CN108291970A - 用于光学检测至少一个对象的检测器 - Google Patents

用于光学检测至少一个对象的检测器 Download PDF

Info

Publication number
CN108291970A
CN108291970A CN201680070553.1A CN201680070553A CN108291970A CN 108291970 A CN108291970 A CN 108291970A CN 201680070553 A CN201680070553 A CN 201680070553A CN 108291970 A CN108291970 A CN 108291970A
Authority
CN
China
Prior art keywords
detector
longitudinal
sensor
light beam
optical sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680070553.1A
Other languages
English (en)
Inventor
R·森德
I·布鲁德
S·瓦鲁施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telinamikesi Ltd By Share Ltd
TrinamiX GmbH
Original Assignee
Telinamikesi Ltd By Share Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telinamikesi Ltd By Share Ltd filed Critical Telinamikesi Ltd By Share Ltd
Publication of CN108291970A publication Critical patent/CN108291970A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/12Systems for determining distance or velocity not using reflection or reradiation using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02024Position sensitive and lateral effect photodetectors; Quadrant photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

公开了光学检测至少一个对象(112)的检测器(110)。检测器(110)包括:至少一个纵向光学传感器(114),其中纵向光学传感器(114)具有至少一个传感器区域(130),其中纵向光学传感器(114)被设计为以依赖于光束(132)对传感器区域(130)的照射的方式产生至少一个纵向传感器信号,其中在给定相同照射总功率的情况下,纵向传感器信号依赖于光束(132)在传感器区域(130)中的光束横截面,其中纵向传感器信号还依赖于纵向光学传感器(114)的至少一个特性,其中纵向光学传感器(114)的特性是可调节的;和至少一个评估装置(138),其中评估装置(138)被设计为通过评估纵向光学传感器(114)的纵向传感器信号产生关于对象(112)的纵向位置的至少一项信息。

Description

用于光学检测至少一个对象的检测器
技术领域
本发明涉及一种用于确定至少一个对象的位置的检测器、检测器系统和方法。本发明进一步涉及用于在用户与机器、娱乐装置、跟踪系统、相机、扫描系统以及检测器装置的各种用途之间交换至少一项信息的人机接口。根据本发明的装置、系统、方法和用途具体地可以被用于例如日常生活、游戏、交通技术、制造技术、安全技术、诸如艺术数码摄影或视频拍摄之类的摄影、文件编制或技术目的、医疗技术的各个领域,或者用于各种科学。但是,其它应用也是可能的。
背景技术
现有技术中已知大量的光学传感器和光伏器件。光伏器件一般用于将电磁辐射(例如紫外、可见或红外光)变换为电信号或电能,而光学检测器一般用于拾取图像信息和/或用于检测至少一个光学参数(例如,亮度)。
现有技术中已知通常可以基于无机和/或有机传感器材料的使用的大量光学传感器。在US 2007/0176165 A1、US 6,995,445 B2、DE 2501124 A1、DE 3225372 A1或者许多其它现有技术文献中公开了这种传感器的例子。特别是出于成本原因和大面积处理的原因,越来越多地使用包括至少一种有机传感器材料的传感器,如在例如US 2007/0176165 A1中所述。特别地,所谓的染料太阳能电池在这里越来越重要,其通常例如在WO2009/013282 A1中进行了描述。然而,本发明不限于有机器件的用途。因此,具体地,也可以使用诸如CCD传感器和/或CMOS传感器之类的无机器件,特别是像素化传感器。
基于此类光学传感器,已知用于检测至少一个对象的大量检测器。根据各自的使用目的,这些传感器可以以各种方式体现。这些检测器的例子是成像装置,例如相机和/或显微镜。已知例如高分辨率共焦显微镜,其可以特别地用于医疗技术和生物学领域,以便以高光学分辨率检查生物样本。用于光学检测至少一个对象的检测器的另外的例子是例如基于相应光学信号(例如激光脉冲)的传播时间方法的距离测量装置。用于光学检测对象的检测器的另外的例子是三角测量系统,借助于该三角测量系统同样可以执行距离测量。
在其内容通过引用而被包括在本文中的WO 2012/110924 A1中,提出了一种用于光学检测至少一个对象的检测器。该检测器包括至少一个光学传感器。该光学传感器具有至少一个传感器区域。该光学传感器被设计为以依赖于传感器区域的照射的方式产生至少一个传感器信号。在给定相同照射总功率的情况下,传感器信号依赖于照射的几何形状,特别是依赖于传感器区域上的照射的光束横截面。该检测器还具有至少一个评估装置。评估装置被设计为从传感器信号产生至少一项几何信息,特别地,至少一项关于照射和/或对象的几何信息。
其全部内容通过引用而被包括在本文中的WO 2014/097181 A1公开了一种用于通过使用至少一个横向光学传感器和至少一个光学传感器确定至少一个对象的位置的方法和检测器。具体而言,公开了传感器堆叠的使用,以便以高精确度且不含糊地确定对象的纵向位置。
其全部内容通过引用而被包括在本文中的WO 2015/024871 A1公开了一种光学检测器,其包括:
-至少一个空间光调制器,其适于以空间分辨的方式调节光束的至少一种特性,具有像素的矩阵,其中各像素可控以单独调节通过像素的光束部分的至少一种光学特性;
-至少一个光学传感器,其适于检测通过空间光调制器的像素的矩阵之后的光束且产生至少一个传感器信号;
-至少一个调制器装置,其适于以不同调制频率周期性控制像素中的至少两个;以及
-至少一个评估装置,其适于进行频率分析以确定用于调制频率的传感器信号的信号分量。
其全部内容通过引用而被包括在本文中的WO 2014/198629 A1公开了一种用于确定至少一个对象的位置的检测器,包括:
-至少一个光学传感器,所述光学传感器适于检测从对象朝向检测器传播的光束,所述光学传感器具有像素的至少一个矩阵;以及
-至少一个评估装置,所述评估装置适于确定光学传感器的由光束照射的像素的数量N,所述评估装置进一步适于通过使用由光束照射的像素的数量N确定对象的至少一个纵向坐标。
此外,通常,对于各种其它检测器构思,可以参考WO 2014/198626 A1、WO 2014/198629 A1和WO 2014/198625 A1,这些文献的全部内容通过引用而被包括在本文中。另外,关于在本发明的上下文中也可以使用的可能的材料和光学传感器,可参考2015年1月30日提交的欧洲专利申请EP 15 153 215.7,2015年3月3日提交的EP 15 157 363.1,2015年4月22日提交的EP 15 164 653.6,2015年7月17日提交的EP 15177275.3,2015年8月10日提交的EP 15180354.1和EP 15180353.3以及2015年9月14日提交的EP 15 185 005.4,这些文献的全部内容通过引用也被包括在本文中。
尽管上述装置和检测器隐含优点,但仍存在若干技术挑战。因此,通常,需要既可靠又可以低成本制造的用于检测对象在空间中的位置的检测器。具体而言,需要3D感测构思。各种已知的构思至少部分地基于使用所谓的FiP传感器,例如上述几种构思。使用FiP传感器的3D感测构思通常依赖于使用包括至少一个FiP传感器和另一非FiP检测器的检测器。例如,FiP检测器和非FiP检测器可以彼此堆叠地布置。或者,FiP检测器和非FiP检测器可以被布置为使得被例如分束器分割的光束的光照射FiP检测器和非FiP检测器二者。因此,需要透明的检测器或昂贵的分束器。
上面对诸如上述现有技术文献中的若干个的构思的已知构思的讨论清晰地表明仍然存在某些技术挑战。尽管上述装置和检测器,特别是WO 2012/110924 A1中公开的检测器,暗含了一些优点,但是仍然需要对简单、成本有效且仍可靠的空间检测器进行改进。
发明内容
因此,本发明的一个目的是提供面对已知装置和方法的上述技术挑战的装置和方法。具体而言,本发明的一个目的是提供能够可靠地确定对象在空间中的位置,优选地技术成本低且对技术资源和成本的要求低的装置和方法。
该问题由具有独立专利权利要求的特征的本发明来解决。在从属权利要求和/或在以下说明书和详细的实施例中呈现本发明的可单独地或组合地实现的有利发展。
如下文所使用的,术语“具有”、“包括”或“包含”或其任何语法变体以非排他性的方式使用。因此,这些术语可以指除了由这些术语引入的特征之外,本文描述的实体中不存在其它特征的情形,也可以指存在一个或多个其它特征的情形。作为例子,表述“A具有B”、“A包括B”和“A包含B”可以指A中除了B之外不存在其它要素(即,A仅仅且排他地由B组成)的情形,也可以指实体A中除了B之外还存在一个或多个其它要素(例如要素C、要素C和D、或甚至其它要素)的情形。
此外,应注意,术语“至少一个”、“一个或多个”或者指示特征或要素可以存在一次或多于一次的类似表述通常将仅在引入相应的特征或要素时使用一次。在下文中,在多数情况下,当提及相应的特征或要素时,不会重复表述“至少一个”或“一个或多个”,但是承认相应的特征或要素可以存在一次或多于一次的事实。
此外,如下文所使用的,术语“优选地”、“更优选地”、“特别地”、“更特别地”、“具体地”、“更具体地”或类似的术语可以与可选特征结合使用,而不限制其它可能性。因此,由这些术语引入的特征是可选的特征,并不意图以任何方式限制权利要求的范围。如本领域的技术人员将认识到的,本发明可以通过使用替代特征来执行。类似地,由“在本发明的实施例中”或类似表述引入的特征旨在为可选的特征,而对本发明的替代实施例没有任何限制,对本发明的范围没有任何限制,并且对组合以此方式引入的特征与本发明的其它可选的或非可选的特征的可能性没有任何限制。
在本发明的第一方面中,公开了一种用于至少一个对象的光学检测的检测器,特别是用于确定至少一个对象的位置,具体地关于所述至少一个对象的深度或者深度和宽度二者的光学检测的检测器。
“对象”通常可以是从活的对象和非活的对象中选择的任意对象。因此,作为例子,至少一个对象可以包括一个或多个制品和/或制品的一个或多个部分。附加地或替代地,对象可以是或可以包括一个或多个活物和/或其一个或多个部位,例如人(例如,用户)和/或动物的一个或多个身体部位。
如本文中所使用的,术语“位置”是指关于对象和/或对象的至少一部分在空间中的位置和/或取向的至少一项信息。因此,该至少一项信息可暗示该对象的至少一个点与至少一个检测器之间的至少一个距离。如下文更详细地描述的,该距离可以是纵向坐标,或者可以有助于确定对象的该点的纵向坐标。附加地或替代地,可以确定关于该对象和/或该对象的至少一部分的位置和/或取向的一项或多项其它信息。作为例子,可以确定该对象和/或该对象的至少一部分的至少一个横向坐标。因此,该对象的位置可以暗示该对象和/或该对象的至少一部分的至少一个纵向坐标。附加地或替代地,该对象的位置可以暗示该对象和/或该对象的至少一部分的至少一个横向坐标。附加地或替代地,该对象的位置可以暗示该对象的至少一个取向信息,该取向信息指示该对象在空间中的取向。
为此,作为例子,可以使用一个或多个坐标系,并且可以通过使用一个、两个、三个或更多个坐标确定该对象的位置。作为例子,可以使用一个或多个笛卡尔坐标系和/或其它类型的坐标系。在一个例子中,坐标系可以是其中检测器具有预定位置和/或取向的检测器的坐标系。如将在下面更详细地描述,检测器可以具有光轴,该光轴可以构成检测器的主检视方向。光轴可以形成坐标系的轴,例如z轴。此外,可以设置一个或多个附加轴,优选地垂直于z轴。
因此,作为例子,检测器可以构成这样的坐标系:其中,光轴形成z轴,并且其中,可以提供垂直于z轴并且彼此垂直的x轴和y轴。例如,检测器和/或检测器的一部分可以位于该坐标系中的特定点处,例如位于该坐标系的原点处。在该坐标系中,与z轴平行或反平行的方向可被视为纵向方向,沿着z轴的坐标可被视为纵向坐标。与纵向方向垂直的任意方向可被视为横向方向,并且x坐标和/或y坐标可被视为横向坐标。
替代地,可以使用其它类型的坐标系。因此,作为例子,可以使用极坐标系,其中光轴形成z轴,并且其中可以使用距z轴的距离和极角作为附加坐标。同样,与z轴平行或反平行的方向可被视为纵向方向,沿着z轴的坐标可被视为纵向坐标。与z轴垂直的任意方向可被视为横向方向,并且极坐标和/或极角可被视为横向坐标。
如本文中所使用的,用于光学检测的检测器通常是适于提供关于至少一个对象的位置的至少一项信息的装置。检测器可以是固定装置或可移动装置。此外,检测器可以是独立的装置,或可以形成另一装置(例如计算机、车辆或任何其它装置)的一部分。此外,检测器可以是手持装置。检测器的其它实施例也是可行的。
