悉知的,因此在此不再赘述。
本发明所述的一种行星混联混合动力汽车发动机需求功率计算方法,基于单行星排构型,发动机与行星架连接,电机MG1与太阳轮连接,电机MG2与齿圈连接,同时齿圈与主减速器输入端连接;将发动机需求功率分为主减速器输入端整车驱动需求功率、超级电容需求充电功率及动力传输过程中的损失功率,包括以下内容:
I.超级电容需求充电功率基于SOC低于控制目标程度ΔSOC及SOC变化速率δSOC双反馈计算,总体思路为先标定基础充电功率Pchg_base,然后在基础充电功率Pchg_base的基础上乘以充电倍率C得到Pchg_req,因此重点在于充电倍率C的计算。根据超级电容SOC平衡要求,应该遵循超级电容SOC低于SOCcontrol程度ΔSOC越大,充电倍率C越大;然而,在ΔSOC较小但超级电容SOC下降速率很快时,若只根据ΔSOC计算C,SOC会迅速降低,致使恢复缓慢,因此增加超级电容SOC下降段变化速率δSOC这一反馈。具体包括以下步骤:
①参数标定:
基于超级电容SOC平衡原则和寿命要求设定基础充电功率Pchg_base、超级电容SOC目标控制值SOCcontrol及SOC维持下限SOClow;Pchg_base的大小应适应超级电容充电平稳、恢复迅速的要求;SOCcontrol的大小应能使超级电容始终保持较大的输出能力,且能够给再生制动充电预留足够的空间,即SOCcontrol应在50%到80%之间;SOClow为超级电容SOC的下限,标定值应起到保护超级电容不过度放电、不损害寿命的作用。
超级电容SOC当前值SOCreal低于超级电容SOC目标控制值SOCcontrol时即开始充电,根据不同的SOCreal低于SOCcontrol的程度ΔSOC和不同的超级电容SOC变化速率δSOC,使用不同的充电倍率C。
当超级电容SOC处于下降段时,制定充电倍率C关于ΔSOC和δSOC的二维插值矩阵M1,该矩阵满足充电倍率C随着ΔSOC增大而增大,随着δSOC增大而增大;当超级电容SOC处于上升段时,超级电容需求充电功率的计算不考虑δSOC,即充电倍率C只和ΔSOC有关,同样制定C关于ΔSOC的一维插值矩阵M2,该矩阵满足充电倍率C随着ΔSOC增大而增大。
参阅附图1-2,二维插值矩阵M1的不同行对应ΔSOC,不同列对应δSOC,输出数据为C,行列互换成转置矩阵亦可。二维插值矩阵中ΔSOC的元素覆盖每个计算步长中SOC可能变化的大小;δSOC的元素覆盖每个计算步长中SOC可能变化的速率大小;一维插值矩阵M2中的每一个ΔSOC对应一个充电倍率C,ΔSOC的元素同样覆盖每个计算步长中SOC可能变化的大小。
矩阵输出数据C的取值范围下限为0,上限在标定过程中根据电池控制器反馈的超级电容SOC变化调整,应保证合理的充电功率,使超级电容SOC能较快恢复且不出现过充;根据不同的ΔSOC和δSOC,可根据该矩阵插值得到对应的充电倍率C。
参阅附图3,可看出当超级电容SOC处于下降段时充电倍率C关于ΔSOC和δSOC变化的趋势示意,C应随ΔSOC的增大或δSOC的增大呈线性或非线性增大趋势,具体变化关系根据实际情况人为标定调整。
参阅附图4,可看出当超级电容SOC处于上升段时充电倍率C关于ΔSOC变化的趋势示意,C应随ΔSOC的增大呈线性或非线性增大趋势,具体变化关系根据实际情况人为标定调整。
②数据获取:
超级电容状态检测,包括超级电容SOC当前值SOCreal、超级电容SOC上一步长值SOCpre、当前允许的最大充电功率Pchg_max;SOCreal、SOCpre及Pchg_max可从超级电容控制器处直接获取;由此计算ΔSOC与δSOC,公式如下:
ΔSOC=SOCreal-SOCcontrol (1)
δSOC=(SOCreal-SOCpre)/Δt (2)
式中Δt为计算步长。
③超级电容需求充电功率计算:
先利用ΔSOC和δSOC插值得到充电倍率C,再结合基础充电功率Pchg_base得到需求充电功率Pchg_req,公式如下:
Pchg_req=C*Pchg_base (3)
④对需求充电功率Pchg_req进行修正:
SOCreal>SOCcontrol时,Pchg_req=0
SOCreal<SOClow时,Pchg_req=Pchg_max
II.发动机通过曲轴发出的功率在传输过程中的损失细致划分为电路径上的损失功率和机械路径上的损失功率,其中电路径损失功率Ploss_e分为电机MG1损失功率Ploss_MG1和电机MG2损失功率Ploss_MG2,计算公式如下:
Ploss_e=Ploss_MG1+Ploss_MG2 (4)
Ploss_MG1根据电机MG1功率PMG1及其能量转换效率ηMG1计算得到,Ploss_MG2根据电机MG2功率PMG2及其能量转换效率ηMG2计算得到,PMG1、ηMG1、PMG2、ηMG2可从两电机各自控制器处直接获取;规定电机电动状态下功率为正,发电状态下功率为负,计算所得损失功率始终为正,功率单位均为W。
发动机需求功率为当前计算步长中系统状态对下一计算步长的需求,电路径损失功率应为下一步长中的实际值,但由于下一计算步长两电机功率及其能量转换效率无法预测,而一个计算步长内电路径损失功率变化微小,可认为不变,所以用当前计算步长的电路径损失功率代替下一步长的电路径损失功率。
参阅附图5-8,实线为机械功率传递路线,虚线为电功率传递路线。两电机损失功率Ploss_MG2、Ploss_MG1的计算分为下面四种情况。需要说明的是,这里的两电机损失功率均是在电机传递由发动机发出的功率时产生的,不讨论电机再生制动时情况。
A.电机MG1发电、电机MG2电动:
参阅附图5,电机MG1所发出的电功率全部来自发动机,其损失功率计算公式如下:
Ploss_MG1=|PMG1|/ηMG1-|PMG1| (5)
如果|PMG1|>|PMG2|,那么只有大小为|PMG2|的来自发动机的功率通过路径A传递给电机MG2,电机MG1发出的功率剩余部分通过路径B给电池充电,路径c上功率为零;如果|PMG1|<|PMG2|,那么只有大小为|PMG1|的来自发动机的功率通过路径A传递给电机MG2,不足部分由超级电容通过路径c补充,路径B上的功率为零。综上,MG2损失功率计算公式如下:
Ploss_MG2=min{|PMG1|,|PMG2|}*(1-ηMG2) (6)
B.电机MG1电动、电机MG2发电:
参阅附6,两电机损失功率的分析与A中类似,不再赘述,可得如下结论:
电机MG2所发出的电功率全部来自发动机,其损失功率计算公式如下:
Ploss_MG2=|PMG2|/ηMG2-|PMG2| (7)
用两电机功率绝对值的较小值结合电机MG1的效率得到,计算公式如下:
Ploss_MG1=min{|PMG1|,|PMG2|}*(1-ηMG1) (8)
c.电机MG1电动、电机MG2电动:
参阅附图7,此时发动机在电路径上没有功率传输,故电路径损失为零;
Ploss_MG1=Ploss_MG2=0 (9)
D.电机MG1发电、电机MG2发电:
参阅附图8,电机MG1、电机MG2发出的电功率均全部来自发动机,其损失功率计算公式如下:
Ploss_MG1=|PMG1|/ηMG1-|PMG1| (10)
Ploss_MG2=|PMG2|/ηMG2-|PMG2| (11)
III.主减速器输入端需求整车驱动功率计算公式如下:
式中,δ为旋转质量换算系数,单位1;m为整车质量,单位kg;a为车辆加速度,单位m/s2;f为滚动阻力系数,α为坡度,单位rad;CD为车辆空气阻力系数,单位1;A车辆迎风面积,单位m2;ρ为空气密度,单位kg/m3;v为车辆速度,单位m/s;ηfinal为主减速器效率,单位1;
IV.发动机需求功率计算公式如下:
Preq=(Pchg_req+Ploss_MG1+Ploss_MG2+Pdrv)/ηpg (13)
式中ηpg为行星排传动效率,单位1。
机械路径的损失功率只存在于主减速器处和行星排处,由式(12)计算得到的主减速器输入端需求整车驱动功率Pdrv中已包含主减速器处机械损失功率;由式(13)计算得到的发动机需求功率Preq中已包含行星排处机械损失功率。