检测器可适于以任何可行的方式提供关于至少一个对象的位置的至少一项信息。因此,该信息可以例如以电子方式、视觉方式、声学方式或这些方式的任意组合提供。该信息可进一步被存储在检测器的数据存储中,或存储在单独装置中,和/或可以经由至少一个接口(例如无线接口和/或有线接口)提供。
根据本发明的一种用于至少一个对象的光学检测的检测器包括:
-至少一个纵向光学传感器,其中所述纵向光学传感器具有至少一个传感器区域,其中所述纵向光学传感器被设计为以依赖于光束对所述传感器区域的照射的方式产生至少一个纵向传感器信号,其中在给定相同的照射总功率的情况下,所述纵向传感器信号依赖于所述光束在所述传感器区域中的光束横截面,
其中所述纵向传感器信号进一步依赖于所述纵向光学传感器的至少一个特性,其中所述纵向光学传感器的所述特性是可调节的;以及
-至少一个评估装置,其中所述评估装置被设计为通过评估所述纵向光学传感器的所述纵向传感器信号而产生关于所述对象的纵向位置的至少一项信息。
在此,上面列出的组件可以是单独的组件。或者,上面列出的组件中的两个或更多个可以被集成到一个组件中。此外,所述至少一个评估装置可以形成为独立于传送装置和纵向光学传感器的单独的评估装置,但是可以优选地被连接到纵向光学传感器,以便接收纵向传感器信号。或者,所述至少一个评估装置可以完全或部分地集成到纵向光学传感器中。
如本文中所使用的,光学传感器通常是指用于检测光束(例如用于检测由光束产生的照射和/或光斑)的光敏器件。如下文更详细描述的,光学传感器可以适于确定对象和/或对象的至少一个部分(例如至少一个光束从其朝向检测器传播的对象的至少一个部分)的至少一个纵向坐标。
如本文中所使用的,“纵向光学传感器”通常是指被设计为以依赖于光束对传感器区域的照射的方式产生至少一个纵向传感器信号的装置,其中在给定相同的照射总功率的情况下,纵向传感器信号根据所谓的“FiP效应”而依赖于光束在传感器区域中的光束横截面。如本文中所使用的,术语“传感器信号”通常是指响应于照射而由纵向光学传感器产生的任意可存储和可传送的信号。纵向传感器信号通常可以是指示纵向位置的任意信号,该纵向位置也可以表示为深度。作为例子,纵向传感器信号可以是或可以包括数字和/或模拟信号。作为例子,纵向传感器信号可以是或可以包括电压信号和/或电流信号。附加地或替代地,纵向传感器信号可以是或可以包括数字数据。作为例子,传感器信号可以是或可以包括至少一个电子信号,其可以是或可以包括数字电子信号和/或模拟电子信号。纵向传感器信号可以包括单个信号值和/或一系列信号值。纵向传感器信号可进一步包括通过组合两个或更多个单独信号(例如通过对两个或更多个信号求平均和/或通过形成两个或更多个信号的商)而导出的任意信号。有关纵向光学传感器和纵向传感器信号的可能的实施例,可以参考在WO 2012/110924A1中公开的光学传感器。此外,可以使用原始传感器信号,或者检测器、光学传感器或任何其它元件可以适于处理或预处理传感器信号,由此产生也可用作传感器信号的二次传感器信号,例如通过过滤等执行预处理。
如本文中所使用的,术语“光”通常是指在可见光谱范围、紫外光谱范围和红外光谱范围中的一者或多者中的电磁辐射。其中,部分地根据ISO标准ISO-21348,术语“可见光谱范围”通常是指380nm到780nm的光谱范围。术语“红外(IR)光谱范围”通常是指在760nm到1000μm的范围内的电磁辐射,其中760nm到1.4μm的范围通常被命名为近红外(NIR)光谱范围,并且从15μm到1000μm的范围通常被命名为远红外(FIR)光谱范围。术语“紫外光谱范围”通常是指在1nm到380nm的范围内,优选地在100nm到380nm的范围内的电磁辐射。优选地,本发明中使用的光是可见光,即可见光谱范围内的光。
术语“光束”通常是指发射到特定方向的光量,具体地,基本沿着同一方向行进的光量,其中包括具有扩展角或扩宽角的光束的可能性。因此,光束可以是在垂直于光束传播方向的方向上具有预定延伸的一束光线。优选地,光束可以是或可以包括一个或多个高斯光束,其以一个或多个高斯光束参数为特征,例如束腰、瑞利长度或适合于表征光束直径的发展和/或光束在空间中的传播的任何其它光束参数或光束参数组合中的一者或多者。光束从对象朝向检测器传播。
光束可能被允许进入对象本身,即可能源自对象。附加地或替代地,另一光束来源也是可行的。因此,如下面更详细描述的,可以提供一个或多个照射源,该照射源例如通过使用一个或多个主射线或光束(例如具有预定特性的一个或多个主射线或光束)来照射对象。在后一种情况下,从对象传播到检测器的光束可能是被对象和/或连接到对象的反射装置反射的光束。
在给定相同的光束照射总功率的情况下,所述至少一个纵向传感器信号根据FiP效应依赖于光束在所述至少一个纵向光学传感器的传感器区域中的光束横截面。
如本文中所使用的,术语“传感器区域”通常是指二维或三维区域,其优选地但不一定是连续的,并且可以形成连续区域,其中传感器区域被设计为以依赖于照射的方式改变至少一个可测量的特性。举例来说,所述至少一个特性可以包括电特性,例如通过将传感器区域设计为单独地或与光学传感器的其它元件相互作用地产生光电压和/或光电流和/或某种其它类型的信号。特别地,传感器区域可以以这样的方式体现:该方式使得能够以依赖于传感器区域的照射的方式产生均匀的(优选地单个)信号。因此,传感器区域可以是纵向光学传感器的最小单元,为该传感器区域产生均匀的信号(例如电信号),该信号优选地不再例如针对传感器区域的分区而被细分为部分信号。该纵向光学传感器可具有一个或多个此类传感器区域,在后一种情况下,例如通过二维和/或三维矩阵排列布置多个此类传感器区域。
根据本发明的检测器以及在本发明的上下文中提出的其它装置和方法具体地可以被视为实现类似于所谓的“FiP”效应的构思,该效应在WO 2012/110924 A1和/或在WO2014/097181 A1中被进一步详细地解释。其中“FiP”意味着可以产生信号i的效应,在给定相同照射总功率P的情况下,该信号i依赖于光子密度、光子通量,且因此依赖于入射光束的截面φ(F)。
如本文中所使用的,术语“光束横截面”通常是指光束或由光束在特定位置处产生的光斑的横向延伸。如本文中进一步所使用的,光斑通常是指光束在特定位置处进行的可见或可检测的圆形或非圆形照射。在光斑中,光可以完全或部分地被散射,或者可以简单地被透射。在产生圆形光斑的情况下,半径、直径或高斯束腰或双倍高斯束腰可以充当光束横截面的度量。在产生非圆形光斑的情况下,横截面可以以任何其它可行的方式确定,例如通过确定具有与该非圆形光斑相同的面积的圆形的横截面,该横截面也被称为等效光束横截面。在此方面,在光束以最小可能的横截面照射传感器区域的情况下,例如当传感器区域位于受光学透镜影响的焦点处或其附近时,可以采用对纵向传感器信号的极值(即最大值或最小值)的观察,特别地是对全局极值的观察。如果极值为最大值,则该观察可被命名为正FiP效应,而如果极值为最小值,则该观察可被命名为负FiP效应。
在光束对传感器区域的照射总功率相同的情况下,具有第一光束直径或光束横截面的光束可产生第一纵向传感器信号,而具有不同于第一光束直径或光束横截面的第二光束直径或光束横截面的光束产生不同于第一纵向传感器信号的第二纵向传感器信号。因此,通过比较纵向传感器信号,可以产生关于光束横截面,具体地关于光束直径的至少一项信息。有关此效应的细节,可参考WO 2012/110924 A1。因此,可以比较由纵向光学传感器产生的纵向传感器信号,以便获得关于光束的总功率和/或强度的信息,和/或以便针对光束的总功率和/或总强度标准化(normalize)纵向传感器信号和/或关于对象的纵向位置的至少一项信息。因此,作为例子,可以检测纵向光学传感器信号的最大值,并且可以使所有纵向传感器信号被该最大值除,从而产生标准化的纵向光学传感器信号,然后可以通过上述已知的关系将标准化的纵向光学传感器信号变换为关于对象的至少一项纵向信息。其它标准化方法也是可行的,例如使用纵向传感器信号的平均值并使所有纵向传感器信号被该平均值除的标准化。其它选项也是可能的。这些选项中的每一者都可以适合于使该变换独立于光束的总功率和/或强度。此外,可产生关于光束的总功率和/或强度的信息。
具体地,在从对象传播到检测器的光束的一个或多个光束特性是已知的情况下,可以从至少一个纵向传感器信号与对象的纵向位置之间的已知关系推导出关于对象的纵向位置的至少一项信息。该已知关系可以作为算法和/或作为一个或多个校准曲线存储在评估装置中。作为例子,具体地对于高斯光束,可以通过使用束腰与纵向坐标之间的高斯关系容易地推导出光束直径或束腰与对象位置之间的关系。
纵向传感器信号进一步依赖于纵向光学传感器的至少一个特性,其中纵向光学传感器的特性是可调节的。如本文中所使用的,术语“纵向光学传感器的特性”通常是指影响纵向光学传感器响应于照射的响应行为的纵向传感器的任意特性。例如,该特性可以是纵向光学传感器(具体地,传感器区域)的材料特性。特别地,该特性可以是纵向光学传感器(特别地,传感器区域)的材料的电特性和/或电特征。因此,该特性可以是纵向光学传感器(特别地,传感器区域)的材料的导电性。如本文中所使用的,术语“可调节的”通常是指为了对纵向光学传感器的特性进行配置、更改、修改、改变中的至少一者而影响纵向光学传感器。该特性可以是故意地可调节的。具体而言,纵向光学传感器的特性可以由用户和/或通过外部影响来调节。该特性可以是预定和/或预设的。该特性可以根据所需的应用调节。检测器可以包括至少一个切换装置,其被配置为施加至少一个外部影响和/或至少一个内部影响。如本文中所使用的,术语“切换装置”通常是指被设计为调节纵向光学传感器的特性的任意装置。如本文中所使用的,术语“内部影响”通常是指通过纵向光学传感器的配置而调节纵向光学传感器的特性。如下面更详细描述的,检测器可以包括被配置为将至少一个电压施加到纵向光学传感器的至少一个电压源。切换装置可以被配置为对电压源施加影响,以便修改被施加到纵向光学传感器的电压。此外,如文本所使用的,术语“外部影响”通常是指通过配置外部装置而调节纵向光学传感器的特性。如下面更详细描述的,检测器可以包括被配置为发射至少一个光束的至少一个照射源。切换装置可以被配置为对照射源施加影响,例如至少一个电子信号和/或至少一个数据信号,以便修改照射源。例如,由于切换装置的影响,由照射源发射的光束的至少一个特性被修改。
如本文中所使用的,术语“评估装置”通常是指被设计为产生信息项(即,关于对象的位置的至少一项信息)的任意装置。作为例子,评估装置可以是或可以包括一个或多个集成电路(例如一个或多个专用集成电路(ASIC)),和/或一个或多个数据处理装置(例如一个或多个计算机,优选地一个或多个微计算机和/或微控制器)。可以包括附加的组件,例如一个或多个预处理装置和/或数据采集装置,例如用于接收和/或预处理传感器信号的一个或多个装置,例如一个或多个AD转换器和/或一个或多个过滤器。如本文中所使用的,传感器信号通常是指纵向传感器信号之一,并且如果适用,可以指横向传感器信号。此外,评估装置可以包括一个或多个数据存储装置。此外,如上所述,评估装置可以包括一个或多个接口,例如一个或多个无线接口和/或一个或多个有线接口。
所述至少一个评估装置可以适于执行至少一个计算机程序,例如执行或支持产生信息项的步骤的至少一个计算机程序。作为例子,可以实施一个或多个算法,所述算法通过使用传感器信号作为输入变量,可以执行到对象位置的预定变换。
评估装置可以特别地包括至少一个数据处理装置,特别地,电子数据处理装置,其可被设计为通过评估传感器信号产生信息项。因此,评估装置被设计为使用传感器信号作为输入变量,并通过处理这些输入变量而产生关于对象的横向位置和纵向位置的信息项。处理可以并行地、顺序地,甚至以组合的方式进行。评估装置可以使用用于产生这些信息项的任意过程,例如通过计算和/或使用至少一个已存储的和/或已知的关系。除了传感器信号之外,一个或多个另外的参数和/或信息项可以影响所述关系,例如关于调制频率的至少一项信息。该关系可以根据或可以根据经验、分析或半经验确定。特别优选地,该关系包括至少一个校准曲线、至少一组校准曲线、至少一个函数或上述可能性的组合。一个或多个校准曲线例如可以以值集和相关联的其函数值的形式存储在例如数据存储装置和/或表格中。然而,替代地或附加地,所述至少一个校准曲线例如也可以以参数化的形式和/或作为函数等式而被存储。可以使用用于将传感器信号处理为信息项的单独的关系。或者,用于处理传感器信号的至少一个组合关系也是可行的。各种可能性是可以构想的,也是可以组合的。
举例来说,评估装置可以根据确定信息项的目的进行编程而被设计。评估装置特别地可以包括至少一个计算机,例如至少一个微计算机。此外,评估装置可以包括一个或多个易失性或非易失性数据存储器。作为数据处理装置(特别地,至少一个计算机)的替代或补充,评估装置可以包括被设计为用于确定信息项目的一个或多个另外的电子组件,例如电子表格、特别地,至少一个查找表和/或至少一个专用集成电路(ASIC)。
如上所述,检测器具有至少一个评估装置。特别地,所述至少一个评估装置也可被设计为完全或部分地控制或驱动检测器,例如通过将评估装置设计为控制至少一个照射源和/或控制检测器的至少一个调制装置。评估装置特别地可被设计为执行至少一个测量周期,在该测量周期中,拾取一个或多个传感器信号,例如多个传感器信号,例如在不同的照射调制频率下连续的多个传感器信号。