Claims (1)

1.一种行星混联混合动力汽车发动机需求功率计算方法,将发动机需求功率分为超级电容需求充电功率、动力传输过程中的损失功率以及主减速器输入端整车驱动需求功率,其特征在于:包括以下内容:
I.超级电容需求充电功率基于超级电容SOC当前值低于超级电容SOC目标控制值程度及超级电容SOC变化速率双反馈计算,具体包括以下步骤:
①参数标定:
基于超级电容SOC平衡原则和寿命要求设定基础充电功率Pchg_base、超级电容SOC目标控制值SOCcontrol及SOC维持下限SOClow
超级电容SOC当前值SOCreal低于超级电容SOC目标控制值SOCcontrol时即开始充电,根据不同的SOCreal低于SOCcontrol的程度ΔSOC和不同的超级电容SOC变化速率δSOC,使用不同的充电倍率C;
当超级电容SOC处于下降段时,制定充电倍率C关于ΔSOC和δSOC的二维插值矩阵M1,该矩阵满足充电倍率C随着ΔSOC增大而增大,随着δSOC增大而增大;当超级电容SOC处于上升段时,超级电容需求充电功率的计算不考虑δSOC,即充电倍率C只和ΔSOC有关,同样制定C关于ΔSOC的一维插值矩阵M2,该矩阵满足充电倍率C随着ΔSOC增大而增大;
②数据获取:
超级电容状态检测,包括超级电容SOC当前值SOCreal、超级电容SOC上一步长值SOCpre、当前允许的最大充电功率Pchg_max;SOCreal、SOCpre及Pchg_max可从超级电容控制器处直接获取;由此计算ΔSOC与δSOC,公式如下:
ΔSOC=SOCreal-SOCcontrol (1)
δSOC=(SOCreal-SOCpre)/Δt (2)
式中Δt为计算步长;
③超级电容需求充电功率计算:
先利用ΔSOC和δSOC根据M1和M2插值得到充电倍率C,再结合基础充电功率Pchg_base得到需求充电功率Pchg_req,公式如下:
Pchg_req=C*Pchg_base (3)
④对需求充电功率Pchg_req进行修正:
SOCreal>SOCcontrol时,Pchg_req=0
SOCreal<SOClow时,Pchg_req=Pchg_max
II.发动机通过曲轴发出的功率在传输过程中的损失细致划分为电路径上的损失功率和机械路径上的损失功率,其中电路径损失功率Ploss_e分为电机MG1损失功率Ploss_MG1和电机MG2损失功率Ploss_MG2,计算公式如下:
Ploss_e=Ploss_MG1+Ploss_MG2 (4)
Ploss_MG1及Ploss_MG2均根据电机MG1功率PMG1及其能量转换效率ηMG1、电机MG2功率PMG2及其能量转换效率ηMG2计算得到;PMG1、ηMG1、PMG2、η2G2可分别从两电机各自控制器处直接获取;PMG1、PMG2均为电功率且规定电机电动状态下功率为正,发电状态下功率为负;两电机损失功率Ploss_MG2、Ploss_MG1的计算分为以下四种情况:
A.电机MG1发电、电机MG2电动:
电机MG1所发出的电功率全部来自发动机,其损失功率计算公式如下:
Ploss_MG1=|PMG1|/ηMG1-|PMG1| (5)
电机MG2损失功率用两电机功率绝对值的较小值结合电机MG2的效率得到,计算公式如下:
Ploss_MG2=min{|PMG1|,|PMG2|}*(1-ηMG2) (6)
B.电机MG1电动、电机MG2发电:
电机MG2所发出的电功率全部来自发动机,其损失功率计算公式如下:
Ploss_MG2=|PMG2|/ηMG2-|PMG2| (7)
电机MG1损失功率用两电机功率绝对值的较小值结合电机MG1的效率得到,计算公式如下:
Ploss_MG1=min{|PMG1|,|PMG2|}*(1-ηMG1) (8)
C.电机MG1电动、电机MG2电动:
此时发动机在电路径上没有功率传输,故电路径损失为零:
Ploss_MG1=Ploss_MG2=0 (9)
D.电机MG1发电、电机MG2发电:
两电机发出的电功率均全部来自发动机,其损失功率计算公式如下:
Ploss_MG1=|PMG1|/ηMG1-|PMG1| (10)
Ploss_MG2=|PMG2|/ηMG2-|PMG2| (11)
III.主减速器输入端需求整车驱动功率计算公式如下:
式中,δ为旋转质量换算系数,单位1;m为整车质量,单位kg;a为车辆加速度,单位m/s2;f为滚动阻力系数,α为坡度,单位rad;CD为车辆空气阻力系数,单位1;A为车辆迎风面积,单位m2;ρ为空气密度,单位kg/m3;v为车辆速度,单位m/s;ηfinal为主减速器传动效率,单位1;
IV.发动机需求功率计算公式如下:
Preq=(Pchg_req+Ploss_e+Pdrv)/ηpg (13)
式中ηpg为行星排传动效率,单位1。
CN201810090728.6A 2018-01-30 2018-01-30 一种行星混联混合动力汽车发动机需求功率计算方法 Expired - Fee Related CN108297858B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810090728.6A CN108297858B (zh) 2018-01-30 2018-01-30 一种行星混联混合动力汽车发动机需求功率计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810090728.6A CN108297858B (zh) 2018-01-30 2018-01-30 一种行星混联混合动力汽车发动机需求功率计算方法