如上所述,评估装置被设计为通过评估至少一个传感器信号而产生关于对象位置的至少一项信息。所述对象的位置可以是静止的,或者甚至可以包括对象的至少一个移动,例如检测器或其部分与对象或其部分之间的相对移动。在这种情况下,相对移动通常可以包括至少一个线性移动和/或至少一个旋转移动。移动信息项例如还可以通过比较在不同时间拾取的至少两项信息来获得,使得例如至少一项位置信息还可以包括至少一项速度信息和/或至少一项加速度信息,例如关于对象或其部分与检测器或其部分之间的至少一个相对速度的至少一项信息。特别地,所述至少一项位置信息通常可以选自:关于对象或其部分与检测器或其部分之间的距离(特别地,光程长度)的信息项;关于对象或其部分与可选的传送装置或其部分之间的距离或光学距离的信息项;关于对象或其部分相对于检测器或其部分的定位的信息项;关于对象和/或其部分相对于检测器或其部分的取向的信息项;关于对象或其部分与检测器或其部分之间的相对移动的信息项;关于对象或其部分的二维或三维空间配置,(特别地,对象的几何形状或形式)的信息项。通常,所述至少一项位置信息因此可以从例如由以下项构成的组中选择:关于对象或其至少一部分的至少一个位置的信息项;关于对象或其部分的至少一个取向的信息项;关于对象或其部分的几何形状或形式的信息项;关于对象或其部分的速度的信息项;关于对象或其部分的加速度的信息项;关于检测器的视觉范围内对象或其部分的存在或不存在的信息项。
所述至少一项位置信息例如可以在至少一个坐标系(例如检测器或其部分所在的坐标系)中被指定。替代地或附加地,所述位置信息也可以简单地包括例如检测器或其部分与对象或其部分之间的距离。所提到的可能性的组合也是可以想到的。
评估装置可以适于通过根据至少一个纵向传感器信号确定光束的直径来产生关于对象的纵向位置的至少一项信息。关于通过采用根据本发明的评估装置确定关于对象的纵向位置的至少一项信息的进一步细节,可参考WO 2014/097181 A1中的描述。因此,一般而言,评估装置可以适于将光束的光束横截面和/或直径与光束的已知光束特性进行比较,以便优选地根据光束的光束直径对光束传播方向上的至少一个传播坐标的已知依赖性和/或根据光束的已知高斯轮廓,确定关于对象的纵向位置的至少一项信息。
评估装置可被设计为明确地(unambiguously)评估纵向光学传感器信号。评估装置可以被配置为解决光束的光束横截面与对象的纵向位置之间的已知关系中的模糊性(ambiguity)。因此,即使从对象向检测器传播的光束的光束特性完全或部分地已知,也已知在许多光束中,光束横截面在到达焦点之前变窄,到达之后再次变宽。因此,在光束具有最窄光束横截面的焦点之前和之后,出现沿着光束传播轴光束具有相同的横截面的位置。因此,作为例子,在焦点前后的距离z0处,光束的横截面相同。
在该上下文中,可参考2015年10月28日提交的编号为15191960.2的欧洲专利申请,其全部内容通过引用而被包括在本文中。在使用具有特定光谱灵敏度的仅一个纵向光学传感器的情况下,如果光束的总功率或强度已知,则可以确定光束的具体横截面。通过使用该信息,可确定相应纵向光学传感器距焦点的距离z0。然而,为了确定相应纵向光学传感器位于焦点之前还是之后,需要额外的信息,例如对象和/或检测器的移动历史和/或关于检测器位于焦点之前或之后的信息。在典型的情况下,可以不提供该额外的信息。因此,为了解决模糊性,检测器可以包括至少两个纵向光学传感器。在评估装置通过评估纵向传感器信号而识别出第一纵向光学传感器上的光束的光束横截面大于第二纵向光学传感器上的光束的光束横截面(其中第二纵向光学传感器位于第一纵向光学传感器后面)的情况下,评估装置可以确定光束仍在变窄,并且第一纵向光学传感器的位置位于光束的焦点之前。相反地,在第一纵向光学传感器上的光束的光束横截面小于第二纵向光学传感器上的光束的光束横截面的情况下,评估装置可以确定光束正在变宽并且第二纵向光学传感器的位置位于焦点后面。通常,评估装置可以适于通过比较不同纵向传感器的纵向传感器信号来识别光束变宽还是变窄。
然而,尤其是考虑到成本效率和空间要求,可能需要通过使用单个纵向光学传感器来明确地确定关于对象的纵向位置的至少一项信息。因此,纵向光学传感器可以是在至少两种操作模式下可操作的。如本文中所使用的,术语“操作模式”是指纵向光学传感器的状态,特别地,操作状态。操作模式可以依赖于纵向光学传感器的可调节特性。在光束照射在纵向光学传感器上的情况下,在第一操作模式下的纵向光学传感器可以产生与在第二操作模式下产生的纵向传感器信号不同的纵向传感器信号。如本文中所使用的,术语“在至少两种操作模式下可操作的”通常是指纵向光学传感器被配置为在每个操作模式下产生纵向传感器信号。因此,纵向光学传感器可以被配置为在至少两个操作模式下光学检测至少一个对象。
检测器可以被配置为能够通过调节纵向光学传感器的特性来实现操作模式之间的切换和/或改变。具体而言,切换装置可以被配置为在纵向光学传感器的至少两个操作模式之间切换。切换装置可以被配置为在基于FiP的检测器的操作状态之间进行切换,特别地在其中FiP检测器能够执行基于FiP的检测的操作状态与其中FiP检测器不能执行基于FiP的检测的状态之间进行切换。
例如,在依赖于纵向光学传感器的特性的至少一个正操作模式下,纵向传感器信号的幅度(amplitude)可以随着光束在传感器区域中产生的光斑的横截面的减小而增大。如上所述,在给定相同的光束照射总功率的情况下,至少一个纵向传感器信号依赖于光束在该至少一个纵向光学传感器的传感器区域中的光束横截面。在正操作模式下,在给定相同总功率的情况下,纵向传感器信号可以针对一个或多个焦点和/或针对在传感器区域上或传感器区域内光斑的一个或多个特定大小而呈现至少一个明显的最大值。为了比较,在传感器区域被具有最小可能的横截面的光束照射的条件下(例如当传感器区域可以位于受光学透镜影响的焦点处或其附近时)观察到纵向传感器信号的最大值可被命名为“正FiP效应”。
此外,例如,在依赖于纵向光学传感器的特性的至少一个负操作模式下,纵向传感器信号的幅度可以随着光束在传感器区域中产生的光斑的横截面的减小而减小。如上所述,在给定相同的光束照射总功率的情况下,至少一个纵向传感器信号依赖于光束在该至少一个纵向光学传感器的传感器区域中的光束横截面。在负操作模式下,在给定相同总功率的情况下,纵向传感器信号可以针对一个或多个焦点和/或针对在传感器区域上或传感器区域内光斑的一个或多个特定大小而呈现至少一个明显的最小值。为了比较,在传感器区域被具有最小可能的横截面的光束照射的条件下(例如当传感器区域可以位于受光学透镜影响的焦点处或其附近时)观察到纵向传感器信号的最小值可被命名为“负FiP效应”。
此外,例如,在依赖于纵向传感器的特性的至少一个中性操作模式下,纵向传感器信号的幅度可以基本上独立于光束在传感器区域中产生的光斑的横截面的变化。特别地,纵向传感器信号可以基本上独立于焦点。如本文中所使用的,术语“基本上独立于横截面的变化”是指纵向传感器信号与横截面的变化无关,其中可以发生纵向传感器信号的至少±10%,优选地±5%,最优选地±1%的幅度偏差。特别地,在中性模式下,不会观察到全局极值。
检测器可以被配置为能够实现由以下项构成的组中的至少两个操作模式之间的切换和/或改变:正操作模式;负操作模式;以及中性操作模式。因此,例如,纵向光学传感器可以处于正操作模式。切换装置可以被配置为施加至少一个外部影响和/或至少一个内部影响,使得纵向光学传感器的操作模式例如改变为负操作模式或中性操作模式。例如,纵向光学传感器可以处于负操作模式。切换装置可以被配置为施加至少一个外部影响和/或至少一个内部影响,使得纵向光学传感器的操作模式例如改变为正操作模式或中性操作模式。例如,纵向光学传感器可以处于中性操作模式。切换装置可以被配置为施加至少一个外部影响和/或至少一个内部影响,使得纵向光学传感器的操作模式例如改变为正操作模式或负操作模式。
评估装置可被设计为确定纵向光学传感器的操作模式。评估装置可以被配置为对纵向光学传感器的操作模式进行分类。特别地,评估装置可以被配置为观察和/或识别全局极值,例如全局最小值或全局最大值。在未观察或识别到极值的情况下,评估装置可以将操作模式分类为中性操作模式。评估装置可以被配置为执行纵向传感器信号的分析,特别地,纵向传感器信号的曲线分析。
评估装置可以被配置为确定纵向传感器信号的幅度。评估装置可被设计为在至少两个操作模式下顺序地和/或同时地确定纵向传感器信号。因此,评估装置可以被配置为同时评估至少两个纵向传感器信号。评估装置可被设计为通过考虑在至少两个不同的操作模式下确定的至少两个纵向传感器信号来解决模糊性。因此,可以评估至少两个纵向传感器信号,其中可以在第一操作模式下评估第一纵向传感器信号,并且可以在第二操作模式下评估第二纵向传感器信号。评估装置可以被配置为通过比较第一纵向传感器信号和第二纵向传感器信号来解决模糊性。评估装置可以适于标准化纵向传感器信号,并且独立于光束的强度而产生关于对象的纵向位置的信息。例如,可以选择第一或第二纵向传感器信号中的一者作为参考信号。例如,可以选择在中性操作模式下评估的纵向传感器信号作为参考信号。例如,可以选择在正操作模式下评估的纵向传感器信号或在负操作模式下评估的纵向传感器信号中的至少一者作为参考信号。通过比较所选择的参考信号和另一纵向信号,可以消除模糊性。可以比较纵向传感器信号,以便获得关于光束的总功率和/或强度的信息,和/或以便针对光束的总功率和/或总强度来标准化纵向传感器信号和/或关于对象的纵向位置的至少一项信息。例如,纵向传感器信号可通过除以所选择的参考纵向传感器信号(特别地,在中性操作模式下评估的纵向传感器信号)而被标准化,由此产生标准化的纵向光学传感器信号,然后可以通过使用上述已知的关系将标准化的纵向光学传感器信号变换为关于对象的至少一项纵向信息。因此,该变换可以独立于光束的总功率和/或强度。例如,在正操作模式或负操作模式中的一者下评估的至少一个纵向传感器信号可以除以在正操作模式或负操作模式中的另一者下评估的纵向传感器信号。因此,可以通过相除来消除模糊性。
纵向光学传感器的特性是可以是电学和/或光学可调的。
检测器可以包括至少一个偏置装置。如本文中所使用的,术语“偏置装置”通常是指被配置为在纵向光学传感器的材料两端施加偏置电压的装置。纵向光学传感器的特性可以通过偏置装置进行电学调节。偏置装置可以被配置为向纵向光学传感器施加至少一个偏置电压。如下面更详细描述的,纵向光学传感器的特性可以通过使用不同的偏置电压来调节。
纵向光学传感器可以包括以光电导模式驱动的至少一个光电二极管,其中光电导模式是指采用光电二极管的电路,其中所述至少一个光电二极管被包括在反向偏置模式中,其中光电二极管的阴极以相对于阳极的正电压驱动。根据本发明,所述至少一个纵向光学传感器可以呈现至少一个传感器区域,其中传感器区域可以包括至少一种光电导材料。如本文中所使用的,术语“光电导材料”是指能够维持电流并且因此呈现特定导电率的材料,其中具体而言,电导率依赖于对材料的照射。由于电阻率被定义为电导率的倒数,因此术语“光阻材料”也可被用来命名相同种类的材料。在这种材料中,电流可以经由至少一个第一电接触穿过该材料而被引导到至少一个第二电接触,其中第一电接触可以与第二电接触隔离,而第一电接触和第二电接触都与该材料直接连接。为此,可以通过现有技术中已知的任何已知措施提供直接连接,这些措施例如包括在接触区处镀敷、焊接、钎焊或沉积高导电性物质,特别地,如金、银、铂或钯之类的金属以及包含上述金属中的至少一种的合金。
此外,纵向光学传感器的传感器区域可以由至少一个光束照射。在给定相同的照射总功率的情况下,传感器区域的电导率因此可以依赖于光束在传感器区域中的光束横截面,该横截面被命名为入射光束在传感器区域内产生的“光斑大小”。因此,可观察到的光电导材料的电导率依赖于入射光束对包含光电导材料的传感器区域的照射程度的特性特别地实现了:包括相同总功率但在传感器区域上产生不同光斑大小的两个光束为传感器区域中的光电导材料的电导率提供不同的值,并因此可以相对于彼此进行区分。
此外,由于纵向传感器信号可以通过施加诸如电压信号和/或电流信号的电信号来确定,因此需要在确定纵向传感器信号时考虑被该电信号穿过的材料的电导率。如下面更详细解释的,此处可以优选地使用与纵向光学传感器串联使用的偏置电压源和负载电阻器的应用。结果,在传感器区域内包括光电导材料的纵向光学传感器因此主要允许根据纵向传感器信号的记录而确定光束在传感器区域中的光束横截面,例如通过比较至少两个纵向传感器信号,关于光束横截面(特别地,关于光束直径)的至少一项信息。
如从WO 2012/110924 A1中已知的,纵向光学传感器被设计为以依赖于传感器区域的照射的方式产生至少一个纵向传感器信号,其中在给定相同的照射总功率的情况下,传感器信号依赖于传感器区域上照射的光束横截面。作为例子,在那里提供了作为透镜位置函数的光电流I的测量,其中透镜被配置为将电磁辐射聚焦到纵向光学传感器的传感器区域上。在测量期间,以使得传感器区域上的光斑直径改变的方式,在垂直于传感器区域的方向上相对于纵向光学传感器放置透镜。在其中采用光伏装置(特别地,染料太阳能电池)作为传感器区域中的材料的该特定例子中,纵向光学传感器的信号(在此情况下为光电流)明显依赖于照射的几何形状,使得在透镜焦点处的最大值以外,光电流降为小于其最大值的10%。
相对于通过使用硅二极管和锗二极管作为传感器区域中的材料执行的类似测量,该效应尤其显著。在这种使用传统类型的光学传感器的情况下,如果总功率相同,传感器信号基本上独立于传感器区域的照射的几何形状。因此,根据FiP效应,在给定相同总功率的情况下,纵向传感器信号可以针对一个或多个焦点和/或针对在传感器区域上或传感器区域内的光斑的一个或多个特定大小而呈现出至少一个明显的最大值。为了比较,在相应的材料被具有最小可能的横截面的光束照射的条件下(例如当该材料可以位于受光学透镜影响的焦点处或其附近时),观察到纵向传感器信号的最大值可被命名为“正FiP效应”。如到目前所发现的,上述光伏装置(特别地,染料太阳能电池)在这些情况下提供正FiP效应。
在该上下文中,可参考2015年10月28日提交的编号为15191960.2的欧洲专利申请,其全部内容通过引用而被包括在本文中。提出一种作为适用于纵向光学传感器的另一类材料的光电导材料,其被设计为以依赖于传感器区域的照射的方式产生至少一个纵向传感器信号,其中在给定相同照射总功率的情况下,传感器信号依赖于传感器区域上的照射的光束横截面。这类光电导材料可呈现“负FiP效应”,该效应与正FiP效应的定义对应,并且描述了在对应的材料被具有最小可能的光束横截面的光束照射的条件下(特别地,当该材料可以位于受光学透镜影响的焦点处或其附近时),观察到纵向传感器信号的最小值。因此,在负FiP效应的出现是有利的或需要的情况下,可以优选地使用该光电导材料。
在此方面,光电导材料和光伏材料之间的差异可在此解决。在包含光伏材料的纵向光学传感器中,相应传感器区域的照射可以产生载流子,载流子可以提供待确定的光电电流或光电电压。作为例子,当光束入射到光伏材料上时,位于材料价带中的电子可吸收能量并且因此被激发,可以跃迁到导带,在导带上,这些电子表现为自由导电电子。相反地,在包括光电导材料的纵向光学传感器中,传感器区域的电阻率可根据对应的传感器区域的照射而改变,由此,可观察到的材料电导率变化可通过施加于材料两端的电压的变化或所施加的穿过材料的电流的值的改变(例如,通过在材料两端施加偏置电压)来监视。为此目的,特别地,可以与纵向光学传感器串联地使用偏置电压源和负载电阻器。
光电导材料相对于光伏材料的这种行为差异可以通过合理地假设所产生的载流子的密度与光子辐照成比例来解释,然而,其中当载流子密度较高时,电子-空穴复合(也可被称为“俄歇复合”)的可能性较高。在此,俄歇复合可被视为主要损耗机制。因此,随着光子辐照强度增加,载流子寿命会缩短,这可能在光电导材料中导致所描述的效应。因此,包括光电导材料的纵向光学传感器通常可以呈现与包括光伏材料的已知纵向光学传感器的特性明显不同和改变的行为。
为了本发明的目的,用于纵向光学传感器的传感器区域的光电导材料可以优选地包括无机光电导材料、有机光电导材料或其组合。例如,可能的光电导材料在2015年10月28日提交的编号为15191960.2的欧洲专利申请中进行了描述。在此方面,无机光电导材料特别地可以包括以下一种或多种:硒、碲、硒-碲合金、金属氧化物、IV族元素或化合物,即来自IV族的元素或具有至少一种IV族元素的化学化合物、III-V族化合物,即具有至少一种III族元素和至少一种V族元素的化学化合物、II-VI族化合物,即具有至少一种II族元素和至少一种VI族元素的化学化合物、和/或硫属元素化物,其可以优选地从包括硫化物硫属化物、硒化物硫属化物、三元硫属化物、四元和更多元硫属化物构成的组中选择。但是,其它无机光电导材料也同样适用。
关于硒(Se),可以提及的是,该材料早被知道呈现光电导特性,因此已被用于早期的电视机、光导摄像管和静电复印术,并且仍可用于光导电池中的传感器区域。关于硒-碲合金,P.H.Keck,Photoconductivity in Vacuum Coated Selenium Films,J.Opt.Soc.ofAmerica,42,p.221-225,1952描述了包含5到9重量%的碲添加物的光电导硒层,因此与不含碲添加物的硒层相比,这种光电导硒层能够提高光电导率,并且在从400nm到800nm的整个光谱范围内产生高光谱响应。此外,为了提供光电导特性,US 4 286 035 A披露了:通过同时在光电导层中添加一定浓度(在5ppm到500ppm的范围内)的至少一种卤素,可以将硒-碲合金中的碲量进一步从5重量%增加到20重量%,其中卤素从由氟、氯、溴和碘构成的组中选择。
关于金属氧化物,这种半导电材料可以从能够呈现光电导特性的已知金属氧化物中选择,特别地,从包括以下项的组中选择:氧化铜(II)(CuO)、氧化铜(I)(CuO2)、氧化镍(NiO)、氧化锌(ZnO)、氧化银(Ag2O)、氧化锰(MnO)、二氧化钛(TiO2)、氧化钡(BaO)、氧化铅(PbO)、二氧化铈(CeO2)、三氧化二铋(Bi2O3)和氧化镉(CdO)。其它三元、四元或更多元的金属氧化物也同样适用。如下面更详细解释的,优选地选择同时还呈现透明或半透明特性的金属氧化物。
关于IV族元素或化合物,这种半导电材料可以从包括掺杂金刚石(C)、掺杂硅(Si)、碳化硅(SiC)和硅锗(SiGe)的组中选择。为了提供尤其可以同时呈现高电阻率、高载流子寿命和低表面复合率的基于硅的光电导体,可以优选地选择包括低掺杂浓度和低缺陷密度(例如存在于硅浮区晶片中)的掺杂硅。为此,硅晶片可以特别地呈现出:
-1013cm-3、1012cm-3、1011cm-3或更小的掺杂剂材料原子的掺杂剂浓度;
-103Ω·cm,优选地5·1013Ω·cm,更优选地1014Ω·cm或更高的电阻率;以及
-在500μm(更优选地300μm)与1μm(更优选地10μm)之间的范围内的厚度,一方面用于提供所需的高载流子寿命,另一方面用于提供足以吸收目标波长上的大量光的材料量。
关于III-V族化合物,这种半导电材料可以从包括锑化铟(InSb)、氮化硼(BN)、磷化硼(BP)、砷化硼(BAs)、氮化铝(AlN)、磷化铝(AlP)、砷化铝(AlAs)、锑化铝(AlSb)、氮化铟(InN)、磷化铟(InP)、砷化铟(InAs)、锑化铟(InSb)、氮化镓(GaN)、磷化稼(GaP)、砷化镓(GaAs)和锑化镓(GaSb)的组中选择。
关于II-VI族化合物,这种半导电材料可以从包括硫化镉(CdS)、硒化镉(CdSe)、碲化镉(CdTe)、硫化锌(ZnS)、硒化锌(ZnSe)、碲化锌(ZnTe)、硫化汞(HgS)、硒化汞(HgSe)、碲化汞(HgTe)、碲化镉锌(CdZnTe)、碲化汞镉(HgCdTe)、碲化汞锌(HgZnTe)和硒化汞锌(CdZnSe)的组中选择。但是,其它的II-VI化合物也是可行的。
在特别优选的实施例中,光电导材料可以通过所谓的“欧姆接触”而被接触。如本文中所使用的,“欧姆接触”可以指根据欧姆定律呈现出线性电流-电压比但不包括上述任何光伏特性的电学结。为了提供欧姆接触,可以采用金、银、银-镍、银-铁、银-石墨、银-镉氧化物、银-锡氧化物、铜、铂、钯、paliney型合金、铟、镓、或铟汞合金,其中铟或镓可以优选地与硫化镉(CdS)组合使用,而铟汞合金可以特别适合与其它II-VI化合物一起使用。
如上所述,优选地从包括硫化物硫属化物、硒化物硫属化物、碲化物硫属化物、三元硫属化物、四元和更多元硫属化物的组中选择的硫属化物可以优选地适合用作纵向光学传感器的传感器区域中的光电导材料。这种优选特别基于如下原因:即,已经知道这种材料在许多不同的应用领域(包括用于红外光谱范围的光学检测器)总兼具成本效益和可靠性。
特别地,硫化物硫属化物可以从包括硫化铅(PbS)、硫化镉(CdS)、硫化锌(ZnS)、硫化汞(HgS)、硫化银(Ag2S)、硫化锰(MnS)、三硫化铋(Bi2S3)、三硫化锑(Sb2S3)、三硫化砷(As2S3)、硫化锡(II)(SnS)、二硫化锡(IV)(SnS2)、硫化铟(In2S3)、硫化铜(CuS)、硫化钴(CoS)、硫化镍(NiS)、二硫化钼(MoS2)、二硫化铁(FeS2)和三硫化铬(CrS3)的组中选择。
特别地,硒化物硫属化物可以从包括硒化铅(PbSe)、硒化镉(CdSe)、硒化锌(ZnSe)、三硒化铋(Bi2Se3)、硒化汞(HgSe)、三硒化锑(Sb2Se3)、三硒化砷(As2Se3)、硒化镍(NiSe)、硒化铊(TlSe)、硒化铜(CuSe)、二硒化钼(MoSe2)、硒化锡(SnSe)和硒化钴(CoSe)以及硒化铟(In2Se3)的组中选择。
特别地,碲化物硫属化物可以从包括碲化铅(PbTe)、碲化镉(CdTe)、碲化锌(ZnTe)、碲化汞(HgTe)、三碲化铋(Bi2Te3)、三碲化砷(As2Te3)、三碲化锑(Sb2Te3)、碲化镍(NiTe)、碲化铊(TlTe)、碲化铜(CuTe)、二碲化钼(MoTe2)、碲化锡(SnTe)和碲化钴(CoTe)、碲化银(Ag2Te)和碲化铟(In2Te3)的组中选择。
特别地,三元硫属化物可以从包括碲化汞镉(HgCdTe)、碲化汞锌(HgZnTe)、硫化汞镉(HgCdS)、硫化铅镉(PbCdS)、硫化铅汞(PbHgS)、二硫化铜铟(CuInS2)、硫硒化镉(CdSSe)、硫硒化锌(ZnSSe)、硫硒化铊(TlSSe)、硫化镉锌(CdZnS)、硫化镉铬(CdCr2S4)、硫化汞铬(HgCr2S4)、硫化铜铬(CuCr2S4)、硒化镉铅(CdPbSe)、二硒化铜铟(CuInSe2)、砷化铟镓(InGaAs)、氧硫化铅(Pb2OS)、氧硒化铅(Pb2OSe)、硫硒化铅(PbSSe)、硒碲化砷(As2Se2Te)、磷化铟镓(InGaP)、砷磷化镓(GaAsP)、磷化铝镓(AlGaP)、亚硒酸镉(CdSeO3)、碲化镉锌(CdZnTe)和硒化镉锌(CdZnSe),通过应用来自以上列出的二元硫属化物和/或二元III-V化合物的化合物获得的更多组合的组中选择。
关于四元和更多元硫属化物,这种材料可以从已知呈现合适的光电导特性的四元和更多元硫属化物中选择。
通常,如果可以通过被掺杂有另外的材料或通过获得纳晶、微晶或无定形结构而引入陷阱能级,则具有三维晶体结构和接近或低于应用光谱区域的光隙的半导体材料很可能引起关注。特别地,可通过以下方式实现掺杂:以使得可以通过掺杂材料(优选地具有在能量上高于或低于导带的能级)的能级增加半导体的能带结构(优选地,导带)的方式向半导体中添加金属原子或盐。作为特别的例子,根据F.Superlinearphotoconductivity,Phys.Stat.Solidi 34,751-757,1969,正FiP效应和负FiP效应二者都可以在光电导材料中实现,其中在选定的光电导材料内,光电导材料易受不同的位置和/或浓度的陷阱和/或重组中心的支配。
替代地或附加地,有机光电导材料特别地可以是或可以包括有机化合物,特别地,已知包括适当光电特性的有机化合物,优选地聚乙烯基咔唑,这是一种通常用于静电复印的化合物。然而,下面更详细描述的大量其它有机分子也是可行的。
关于打印和成像系统,可参考文章P.Gregory,Ed.,Chemistry and Technologyof printing and imaging systems,Chapman&Hall,1996中的第4章,R.S.Gairns,Electrophotography,p.76-112,其中描述了静电复印技术和在静电复印中使用的相应复印光电导体。在此,作为特别的例子,可以使用首先由R.M.Schaffert,IBMJ.Res.Develop.,1971,p.75-89提出的系统,该系统包括基于以聚乙烯基咔唑(1)作为供体分子,以三硝基芴酮(2)作为受体分子的电荷转移络合物:
从该例子可得出:有机光电导体通常与其无机对应物不同之处在于,它们可以(特别是作为对相应光电导处理的性质的贡献物)包括具有两种不同种类的有机材料的系统。这种选择的原因可在以下观察中找到:即,照射到位于电场中的有机光电导体的光可能被吸收,并且随后可以产生一对电荷,这对电荷进一步以对有机光电导体的光电导性产生影响的电流的形式被传输。
因此,当使用有机光电导体时,可以分离所提及的两个过程,即一方面通过传输电荷来产生电荷,另一方面通过采用两种不同的有机材料来产生电荷,这两种不同的有机材料可被表示为类似供体的“电子供体材料”或“电荷产生材料”(缩写为“CGM”),以及类似受体的“电子受体材料”或“电荷传输材料”(缩写为“CTM”)。从上述例子可以得出,可将聚乙烯基咔唑(1)视为电荷产生材料,将三硝基芴酮(2)视为电荷传输材料,在上述包括有机电荷转移络合物的系统中,这两种材料分别充当供体分子和受体分子。
因此,在特别优选的实施例中,有机光电导体可以包括至少一种共轭芳族分子,优选地为高度共轭芳族分子,特别是染料或颜料,它们优选地被用作电荷产生材料。在此方面,呈现光电导特性的共轭芳族分子的特别优选例子包括酞菁,例如金属酞菁,特别是TiO酞菁;萘酞菁,例如金属萘酞菁,特别是TiO-萘酞菁;亚酞菁,例如金属亚酞菁;二萘嵌苯,蒽;芘;低聚噻吩和聚噻吩;富勒烯;靛系染料,例如硫靛;双偶氮颜料;方酸菁染料;噻喃鎓染料;甘菊蓝鎓染料;二硫代酮吡咯并吡咯;喹吖啶酮;以及可呈现光电导特性的其它有机材料,例如二苯并芘二酮,或其衍生物或其组合。但是,其它共轭芳族分子或另外也与无机材料结合的其它种类有机材料也是可行的。
关于酞菁,可参考Frank H.Moser和Arthur L.Thomas,PhthalocyanineCompounds,Reinhold Publishing,纽约,1963年,69-76页,以及Arthur L.Thomas,Phthalocyanine Research and Applications,CRC Press,Boca Raton,1990年,253-272页。如这些文献中所呈现的,二氢酞菁(3)或金属酞菁(4)可优选地用于根据本发明的检测器:
其中金属酞菁(4)可以优选地包括从镁(Mg)、铜(Cu)、锗(Ge)或锌(Zn)中选择的金属M,或者从包括在无机化合物中的金属中选择的金属M,这些无机化合物诸如包括以下之一:Al-Cl、Ga-Cl、In-Cl、TiOCl、VO、TiO、HGa、Si(OH)2、Ge(OH)2、Sn(OH)2或Ga(OH)。
关于靛系染料,可参考US 4 952 472 A,其中公开了以下三种结构(5a、5b、5c),其中X可以等于O、S或Se:
在本文中,优选的靛蓝染料可以包括例如在K.Fukushima等人,CrystalStructures and Photocarrier Generation of Thioindigo Derivatives,J.Chem.Phys.B,102,1988年,第5985-5990页中公开的化合物4,4’,7,7’-四氯硫靛(6):
关于双偶氮颜料,优选的例子可以是chlorodiane蓝(7),其包括以下结构:
关于二萘嵌苯衍生物,可用作光电导有机材料的优选是二萘嵌苯双酰亚胺(8a)或二萘嵌苯单酰亚胺(8b),其中R是有机残基,优选地为支化或未支化的烷基链:
关于方酸菁染料,优选的例子可以包括以下分子(9):
关于噻喃鎓染料,优选的例子可以包括具有以下结构的分子(10):