Publications (2)

Publication Number Publication Date
CN108297858A true CN108297858A (zh) 2018-07-20
CN108297858B CN108297858B (zh) 2019-05-14

Family

ID=62867013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810090728.6A Expired - Fee Related CN108297858B (zh) 2018-01-30 2018-01-30 一种行星混联混合动力汽车发动机需求功率计算方法

Country Status (1)

Country Link
CN (1) CN108297858B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110371104A (zh) * 2019-07-30 2019-10-25 江铃控股有限公司 蓄能缓冲控制方法及控制系统
CN112498332A (zh) * 2020-11-27 2021-03-16 重庆邮电大学 一种并联式混合动力汽车模糊自适应能量管理控制方法
CN115524629A (zh) * 2022-11-23 2022-12-27 陕西汽车集团股份有限公司 一种车辆动力电池系统健康状态的评估方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060022469A1 (en) * 2004-07-29 2006-02-02 Ford Global Technologies, Llc Method for estimating engine power in a hybrid electric vehicle powertrain
US7398147B2 (en) * 2005-08-02 2008-07-08 Ford Global Technologies, Llc Optimal engine operating power management strategy for a hybrid electric vehicle powertrain
CN101602364A (zh) * 2008-12-31 2009-12-16 宾洋 应用于phev的快速dp控制方法
CN101898557A (zh) * 2010-07-27 2010-12-01 广州汽车集团股份有限公司 电动四驱混合动力车辆的控制方法
CN102729987A (zh) * 2012-06-20 2012-10-17 浙江大学 一种混合动力公交车能量管理方法
CN104590269A (zh) * 2014-12-14 2015-05-06 励春亚 混合动力车辆soc保持能量管理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060022469A1 (en) * 2004-07-29 2006-02-02 Ford Global Technologies, Llc Method for estimating engine power in a hybrid electric vehicle powertrain
US7398147B2 (en) * 2005-08-02 2008-07-08 Ford Global Technologies, Llc Optimal engine operating power management strategy for a hybrid electric vehicle powertrain
CN101602364A (zh) * 2008-12-31 2009-12-16 宾洋 应用于phev的快速dp控制方法
CN101898557A (zh) * 2010-07-27 2010-12-01 广州汽车集团股份有限公司 电动四驱混合动力车辆的控制方法
CN102729987A (zh) * 2012-06-20 2012-10-17 浙江大学 一种混合动力公交车能量管理方法
CN104590269A (zh) * 2014-12-14 2015-05-06 励春亚 混合动力车辆soc保持能量管理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110371104A (zh) * 2019-07-30 2019-10-25 江铃控股有限公司 蓄能缓冲控制方法及控制系统
CN112498332A (zh) * 2020-11-27 2021-03-16 重庆邮电大学 一种并联式混合动力汽车模糊自适应能量管理控制方法
CN115524629A (zh) * 2022-11-23 2022-12-27 陕西汽车集团股份有限公司 一种车辆动力电池系统健康状态的评估方法
CN115524629B (zh) * 2022-11-23 2023-02-24 陕西汽车集团股份有限公司 一种车辆动力电池系统健康状态的评估方法

Also Published As

Publication number Publication date
CN108297858B (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
CN107161140B (zh) 一种插电式混合动力汽车系统的能量控制方法
CN103909819B (zh) 混合动力车辆
JP3700710B2 (ja) ハイブリッド車両の駆動制御装置
CN101125548B (zh) 并联式混合动力系统的能量流控制方法
US6915198B2 (en) Vehicle fast torque coordination
CN101708694B (zh) 一种电动汽车里程增加器控制系统及其控制方法
CN108297858B (zh) 一种行星混联混合动力汽车发动机需求功率计算方法
KR101338435B1 (ko) 친환경 자동차의 토크 제어방법 및 그 장치
CN108215813A (zh) 一种增程器控制系统及控制方法
CN101898557A (zh) 电动四驱混合动力车辆的控制方法
US20160144739A1 (en) Vehicle, and vehicle control method
CN102806907A (zh) 用于控制混合动力系统的转矩输出的方法和装置
CN102815295A (zh) 一种混联式混合动力车辆的动力控制方法
CN110304042B (zh) 基于规则的四驱phev转矩分配控制方法
CN111016874B (zh) 一种用于混合动力汽车的扭矩分配方法和扭矩分配装置
WO2024045321A1 (zh) 一种面向增程式电传动矿用卡车的能量输出控制方法及系统
CN104047745B (zh) 对混合动力电动车辆中的目标发动机转速的海拔补偿
CN102556046B (zh) 用于控制混合动力车电动机的系统和方法
CN109795473A (zh) 混合动力汽车以及电池电量均衡控制方法和控制系统
US20090258280A1 (en) Power output apparatus and method of setting secondary battery
CN110834624A (zh) 一种自适应遗传算法的全混动汽车能效优化控制方法
JP2011073533A (ja) 車両の制御装置
CN107491587B (zh) 功率分流式混合动力客车的多因素综合参数化设计方法
JP4655408B2 (ja) 電気自動車
JP2006180657A (ja) 4輪駆動ハイブリッド車両

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190514

Termination date: 20210130

CF01 Termination of patent right due to non-payment of annual fee