此外,US 4 565 761 A公开了多种甘菊蓝鎓染料,例如以下优选的化合物(11):
关于二硫代酮吡咯并吡咯,US 4 760 151 A公开了多种化合物,例如以下优选的分子(12):
关于喹吖啶酮,US 4 760 004 A公开了不同的硫代喹吖啶酮和异硫代喹吖啶酮,包括以下优选的光电导化合物(13):
如上所述,另外的有机材料,例如二溴二苯并芘二酮(14),也可以呈现足以用于根据本发明的检测器的光电导特性:
此外,包括至少一种光电导体和至少一种敏化剂的混合物(例如在US 3 112 197A或EP 0 112 169 A2或在其中的相应参考内容中进一步指定的)也可以适用于根据本发明的检测器。因此,可以为了此目的使用包括染料敏化剂的光电导层。
优选地,电子供体材料和电子受体材料可以包括在也包括混合物形式的光电导材料的层内。如一般所使用的,术语“混合物”涉及两种或更多种单独化合物的共混物,其中混合物内的各化合物保持其化学特性。在特别优选的实施例中,混合物可以包括比例为1:100到100:1,更优选地1:10到10:1的电子供体材料和电子受体材料,具体的比例为1:2到2:1,例如1:1。然而,各化合物的其它比例也是适用的,具体取决于所涉及的单个化合物的种类和数量。优选地,以混合物形式包括的电子供体材料和电子受体材料可以构成供体域和受体域的互穿网络,在供体域中可主要存在,特别是全部是电子供体材料,以及在受体域中主要存在,特别全部是电子受体材料,在此网络中,可以存位于供体域和受体域之间的界面区域,并且渗透路径形式的导电路径可以将对应的域连接到相应的电极。
在进一步优选的实施例中,光电导层中的电子供体材料可以包括供体聚合物,特别是有机供体聚合物,而电子受体材料可以包括受体小分子,该受体小分子优选地从包括富勒烯类电子受体材料、四氰基醌二甲烷(TCNQ)、二萘嵌苯衍生物和受体聚合物的组中选择。因此,电子供体材料可包括供体聚合物,而电子受体材料可包括受体聚合物,从而为全聚合物光电导层提供了基础。在特定实施例中,共聚物可以同时由一种供体聚合物和一种受体聚合物构成,因此其也可基于共聚物每种组分各自的功能被命名为“推-拉共聚物”。如一般所使用的,术语“聚合物”是指通常包括大量分子重复单元的大分子组合物,这些单元通常被命名为“单体”或“单体单元”。然而,为了本发明的目的,优选地使用合成有机聚合物。在此方面,术语“有机聚合物”是指通常可归于有机化合物的单体单元的特性。如本文中所使用的,术语“供体聚合物”是指特别适于提供电子作为电子供体材料的聚合物。类似地,术语“受体聚合物”是指特别适于接收电子作为电子受体材料的聚合物。优选地,包括有机电子供体材料和有机电子受体材料的层可以呈现100nm到2000nm的厚度。
因此,至少一种电子供体材料可以包括供体聚合物,特别是有机供体聚合物。优选地,供体聚合物可以包括共轭体系,其中离域电子可分布在通过交替的单键和多键键合在一起的原子基团上,其中共轭体系可以是环状、非环状和线性中的一种或多种。因此,有机供体聚合物可以优选地从以下聚合物中的一者或多者中选择:
-聚[3-己基噻吩-2,5-二基](P3HT),
-聚[3-(4-正辛基)苯基噻吩](POPT),
-聚[3,10-正辛基-3-吩噻嗪-亚乙烯基噻吩-co-2,5-噻吩](PTZV-PT),
聚[4,8-双[(2-乙基己基)氧基]苯并[2-b:4,5-b']二噻吩-2,6-二基][3-氟-2-[(2-乙基己基)羰基]噻吩并[3,4-b]噻吩二基](PTB7),
-聚[噻吩-2,5-二基-alt-[5,6-双(十二烷氧基)苯并[c][1,2,5]噻二唑]-4,7-二基](PBT-T1),
-聚[2,6-(4,4-双-(2-乙基己基)-4H-环戊并[2,1-b;3,4-b']二噻吩)-alt-4,7(2,1,3-苯并噻二唑)](PCPDTBT),
-聚[5,7-双(4-癸基-2-噻吩基)-噻吩并(3,4-b)二噻唑噻吩-2,5](PDDTT),
-聚[N-9'-十七烷基-2,7-咔唑-alt-5,5-(4',7'-二-2-噻吩基-2',1',3'-苯并噻二唑)](PCDTBT),或者
~聚[(4,4'-双(2-乙基己基)二噻吩并[3,2-b;2',3'-d]噻咯)-2,6-二基-alt-(2,1,3-苯并噻二唑)-4,7-二基](PSBTBT),
-聚[3-苯基腙噻吩](PPHT),
-聚[2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基亚乙烯基](MEH-PPV),
-聚[2-甲氧基-5-(2'-乙基己氧基)-1,4-亚苯基-1,2-亚乙基-2,5-二甲氧基-1,4-亚苯基-1,2-亚乙基](M3EH-PPV)
-聚[2-甲氧基-5-(3',7'-二甲基辛氧基)-1,4-亚苯基亚乙烯基](MDMO-PPV),
-聚[9,9-二辛基芴-co-双-N,N-4-丁基苯基-双-N,N-苯基-1,4-苯二胺](PFB),
或其衍生物、改性物或混合物。
然而,其它种类的供体聚合物或另外的电子供体材料也可能是合适的,特别是在红外光谱范围内,尤其是在1000nm以上敏感的聚合物,优选地为二酮吡咯并吡咯聚合物,具体而言,如EP 2 818 493 A1中描述的聚合物,更优选地为其中表示为“P-1”到“P-10”的聚合物;在WO 2014/086722 A1中公开的苯并二噻吩聚合物,特别是包括苯并二噻吩单元的二酮吡咯并吡咯聚合物;根据US 2015/0132887 A1的二噻吩并苯并呋喃聚合物,特别是包括二酮吡咯并吡咯单元的二噻吩并苯并呋喃聚合物;在US 2015/0111337A1中描述的菲并[9,10-B]呋喃聚合物,特别是包括二酮吡咯并吡咯单元的菲并[9,10-B]呋喃聚合物;以及包括二酮吡咯并吡咯低聚物的聚合物组合物,低聚物-聚合物比例为1:10或1:100,例如在US2014/0217329A1中公开的那些。
如上面进一步提到的,电子受体材料可以优选地包括基于富勒烯的电子受体材料。如一般所使用的,术语“富勒烯”是指笼状的纯碳分子,包括Buckminster富勒烯(C60)和相关的球形富勒烯。原则上,可以使用C20到C2000范围内的富勒烯,优选地在C60到C96范围内,特别是C60、C70和C84。最优选的是化学改性的富勒烯,具体是指以下一种或多种:
-[6,6]-苯基-C61-丁酸甲酯(PC60BM),
-[6,6]-苯基-C71-丁酸甲酯(PC70BM),
-[6,6]-苯基C84丁酸甲酯(PC84BM)或
-茚-C60双加合物(ICBA),
还包括含一个或两个C60或C70结构部分的二聚物,特别是
-含一个连接的低聚醚(OE)链的二苯基甲烷富勒烯(DPM)结构部分(C70-DPM-OE),或
-含两个连接的低聚醚(OE)链的二苯基甲烷富勒烯(DPM)结构部分(C70-DPM-OE2),
或其衍生物、改性物或混合物。然而,TCNQ或二萘嵌苯衍生物也可以是合适的。
替代地或附加地,电子受体材料可以优选地包括受体聚合物。通常,基于氰化聚(亚苯基亚乙烯基)、苯并噻二唑、二萘嵌苯或萘二酰亚胺的共轭聚合物是实现此目的的优选项。特别地,受体聚合物可以选自以下聚合物中的一种或多种:
-氰基-聚(亚苯基亚乙烯基)(CN-PPV),例如C6-CN-PPV或C8-CN-PPV,
-聚[5-(2-(乙基己氧基)-2-甲氧基氰基对苯乙炔](MEH-CN-PPV),
-聚[氧杂-1,4-亚苯基-1,2-(1-氰基)-亚乙基-2,5-二辛氧基-1,4-亚苯基-1,2-(2-氰基)-亚乙基-1,4-亚苯基](CN-醚-PPV),
-聚[1,4-二辛氧基-对-2,5-二氰基亚苯基亚乙烯基](DOCN-PPV),
-聚[9,9'-二辛基芴-苯并噻二唑](PF8BT),
或其衍生物、改性物或混合物。但是,其它种类的受体聚合物也可以是合适的。
对于有关可用作供体聚合物或电子受体材料的上述化合物的更多细节,可参考以下综述文章以及其中引用的相应参考文献:L.Biana,E.Zhua,J.Tanga,W.Tanga,andF.Zhang,Progress in Polymer Science 37,2012,p.1292-1331、A.Facchetti,MaterialsToday,Vol.16,No.4,2013,p.123-132、以及S.Günes and N.S.Sariciftci,InorganicaChimica Acta 361,2008,p.581–588。在F.A.Sperlich的论文Electron ParamagneticResonance Spectroscopy of Conjugated Polymers and Fullerenes for OrganicPhotovoltaics,Julius-Maximilians-Würzburg,2013年以及其中引用的文献中描述了其它化合物。
如本文中所使用的,“光电导模式”是指采用光电二极管的电路,其中至少一个光电二极管被包括在反向偏置模式中,即,其中光电二极管的阴极以相对于阳极的正电压驱动。这与使用零偏置的所谓的“光伏模式”形成对比。通常,将光电导模式应用于光电二极管会导致这样的观察:在给定相同的照射总功率的情况下,发现光电流依赖于光束在传感器区域中的光束横截面。因此,由于纵向传感器信号依赖于电导率,因此记录至少一个纵向传感器信号允许确定光束在传感器区域中的光束横截面,并且因此如上所述,产生关于对象的纵向位置的至少一项信息。
如上所述,将光电导模式应用于光电二极管通常导致这样的观察:在给定相同的照射总功率的情况下,发现光电流依赖于光束在传感器区域中的光束横截面。纵向光学传感器的特性可以通过向光电二极管施加不同的偏置电压来电学调节。偏置装置可以包括偏置电压源。纵向光学传感器的特性可以由偏置装置电学调节。偏置装置可以被配置为向光电二极管施加至少两个不同的偏置电压,使得有可能在纵向光学传感器的操作模式之间切换。例如,可以使用零偏置,使得光电二极管无偏置且处于光伏模式下。在这种情况下,纵向光学传感器可处于中性操作模式下。例如,可将非零偏置电压施加到光电二极管,特别地,反向偏置,例如可以向阴极施加正电压。在这种情况下,纵向光学传感器可处于正操作模式或负操作模式下。切换装置可以适于对偏置电压源施加影响以设定偏置电压。在电压变化之后,需要特定的时间段来调节纵向光学传感器的特性。然而,第一操作模式下的检测与第二操作模式下的检测之间的时间段可以尽可能短。
传感器区域可以包括至少一种能够维持电流的材料,例如金属或半导电材料,在此,该材料的至少一个特性(为该材料的导电性或另一材料特性,例如该材料的热导率、吸收度、散射特性、介电特性、磁特性或光学特性,特别地,偏振性、反射率、折射率或透射率)在给定的同照射总功率的情况下依赖于光束在传感器区域中的光束横截面。
因此,纵向传感器信号可依赖于在此为了根据本发明的检测器的目的而使用的材料的少一个特性。因此,通过记录至少一个纵向传感器信号测量至少一个特性可以允许确定光束在传感器区域中的光束横截面,因此如上所述,产生关于对象的纵向位置的至少一项信息。在此,纵向信号可以是诸如电压或电流之类的电信号,但首先是不同类型的物理信号,特别是光信号,光信号随后可以被转换为电信号,电信号接着被进一步处理为纵向传感器信号。关于有关本发明的该方面的进一步细节,可参考上面和/或下面提供的光学检测器的其它方面的描述。
能够维持电流的材料可以包括非晶硅、包含非晶硅的合金、微晶硅或碲化镉(CdTe)中的一种或多种。如通常所使用的,术语“非晶硅”(也缩写为“a-Si”)涉及硅的非晶同素异形体。包含非晶硅的合金可以是包含硅和碳的非晶合金,或包含硅和锗的非晶合金。从现有技术中进一步已知,可以通过将非晶硅作为层,尤其是作为薄膜,沉积到适当的衬底上而获得非晶硅。然而,其它方法也可以是适用的。此外,非晶硅尤其可以通过使用氢来钝化,通过该应用,可以使非晶硅内的大量悬空键减少若干个数量级。因此,氢化非晶硅(通常缩写为“a-Si:H”)可以呈现出低的缺陷量,从而允许将其用于光学装置。
在该特定实施例中,纵向光学传感器可以是具有至少一个第一电极和至少一个第二电极的光电检测器,而非晶硅可以优选地位于第一电极与第二电极之间。特别地,为了便于可照射到纵向光学传感器的光束到达包括非晶硅的层,至少一个电极(特别地可位于入射光束路径内的电极)可以被选择为至少部分地光学透明。在此,至少部分地光学透明的电极可以包括至少一种透明导电氧化物(TCO),特别地铟掺杂的氧化锡(ITO)、氟掺杂的氧化锡(FTO)和铝掺杂的氧化锌(AZO)中的至少一者。然而,适合作为电极材料的其它种类的光学透明材料也同样适用。也被命名为“背电极”的一个或多个剩余电极也可以是光学不透明的,特别地,只要它们位于纵向光学传感器内的光束路径之外即可。在此,所述至少一个光学不透明电极可以优选地包括金属电极,特别地,银(Ag)电极、铂(Pt)电极、铝(Al)电极和金(Au)中的一者或多者。优选地,光学不透明电极可包括均匀的金属层。或者,光学不透明电极可以是被布置为多个部分电极或采取金属栅格形式的分割电极(split electrode)。
优选地,位于第一电极与第二电极之间的非晶硅可以以PIN二极管的形式布置。如一般所使用的,术语“PIN二极管”是指包括位于n型半导体层与p型半导体层之间的i型半导体层的电子器件。从现有技术中知道,在n型半导体层中载流子主要由电子提供,而在p型半导体层中载流子主要由空穴提供。在优选实施例中,p型半导体层可部分地或完全地由非晶碳化硅构成。此外,i型半导体层包括未掺杂的本征非晶硅。特别地,在根据本发明的纵向光学传感器中,i型半导体层呈现的厚度可以超过n型半导体层和p型半导体层中每一者的厚度,特别地,超过至少2倍,优选地至少5倍,更优选地至少10倍或更多倍。作为例子,i型半导体层的厚度可以从100nm到3000nm,特别地从600nm到800nm,而n型半导体层和p型半导体层二者的厚度可以从5nm到100nm,特别地10nm到60nm。
以包括非晶硅的PIN二极管的形式提供的光伏二极管通常已知呈现非线性频率响应。因此,可以在纵向传感器中观察到正和/或负FiP效应,其在0Hz到50kHz的光束的调制频率范围内基本上与频率无关。展示上述特征的出现的实验结果将在下面更详细地呈现。此外,与其它已知的FiP装置相比,包括非晶硅的光学检测器可以在相应半导体材料的丰度、容易易制造路线、以及超高信噪比方面呈现特别的优点。
此外,考虑PIN二极管的外部量子效率相对于入射光束波长的行为可以提供对PIN二极管特别适合的入射光束波长范围的了解。在此,术语“外部量子效率”是指可能对本传感器中的光电流起作用的光子通量部分。因此,包括非晶硅的PIN二极管在从380nm延伸到700nm的波长范围内呈现特别高的外部量子效率值,而对于该范围以外的波长,特别是对于380nm以下的波长(即紫外范围内的波长)以及对于700nm以上的波长(特别是NIR范围内的波长),外部量子效率可能较低,从而在800nm以上处,外部量子效率趋于零地小。因此,当入射光束的波长位于覆盖可见光谱范围的大部分(尤其是从380nm到700nm)的范围内时,在至少一个半导体层中包括非晶硅的PIN二极管可优选地用于根据本发明的检测器中,以光学检测至少一个对象。
替代地,当入射光束的波长位于UV光谱范围内时,可以提供另外的PIN二极管,该另外的PIN二极管能够优选地用于根据本发明的检测器中。如本文中所使用的,术语“UV光谱范围”可以覆盖电磁光谱的从1nm到400nm,特别地从100nm到400nm的分区,并且可以细分为ISO标准ISO-21348推荐的多个范围,其中这里提供的替代的PIN二极管特别适合于从400nm到315nm的紫外A范围(缩写为“UVA”)和/或从315nm到280nm的紫外B范围(缩写为“UVB”)。为此,该替代的PIN二极管可以呈现与上面和/或下面描述的包括非晶硅的PIN二极管相同或相似的布置,其中非晶硅(a-Si)或氢化非晶硅(a-Si:H)可以分别至少部分地被非晶硅碳合金(a-SiC)或优选地氢化非晶硅碳合金(a-SiC:H)代替。这种替代的PIN二极管可以在UV波长范围内,优选地在从280nm到400nm的完整UVA和UVB波长范围内呈现高外部量子效率。在此,氢化非晶硅碳合金(a-SiC:H)可以优选地通过等离子体增强沉积工艺来制造,典型地通过使用SiH4和CH4作为工艺气体。然而,其它用于提供a-SiC:H的制造方法也同样适用。
从现有技术中可知,与包括氢化非晶硅a-Si:H的层中的电子迁移率相比,包括氢化非晶硅碳合金a-SiC:H的层通常可以呈现明显较小的空穴迁移率。因此,包括a-SiC:H的层可用作p掺杂的空穴提取层,该层特别地被布置在装置的这样的一侧:在该侧,光束可以进入装置。由于这种布置,可以显著缩短空穴为了能够对光电流起作用而必须行进的距离。因此,可以有利地在根据本发明的检测器中提供这样的PIN二极管:在该PIN二极管中,p型半导体层可呈现2nm到20nm,优选地4nm到10nm的厚度,例如大约5nm的厚度。而且,其中可以吸收波长在UV光谱范围内,尤其是在UVA光谱范围和/或UVB光谱范围内的特定光束,该光束可以照射到包括这种薄p型半导体层的PIN二极管的一侧。此外,这种薄层可进一步允许电子穿过该层,从而进入PIN二极管中相邻的i型半导体层。在此,i型半导体层(其可以优选地也包括a-SiC:H)可以同样地呈现从2nm到20nm,优选地从4nm到10nm的厚度,例如大约5nm的厚度。然而,其中至少一个半导体层可以至少部分地包括a-SiC:H的其它种类的PIN二极管也是可行的。
如上所述,在产生光电流时涉及的非线性效应可以构成在配备有包括这些种类的半导体层的PIN二极管的纵向传感器中发生FiP效应的基础。因此,这种纵向传感器特别地可用于这样的应用中:在这些应用中,可能需要UV响应,例如以便能够观察到UV光谱范围内的光学现象,或者在这些应用中,UV响应是适合的,例如当可能使用可以发射UV光谱范围内的至少一个波长的活动目标时。
替代地,当入射光束的波长位于NIR光谱范围内时,可以提供另外的PIN二极管,该另外的PIN二极管可以优选地用于根据本发明的检测器中。如本文中所使用的,也可以缩写为“IR-A”的术语“NIR光谱范围”可以覆盖ISO标准ISO-21348推荐的从760nm到1400nm的电磁光谱分区。为此,替代的PIN二极管可以呈现与上面和/或下面描述的包括非晶硅的PIN二极管相同或相似的布置,其中非晶硅(a-Si)或氢化非晶硅(a-Si:H)可以分别至少部分地被以下中的一者替代:微晶硅(μc-Si)、优选地,氢化微晶硅(μc-Si:H),或者非晶锗硅合金(a-GeSi),优选地,氢化非晶锗硅合金(a-GeSi:H)。该另外类型的PIN二极管可以在至少部分地覆盖从760nm到1400nm,特别地至少从760nm到1000nm的NIR波长范围的波长范围内呈现高外部量子效率。举例来说,包括μc-Si的PIN二极管在大约从500nm延伸到1100nm的波长范围内具有不可忽略的量子效率。
在此,氢化微晶硅(μc-Si:H)可以优选地从SiH4和CH4的气体混合物制造。结果,可以获得位于衬底上的两相材料,此材料包括具有5nm到30nm的典型尺寸且位于彼此间隔开10nm到200nm的衬底材料的有序列之间的微晶。然而,另一用于提供μc-Si:H的制造方法也同样适用,但是不一定会导致μc-Si:H的替代布置。此外,氢化非晶锗硅合金(a-GeSi:H)可以优选地通过在普通反应器内使用SiH4、GeH4和H 2作为工艺气体来制造。在此同样地,其它用于提供a-GeSi:H的制造方法也是可行的。
将μc-Si:H和a-GeSi:H两者与a-Si:H比较,包含μc-Si:H和a-GeSi:H的半导体层可具有类似或增强的无序诱发的载流子局域化,因此呈现出明显非线性的频率响应。如上所述,这可构成在配备有包括这些种类半导体层的PIN二极管的纵向传感器中发生FiP效应的基础。因此,这种纵向传感器特别地可用于这样的应用中:在这些应用中,可能需要NIR响应,例如用于夜视或雾视,或者在这些应用中,NIR响应是适合的,例如当可以使用发射NIR光谱范围内的至少一个波长的活动目标时,例如,在通过使用NIR照射源而使动物或人类不受干扰时可能是有利的情况下。
纵向光学传感器的特性可以是通过光束的至少一个特性而可调节的,特别地,可改变的。在此,光束的至少一个特性可以是光束的波长、调制频率或强度中的一者或多者。光束可以通过一个或多个调制频率而被调制。例如,通过使用一个或多个调制频率调制光束,光束的焦点可以是可调节的,特别地,可改变的。特别地,当照射在纵向光学传感器上时,光束可以被聚焦,或者可以不被聚焦。光束的至少一个特性可以是或可以涉及至少一个光源(例如至少一个照射源)的特性。光束的特性可以涉及光源的大小。因此,光源的大小可以是可变的和/或可调节的,例如通过以下中的一者或多者而可变和/或可调节:扩散器(特别地至少一个扩散盘),至少一个透镜、或至少一个掩模(特别地至少一个点图案)。例如,在一个实施例中,可以使用与扩散器组合的至少一个LED。此外,检测器可以包括至少一个照射源。从对象出射的光可以源自对象本身,但也可以可选地具有不同的来源并从该来源传播到对象,并且随后朝向光学传感器传播。后一种情况可以例如通过所使用的至少一个照射源来实现。该照射源可以以多种方式体现。因此,照射源例如可以是检测器壳体中的检测器的一部分。然而,替代地或附加地,至少一个照射源也可以布置在检测器壳体外部,例如作为单独的光源。照射源可以与对象分开布置,并从远处照亮对象。替代地或附加地,照射源也可以被连接到对象,或者甚至是对象的一部分,使得例如从对象出射的电磁辐射也可以由照射源直接产生。举例来说,至少一个照射源可以布置在对象上和/或对象中,并且直接产生用于照射传感器区域的电磁辐射。该照射源例如可以是或可以包括环境光源,和/或可以是或可以包括人造照射源。举例来说,可以在对象上设置至少一个红外发射器和/或至少一个用于可见光的发射器和/或至少一个用于紫外光的发射器。举例来说,至少一个发光二极管和/或至少一个激光二极管可以被布置在对象上和/或对象中。照射源特别地可以包括一个或多个以下照射源:激光器,特别地,激光二极管,尽管原则上替代地或附加地也可以使用其它类型的激光器;发光二极管;白炽灯;霓虹灯;焰源;热源;有机光源,特别地有机发光二极管;结构化光源。替代地或附加地,也可以使用其它照射源。特别优选地,照射源被设计为产生具有高斯光束轮廓的一个或多个光束,至少近似于例如在许多激光器中的情况。有关可选的照射源的更多可能的实施例,可参考WO 2012/110924 A1和WO 2014/097181A1之一。此外,其它实施例也是可行的。
所述至少一个可选的照射源通常可以发射以下至少一个范围中的光:紫外光谱范围,优选地在200nm到380nm的范围内;可见光谱范围(380nm到780nm);红外光谱范围,优选地在780nm到3.0微米范围内。最优选地,所述至少一个照射源适于发射可见光谱范围内的光,优选地在500nm到780nm,最优选地在650nm到750nm、或在690nm到700nm的范围内的光。在此,特别优选地,照射源可以显现与纵向传感器的光谱灵敏度有关的光谱范围,特别地是以确保可由相应照射源照射的纵向传感器能够提供具有高强度的传感器信号、从而可以实现具有足够信噪比的高分辨率评估的方式。
照射源可以适于发射至少两个不同波长的光。照射源可被配置为在以至少一个第一波长发光与以至少一个第二波长发光之间切换。照射源可被设计为发射至少两个光束,其中第一光束的至少一个特性可以不同于第二光束的至少一个特性,其中该特性可以选自光束的波长、调制频率或强度。光束可以通过一个或多个调制频率进行调制。例如,通过使用一个或多个调制频率调制光束,光束的焦点可以是可调的,特别地,可改变的。特别地,当照射在纵向光学传感器上时,光束可以被聚焦,或者可以不被聚焦。光束的至少一个特性可以是或可以涉及至少一个光源(例如至少一个照射源)的特性。光束的特性可以涉及光源的大小。因此,光源的大小可以是可变的和/或可调节的,例如通过一个或多个扩散器(特别地至少一个扩散盘)、至少一个透镜、或至少一个掩模(特别地至少一个点图案)。例如,在一个实施例中,可以使用与扩散器组合的至少一个LED。例如,至少一个外部影响(例如用户和/或评估装置和/或切换装置的影响)可以触发照射装置在波长之间切换。例如,照射源可以包括适于发射不同波长的光的至少一个光源,其中所发射的光束的波长可以是可调节的,特别地通过外部影响可调节。切换装置可以适于对照射源施加影响,以便设定所发射的光束的波长和/或所发射的至少两个光束的波长。例如,照射源可以包括至少两个光源,其中所述至少两个光源被配置为发射不同波长的光。因此,第一光源可以提供具有第一波长的光束,第二光源可以提供具有第二波长的光束。第一光束和第二光束可以同时或依次发射。例如,在照射源包括两个光源的情况下,提供第一光束的第一光源可保持接通,而第二光源可提供第二光束。第一光束可以具有第一波长并且第二光束可以具有第二波长,其中纵向光学传感器的特性可以通过用第一光束和第二光束照射而被调节,特别地,改变。第一光束的照射可导致调节纵向光学传感器的特性,使得纵向光学传感器处于中性操作模式、正操作模式或负操作模式中的一者。从光束的一个特性到光束的另一特性的切换,例如,从一个波长到另一个波长的改变可以是相敏测量的一部分。这可以允许在测量时直接参考,例如在锁定放大器测量中。第二光束的照射可导致调节纵向光学传感器的特性,使得纵向光学传感器可以处于与第一光束的照射期间的操作模式不同的另一操作模式。通过在至少两个波长之间切换,可以调节纵向光学传感器的特性,使得纵向光学传感器能够在至少两个操作模式下操作。如上所述,评估装置可被设计为通过考虑在至少两个不同的操作模式下确定的至少两个纵向传感器信号来解决模糊性。
例如,与第二波长相比,第一波长可以是短波长。特别地,第一波长可以在可见光谱范围内,优选地在380到450nm的范围内,更优选地在390到420nm的范围内,最优选地在400到410nm的范围内。例如,第二波长也可以在可见光谱范围内,优选地在500到560nm的范围内,更优选地在510到550nm的范围内,最优选地在520到540nm的范围内。
照射源可以选自:至少部分地被连接到对象和/或至少部分地与对象相同的照射源;被设计为用初级辐射至少部分地照射对象的照射源。光束可以通过初级辐射在对象上的反射和/或通过由初级辐射激发的对象本身的光发射而产生。纵向光学传感器的光谱灵敏度可以被照射源的光谱范围覆盖。
照射源可以包括人造照射源,特别地,至少一个激光源和/或至少一个白炽灯和/或至少一个半导体光源,例如至少一个发光二极管,特别地,有机和/或无机发光二极管。由于其通常限定的光束轮廓和可操作性的其它特性,特别优选使用至少一个激光源作为照射源。例如,照射源可以包括适于产生具有不同波长的光束的单个激光源。替代地,为了提供具有不同波长的至少两个光束,照射源可以包括发射不同波长的光的两个激光源。照射源可以发射至少两个激光束。每个激光束可以被配置为照射位于对象表面上的单个点。通过使用根据本发明的检测器中的至少一个,可以产生关于在所述至少一个点与扫描系统之间的距离的至少一项信息。由此,优选地,例如通过采用所述至少一个检测器所包括的评估装置,可以确定在照射系统与由照射源产生的点之间的距离。此外,照射源(特别地,至少两个激光源)可以与至少一个分色镜和/或分色镜组件组合。
此外,检测器可以具有用于调制照射(特别地,用于周期性调制)的至少一个调制装置,特别地,周期性光束遮断装置。照射的调制应该被理解为表示这样一个过程:其中,照射总功率变化,优选地周期性变化,特别地以一个或多个调制频率变化。特别地,周期性调制可以在照射总功率的最大值与最小值之间实现。最小值可以是0,但也可以大于0,从而例如不必执行完整调制。该调制例如可以由布置在对象与光学传感器之间的光束路径中的至少一个调制装置例如在所述光束路径中实现。然而,替代地或附加地,该调制例如也可以由布置在所述光束路径中的至少一个调制装置在下面更详细描述的用于照射对象的可选照射源与对象之间的光束路径中实现。还可以构思这些可能性的组合。该至少一个调制装置例如可以包括光束斩波器或某种其它类型的周期性光束遮断装置,例如包括至少一个遮断叶片或遮断轮,其优选地以恒定速度旋转并且因此可以周期性地中断照射。然而,替代地或附加地,也可以使用一个或多个不同类型的调制装置,例如基于电光效应和/或声光效应的调制装置。再次替代地或附加地,至少一个可选的照射源本身也可被设计为例如由具有调制的强度和/或总功率(例如周期性调制的总功率)的所述照射源本身和/或由被体现为脉冲照射源的所述照射源(例如作为脉冲激光器)来产生调制的照射。因此,举例来说,该至少一个调制装置也可以完全或部分地集成到照射源中。可以构想各种可能性。
相应地,检测器特别地可被设计为在不同调制情况下检测至少两个纵向传感器信号,特别是在相应地不同的调制频率下检测至少两个纵向传感器信号。评估装置可被设计为从至少两个纵向传感器信号产生几何信息。如在WO 2012/110924A1和WO 2014/097181A1中所述,可以解决模糊性和/或可以考虑例如照射总功率通常未知的事实。举例来说,检测器可被设计为以0.05Hz到1MHz(例如0.1Hz到10kHz)的频率,引起对对象和/或检测器的至少一个传感器区域(例如至少一个纵向光学传感器的至少一个传感器区域)的照射的调制。如上所述,为此,检测器可以包括至少一个调制装置,该至少一个调制装置可以被集成到至少一个可选的照射源中和/或可以独立于该照射源。因此,至少一个照射源本身可以适于产生上述照射调制,和/或可以存在至少一个独立的调制装置,例如至少一个斩波器和/或至少一个具有调制的透射率的装置,例如至少一个电光装置和/或至少一个声光装置。
例如,光束可以是经调制的光束。检测器可被设计为在不同调制情况下检测至少两个纵向传感器信号,特别是在相应地不同的调制频率下的至少两个传感器信号,其中评估装置可被设计为通过评估所述至少两个纵向传感器信号而产生关于对象的纵向位置的至少一项信息。纵向光学传感器可被进一步设计为使得纵向传感器信号在给定相同照射总功率的情况下依赖于照射调制的调制频率。例如,光束可以是未调制的连续波光束。
根据本发明,为了如上所述将至少一个调制频率应用于光学检测器可能是有利的。然而,仍然可能在不对光学检测器应用调制频率的情况下直接确定纵向传感器信号。如下面更详细说明的,为了获取关于对象的所需纵向信息,在许多相关情况下,不需要应用调制频率。因此,光学检测器可以不需要包括调制装置,该调制装置可以进一步有助于空间检测器的简单且经济有效的设置。作为进一步的结果,可以以时分复用模式而不是频分复用模式,或以其组合的方式,使用空间光调制器。
检测器可以包括至少两个纵向光学传感器,其中每个纵向光学传感器可以适于产生至少一个纵向传感器信号。举例来说,纵向光学传感器的传感器区域或传感器表面因此可以平行地取向,其中可以容许轻微的角度容差,例如不超过10°的角度容差,优选地不超过5°。在此,优选地检测器的所有纵向光学传感器(其可以优选地以沿着检测器光轴堆叠的形式布置)可以是透明的。因此,光束可以先通过第一透明纵向光学传感器,再照射到其它纵向光学传感器,优选地随后照射。因此,来自对象的光束随后可以到达位于光学检测器中的所有纵向光学传感器。在此,不同的纵向光学传感器可以相对于入射光束呈现相同或不同的光谱灵敏度。
根据本发明的检测器可以包括在WO 2014/097181 A1中公开的纵向光学传感器堆叠,特别是与一个或多个横向光学传感器相组合。作为例子,一个或多个横向光学传感器可以位于纵向光学传感器的堆叠的朝向对象的一侧。替代地或附加地,一个或多个横向光学传感器可以位于纵向光学传感器的堆叠的背向对象的一侧。而且,附加地或替代地,一个或多个横向光学传感器可以被插入在堆叠的纵向光学传感器之间。然而,仅包括单个纵向光学传感器但不包括横向光学传感器的实施例仍然是可能的,例如在仅需要确定对象深度的情况下。
优选地,所述检测器可进一步包括至少一个横向光学传感器,所述横向光学传感器可以适于确定从所述对象行进到所述检测器的光束的横向位置,所述横向位置是与所述检测器的光轴垂直的至少一个维度中的位置,所述横向光学传感器可以适于产生至少一个横向传感器信号,其中所述评估装置可以进一步被设计为通过评估所述横向传感器信号而产生关于所述对象的横向位置的至少一项信息。
如本文中所使用的,术语“横向光学传感器”通常是指适于确定从对象行进到检测器的至少一个光束的横向位置的装置。相对于术语“位置”,可参考上面的定义。因此,优选地,横向位置可以是或可以包括与检测器的光轴垂直的至少一个维度中的至少一个坐标。作为例子,横向位置可以是光束在垂直于光轴的平面中(例如在横向光学传感器的光敏传感器表面上)产生的光斑的位置。作为例子,该平面中的位置可以在笛卡尔坐标和/或极坐标中给出。其它实施例也是可行的。有关横向光学传感器的可能的实施例,可参考WO 2014/097181 A1。然而,其它实施例也是可行的,并且将在下面更详细地描述。
横向光学传感器可以提供至少一个横向传感器信号。在此,横向传感器信号通常可以是指示横向位置的任意信号。作为例子,横向传感器信号可以是或可以包括数字和/或模拟信号。作为例子,横向传感器信号可以是或者可以包括电压信号和/或电流信号。附加地或替代地,横向传感器信号可以是或可以包括数字数据。横向传感器信号可以包括单个信号值和/或一系列信号值。横向传感器信号可进一步包括可以通过组合两个或更多个单独信号(例如通过平均两个或更多个信号和/或通过形成两个或更多个信号的商)而导出的任意信号。
在与根据WO 2014/097181 A1的公开类似的第一实施例中,横向光学传感器可以是具有至少一个第一电极、至少一个第二电极和至少一种光伏材料的光电检测器,其中光伏材料可以被嵌入在第一电极与第二电极之间。因此,横向光学传感器可以是或可以包括一个或多个光电检测器,例如一个或多个有机光电检测器,并且最优选地,一个或多个染料敏化有机太阳能电池(DSC,也被称为染料太阳能电池),例如一个或多个固体染料敏化有机太阳能电池(s-DSC)。因此,检测器可以包括用作至少一个横向光学传感器的一个或多个DSC(例如一个或多个sDSC)以及用作至少一个纵向光学传感器的一个或多个DSC(例如一个或多个sDSC)。
与该已知实施例形成对比,根据本发明的横向光学传感器的优选实施例可以包括光电导材料层,所述光电导材料优选地为无机光电导材料,例如上面和/或下面描述的光电导材料之一,特别地硫属化物,优选地硫化铅(PbS)、硒化铅(PbSe)或硅基光电导体或另一适当材料。在此,光电导材料层可以包括选自均相、晶体、多晶、微晶、纳晶和/或无定形相的组合物。优选地,光电导材料层可以被嵌入在两个透明导电氧化物层之间,所述透明导电氧化物优选地包括包括氧化铟锡(ITO)、掺氟氧化锡(FTO)或氧化镁(MgO)。然而,其它材料也是可行的,特别是根据所需的透明光谱范围。
此外,可以存在用于记录横向光学信号的至少两个电极。在优选实施例中,所述至少两个电极可以实际上以至少两个物理电极的形式布置,其中每个物理电极可以包括导电材料,优选地金属导电材料,更优选地高度金属导电材料,例如铜、银、金、或包含这些种类材料的合金或组合物。在此,所述至少两个物理电极中的每一个可以优选地以可以实现光学传感器中相应电极与光电导层之间的直接电接触的方式布置,特别地以便获得具有尽可能小的损耗的纵向传感器信号,该损耗例如是由在光学传感器与评估装置之间的传输路径中的附加电阻导致的。
然而,在特定实施例中,所提及的物理电极中的一个或多个可以至少部分地被导电束(特别地,导电粒子束,该导电粒子优选地为电子)替换,可以以如下方式布置:该方式使得导电束照射在传感器区域上,从而能够在光学传感器中产生相应导电束与光电导层之间的直接电接触。通过提供该到光电导层的直接电接触,导电束可以类似地用作用于将至少一部分纵向传感器信号从光学传感器传输到评估装置的装置。
优选地,横向光学传感器的电极中的至少一个可以是具有至少两个部分电极的分割电极,其中横向光学传感器可以具有传感器区域,其中所述至少一个横向传感器信号可以指示入射光束在传感器区域内的x和/或y位置。传感器区域可以是光电检测器的面向对象的表面。该传感器区域优选地可以垂直于光轴取向。因此,横向传感器信号可以指示由光束在横向光学传感器的传感器区域的平面中产生的光斑的位置。通常,如本文中所使用的,术语“部分电极”是指多个电极中的适于测量至少一个电流和/或电压信号(优选地独立于其它部分电极)的电极。因此,在提供多个部分电极的情况下,相应电极适于经由所述至少两个部分电极提供可被独立地测量和/或使用的多个电位和/或电流和/或电压。
横向光学传感器可以进一步适于根据通过部分电极的电流而产生横向传感器信号。因此,可以形成通过两个水平部分电极的电流的比率,从而产生x坐标,和/或可以形成通过两个垂直部分电极的电流的比率,从而产生y坐标。检测器,优选地横向光学传感器和/或评估装置,可以适于从通过部分电极的电流的至少一个比率推导出关于对象的横向位置的信息。经由比较通过部分电极的电流而产生位置坐标的其它方式也是可行的。
通常可以以各种方式限定部分电极,以便确定光束在传感器区域中的位置。因此,可以提供两个或更多个水平部分电极,以便确定水平坐标或x坐标,并且可以提供两个或更多个垂直部分电极,以便确定垂直坐标或y坐标。因此,部分电极可以被设置在传感器区域的边沿处,其中传感器区域的内部空间保持空置并且可以被一种或多种另外的电极材料覆盖。如下面详细描述的,该另外的电极材料优选地可以是透明的另外的电极材料,例如透明金属和/或透明导电氧化物和/或,最优选地是透明导电聚合物。
通过使用其中电极之一是具有三个或更多个部分电极的分割电极的横向光学传感器,流过部分电极的电流可以依赖于光束在传感器区域中的位置。这通常是因为这样的事实:即,从光照射到部分电极上而产生电荷的位置开始的途中会发生欧姆损耗或电阻损耗。因此,除了部分电极之外,分割电极可以包括被连接到部分电极的一种或多种另外的电极材料,其中该一种或多种另外的电极材料提供电阻。因此,由于在从产生电荷的位置经过该一个或多个另外的电极材料到部分电极的途中的欧姆损耗,因此流过部分电极的电流依赖于电荷产生的位置,并因此依赖于光束在传感器区域中的位置。关于确定光束在传感器区域中的位置的该原理的细节,可参考下面的优选实施例和/或在WO 2014/097181A1中公开的物理原理和装置选项以及其中的相应参考文献。
因此,横向光学传感器可以包括传感器区域,该传感器区域优选地可以对从对象行进到检测器的光束透明。因此,横向光学传感器可以适于确定光束在一个或多个横向方向(例如在x方向和/或在y方向)上的横向位置。为此,所述至少一个横向光学传感器可以进一步适于产生至少一个横向传感器信号。因此,评估装置可以被设计为通过评估纵向光学传感器的横向传感器信号而产生关于对象的横向位置的至少一项信息。
除了对象的至少一个纵向坐标之外,还可以确定对象的至少一个横向坐标。因此,通常,评估装置可以进一步适于通过确定光束在至少一个横向光学传感器上的位置而确定对象的至少一个横向坐标,所述横向光学传感器可以是像素化的、分段化的或大面积横向光学传感器,如在WO 2014/097181A1中进一步概述的。
此外,检测器可进一步包括一个或多个另外的元件,例如一个或多个另外的光学元件。此外,检测器可以完全或部分地被集成到至少一个壳体中。所述检测器具体地可以包括至少一个传送装置,所述传送装置适于将光束导向光学传感器。所述传送装置可以包括以下中的一者或多者:至少一个透镜,优选地为至少一个可调焦透镜;至少一个光束偏转元件,优选地为至少一个反射镜;至少一个分束元件,优选地为分束立方体或分束镜中的至少一者;至少一个多透镜系统。
如上所述,检测器可进一步包括一个或多个光学元件,例如一个或多个透镜和/或一个或多个折射元件、一个或多个反射镜、一个或多个膜片等。适于修改光束(例如通过修改光束的光束参数、光束的宽度或光束的方向中的一者或多者)的这些光学元件在上文和下文中也被称为“传送元件”。因此,检测器可进一步包括至少一个传送装置,其中传送装置可以适于将光束导向光学传感器(例如通过对光束的偏转、聚焦或散焦中的一者或多者)。具体而言,传送装置可以包括一个或多个透镜和/或一个或多个曲面镜和/或一个或多个其它类型的折射元件。
最优选地,从对象出射的光束在这种情况下可首先行进穿过所述至少一个传送装置,之后穿过单个透明纵向光学传感器或透明纵向光学传感器的堆叠,直到最终照射到成像装置上。如本文中所使用的,术语“传送装置”是指可被配置为将从对象出射的至少一个光束传送到检测器内的光学传感器的光学元件。因此,传送装置可被设计为将从对象传播到检测器的光馈送到光学传感器,其中该馈送可以可选地借助于成像或借助于传送装置的非成像特性实现。特别地,传送装置也可被设计为在电磁辐射被馈送到横向和/或纵向光学传感器之前收集电磁辐射。
如上所述,通过使用单个纵向光学传感器,对至少一个对象的明确的确定是可能的。这种简单配置可增强传送装置后面的可用空间,使得与使用附加传感器装置的配置相比可使用更短的焦距。另外,这种配置可允许光学设置的灵活性、更少的空间要求,并且降低光学元件和传感器的费用。
另外,所述至少一个传送装置可具有成像特性。因此,传送装置包括至少一个成像元件,例如至少一个透镜和/或至少一个曲面反射镜,因为在这种成像元件的情况下,例如传感器区域上照射的几何形状可以依赖于传送装置与对象之间的相对定位,例如距离。如本文中所使用的,传送装置可被设计为使得从对象出射的电磁辐射完全传送到传感器区域,例如完全聚焦到传感器区域上,特别是在对象被布置在检测器的可视范围的情况下。
通常,所述检测器可进一步包括至少一个成像装置,即,能够获取至少一个图像的装置。成像装置可以以各种方式体现。因此,成像装置例如可以是检测器壳体中的检测器的一部分。然而,替代地或附加地,成像装置也可以被布置在检测器壳体的外部,例如作为单独的成像装置。替代地或附加地,成像装置也可以被连接到检测器或甚至是检测器的一部分。在优选的布置中,透明纵向光学传感器的堆叠和成像装置沿着光束行进时所沿着的公共光轴对准。因此,可以将成像装置定位在光束的光路中,使得光束行进穿过透明纵向光学传感器的堆叠,直到照射到成像装置上。然而,其它布置也是可能的。
如本文中所使用的,“成像装置”通常被理解为可以产生对象或其一部分的一维、二维或三维图像的装置。特别地,具有或不具有至少一个可选的成像装置的检测器可以完全或部分地用作相机,例如IR相机或RGB相机,即,被设计为在三个单独的连接上提供三基色的相机,该三基色被指定为红色、绿色和蓝色。因此,作为例子,所述至少一个成像装置可以是或可以包括从由以下项构成的组中选择的至少一个成像装置:像素化有机相机元件,优选地像素化有机相机芯片;像素化无机相机元件,优选地像素化无机相机芯片,更优选地CCD或CMOS芯片;单色相机元件,优选地单色相机芯片;多色相机元件,优选地多色相机芯片;全色相机元件,优选地全色相机芯片。成像装置可以是或可以包括选自单色成像装置、多色成像装置和至少一个全色成像装置中的至少一种装置。本领域技术人员将认识到,可通过使用过滤技术和/或通过使用固有颜色敏感度或其它技术,产生多色成像装置和/或全色成像装置。成像装置的其它实施例也是可能的。
成像装置可被设计为相继地和/或同时地对对象的多个部分区域成像。举例来说,对象的部分区域可以是对象的一维、二维或三维区域,其例如由成像装置的分辨率极限界定,并且电磁辐射从其中出射。在该上下文中,成像应该被理解为意味着从对象的相应部分区域出射的电磁辐射例如通过检测器的至少一个可选的传送装置而被馈送到成像装置。电磁射线可以由对象本身产生,例如以发光辐射的形式产生。替代地或附加地,所述至少一个检测器可以包括用于照射对象的至少一个照射源。
特别地,成像装置可被设计为例如借助于扫描方法,特别地使用至少一种行扫描和/或线扫描,依次对多个部分区域进行成像。然而,其它实施例也是可能的,例如其中同时对多个部分区域进行成像的实施例。成像装置被设计为在对象的部分区域的该成像期间产生与部分区域相关联的信号,优选地电子信号。该信号可以是模拟和/或数字信号。举例来说,电子信号可以与每个部分区域相关联。电子信号因此可以同时产生或者以时间交错的方式产生。举例来说,在行扫描或线扫描期间,可以产生与对象的部分区域对应的电子信号的序列,这些电子信号例如可以被串成行。此外,成像装置可以包括一个或多个信号处理装置,例如用于处理和/或预处理电子信号的一个或多个滤波器和/或模数转换器。
在本发明的另一方面中,公开了一种用于确定至少一个对象的位置的检测器系统。所述检测器系统包括至少一个根据本发明(例如根据以上公开的一个或多个实施例或根据下面进一步详细公开的一个或多个实施例)的检测器。所述检测器系统进一步包括至少一个信标装置,所述信标装置适于将至少一个光束导向所述检测器,其中所述信标装置为能够附接到所述对象上、能够由所述对象保持、以及能够集成到所述对象中的至少一种。
有关信标装置的更多细节在下面给出,包括其可能的实施例。因此,所述至少一个信标装置可以是或可以包括至少一个有源信标装置,所述有源信标装置包括一个或多个照射源,例如一个或多个光源,如激光器、LED、灯泡等。附加地或替代地,所述至少一个信标装置可以适于诸如通过包括一个或多个反射元件而朝向所述检测器反射一个或多个光束。此外,所述至少一个信标装置可以是或可以包括适于散射光束的一个或多个散射元件。其中,可以使用弹性或非弹性散射。在所述至少一个信标装置适于朝向所述检测器反射和/或散射初级光束(primary light beam)的情况下,所述信标装置可以适于保持光束的光谱特性不受影响,或者可以适于改变光束的光谱特性(诸如通过修改光束的波长)。
从信标装置出射的光可以替代地或附加地来自以下选项:即,所述光来自相应信标装置本身;从照射源出射和/或由照射源激发。举例来说,从信标装置出射的电磁光可以首先由信标装置本身发射和/或由信标装置反射和/或由信标装置散射,然后才被馈送到检测器。在这种情况下,电磁辐射的发射和/或散射可以在不对电磁辐射有光谱影响或者具有这种影响的情况下实现。因此,举例来说,在散射期间也可能发生波长偏移(例如根据斯托克斯或拉曼)。此外,例如可以由初级照射源激发光的发射,例如通过激发对象或对象的部分区域以产生发光,特别地,磷光和/或荧光。原则上,其它发射过程也是可能的。如果发生反射,则对象例如可以具有至少一个反射区域,特别地,至少一个反射表面。所述反射表面可以是对象本身的一部分,但也可以例如是与对象连接或空间耦接的反射器,例如连接到对象的反射板。如果使用至少一个反射器,则又可以将其视为被连接到对象的检测器的一部分,例如独立于检测器的其它组成部分。
信标装置和/或至少一个可选的照射源通常可以发射位于以下光谱范围的至少一者内的光:紫外光谱范围,优选地在200nm到380nm的范围内;可见光谱范围(380nm到780nm);红外光谱范围,优选地在780nm到3.0微米的范围内。对于热成像应用,目标可以发射远红外光谱范围内的光,优选地在3.0微米到20微米的范围内。最优选地,所述至少一个照射源适于发射可见光谱范围内的光,优选地在500nm到780nm的范围内,最优选地在650nm到750nm、或在690nm到700nm的范围内。
检测器系统可以包括至少两个信标装置,其中由第一信标装置发射的光束的至少一个特性可以不同于由第二信标装置发射的光束的至少一个特性。第一信标装置的光束和第二信标装置的光束可以同时或依次发射。例如,第一信标装置可保持接通并提供第一光束,而第二信标装置可提供第二光束。第一光束可以具有第一波长并且第二光束可以具有第二波长,其中纵向光学传感器的特性可通过用第一光束和第二光束照射来调节,特别地,改变。第一光束的照射可导致调节纵向光学传感器的特性,使得纵向光学传感器处于中性操作模式、正操作模式或负操作模式中的一者。第二光束的照射可导致调节纵向光学传感器的特性,使得纵向光学传感器可处于与第一光束的照射期间的操作模式不同的另一操作模式。通过在至少两个波长之间切换,可调节纵向光学传感器的特性,使得纵向光学传感器能够在至少两个操作模式下操作。如上所述,评估装置可被设计为通过考虑在至少两个不同的操作模式下确定的至少两个纵向传感器信号来解决模糊性。例如,与第二波长相比,第一波长可以是短波长。特别地,第一波长可以在可见光谱范围内,优选地在380到450nm的范围内,更优选地在390到420nm的范围内,最优选地在400到410nm的范围内。例如,第二波长也可以在可见光谱范围内,优选地在500到560nm的范围内,更优选地在510到550nm的范围内,最优选地在520到540nm的范围内。
此外,本发明公开了一种用于至少一个对象的光学检测的方法,特别地,使用检测器,例如根据本发明的检测器,例如根据涉及在上面公开或在下面更详细公开的检测器的一个或多个实施例的检测器。但是,也可以使用其它类型的检测器。
所述方法包括以下方法步骤,其中所述方法步骤可以以给定的顺序执行,或者可以以不同的顺序执行。此外,可以存在一个或多个未列出的附加方法步骤。此外,可以重复地执行一个、多于一个、或甚至全部的方法步骤。
这些方法步骤如下:
-调节所述纵向光学传感器的至少一个特性;
-通过使用至少一个纵向光学传感器产生至少一个纵向传感器信号,其中所述纵向传感器信号依赖于所述光束对所述纵向光学传感器的传感器区域的照射,其中在给定相同的照射总功率的情况下,所述纵向传感器信号依赖于所述光束在所述传感器区域中的光束横截面,其中所述纵向传感器信号进一步依赖于所述纵向光学传感器的至少一个特性;以及
-通过使用至少一个评估装置评估所述纵向传感器信号,并且产生关于所述对象的纵向位置的至少一项信息。
有关细节、选项和定义,可以参考上述检测器。因此,具体而言,如上所述,所述方法可以包括使用根据本发明的检测器,例如根据上面给出的或在下面进一步给出的实施例中的一个或多个的检测器。
所述纵向光学传感器的特性可以由用户和/或通过外部影响来调节。所述纵向光学传感器信号可以被明确地评估。所述纵向光学传感器可以在至少两个操作模式下操作。可以产生和评估至少两个纵向传感器信号,其中第一纵向传感器信号可以在第一操作模式下被评估,第二纵向传感器信号可以在第二操作模式下被评估。第一纵向传感器信号可以在纵向光学传感器的第一操作模式下产生,例如选自中性操作模式、正操作模式和负操作模式的操作模式。第二纵向传感器信号可以像第一纵向传感器信号那样,在纵向光学传感器的另一操作模式下产生。可以通过比较所述第一纵向传感器信号和所述第二纵向传感器信号来解决模糊性。
该方法可进一步包括对纵向光学传感器的操作模式进行确定和/或分类。因此,该方法可以包括分析步骤,其中可以分析纵向信号。特别地,可以确定曲线特性和进度,更具体地,可以确定全局极值,例如全局最小值或全局最大值。在未观察或识别到极值的情况下,操作模式可被分类为中性操作模式。例如,可以确定纵向传感器信号的幅度。
纵向光学传感器的特性可以被重复调节,例如两次或三次。因此,可以在纵向光学传感器的操作模式之间重复切换。例如,可以执行从正操作模式或负操作模式中的一者向中性操作模式的切换以及随后的从中性模式向正操作模式或负操作模式中的一者的切换。
可以同时评估至少两个纵向传感器信号。通过考虑在至少两个不同操作模式下确定的至少两个纵向传感器信号来解决模糊性。因此,可以评估至少两个纵向传感器信号,其中可以在第一操作模式下评估第一纵向传感器信号,并且可以在第二操作模式下评估第二纵向传感器信号。该方法可进一步包括比较步骤,其中比较第一纵向传感器信号和第二纵向传感器信号。例如,在比较步骤中,纵向传感器信号可以被标准化以独立于光束的强度而产生关于对象的纵向位置的信息。例如,可以选择第一或第二纵向传感器信号之一作为参考信号。例如,可以选择在中性操作模式下评估的纵向传感器信号作为参考信号。例如,可以选择在正操作模式或负操作模式下评估的纵向传感器信号中的至少一者作为参考信号。通过比较所选的参考信号和另一个纵向信号,可消除模糊性。可以比较纵向传感器信号,以便获得关于光束的总功率和/或强度的信息,和/或以便针对光束的总功率和/或总强度来标准化纵向传感器信号和/或关于对象的纵向位置的至少一项信息。例如,纵向传感器信号可通过除以所选的参考纵向传感器信号(特别地在中性操作模式下评估的纵向传感器信号)而进行标准化,由此产生标准化的纵向光学传感器信号,然后可以通过使用上述已知的关系将标准化的纵向光学传感器信号变换为关于对象的至少一项纵向信息。因此,该变换可以独立于光束的总功率和/或强度。例如,在正操作模式或负操作模式中的一者下评估的至少一个纵向传感器信号可以除以在正操作模式或负操作模式中的另一者下评估的纵向传感器信号。因此,可以通过相除来消除模糊性。
在本发明的另一方面中,提出了一种用于在用户与机器之间交换至少一项信息的人机接口。所提出的人机接口可以利用以下事实:即,上面提及的一个或多个实施例和/或下面进一步详细提及的一个或多个实施例中的上述检测器可以由一个或多个用户使用以向机器提供信息和/或命令。因此,优选地,人机接口可被用于输入控制命令。
所述人机接口包括至少一个根据本发明的检测器,例如根据上面公开的一个或多个实施例和/或根据下面进一步详细公开的一个或多个实施例的检测器,其中所述人机接口被设计为借助于检测器产生用户的至少一项几何信息,其中所述人机接口被设计为将该几何信息分配给至少一项信息,特别地分配给至少一个控制命令。
在本发明的另一方面中,公开了一种用于执行至少一个娱乐功能的娱乐装置。如本文中所使用的,娱乐装置是可以用于达到一个或多个用户(在下文中也被称为一个或多个玩家)的休闲和/或娱乐目的服务的装置。作为例子,娱乐装置可以用于达到游戏(优选地计算机游戏)的目的。附加地或替代地,娱乐装置也可以用于其它目的,例如通常用于锻炼、运动、物理治疗或运动跟踪。因此,娱乐装置可以被实现到计算机、计算机网络或计算机系统中,或者可以包括运行一个或多个游戏软件程序的计算机、计算机网络或计算机系统。
娱乐装置包括至少一个根据本发明的人机接口,例如根据上面公开的一个或多个实施例和/或根据下面公开的一个或多个实施例的娱乐装置。娱乐装置被设计为使得玩家能够借助于人机接口输入至少一项信息项。该至少一项信息可以被传送到娱乐装置的控制器和/或计算机,和/或可以由娱乐装置的控制器和/或计算机使用。
在本发明的另一方面中,提供了一种用于跟踪至少一个可移动对象的位置的跟踪系统。如本文中所使用的,跟踪系统是适于收集有关至少一个对象和/或对象的至少一部分的一系列过去位置的信息的装置。另外,跟踪系统可以适于提供关于至少一个对象或对象的至少一个部分的至少一个预测的未来位置的信息。所述跟踪系统可以具有至少一个跟踪控制器,该跟踪控制器可以完全或部分地体现为电子装置,优选地体现为至少一个数据处理装置,更优选地体现为至少一个计算机或微控制器。此外,该至少一个跟踪控制器可以包括至少一个评估装置和/或可以是至少一个评估装置的一部分和/或可以完全或部分地与至少一个评估装置相同。
所述跟踪系统包括根据本发明的至少一个检测器,例如至少一个在上面列出的一个或多个实施例中公开的和/或在下面的一个或多个实施例中公开的检测器。如上所述,通过使用单个纵向光学传感器,对至少一个对象的明确的确定是可能的。因此,x-y-z跟踪系统的简单且成本有效的配置是可能的。跟踪系统进一步包括至少一个跟踪控制器。跟踪系统可以包括一个、两个或更多个检测器,特别是两个或更多个相同的检测器,其允许可靠地获取关于两个或更多个检测器之间的重叠体积中的至少一个对象的深度信息。跟踪控制器适于跟踪对象的一系列位置,每个位置包括关于对象在特定时间点的位置的至少一项信息,例如通过记录数据组或数据对,每个数据组或数据对包括至少一个位置信息和至少一个时间信息。
跟踪系统可进一步包括至少一个根据本发明的检测器系统。因此,除了至少一个检测器和至少一个评估装置以及可选的至少一个信标装置之外,跟踪系统可进一步包括对象本身或对象的一部分,例如至少一个控制元件,所述至少一个控制元件包括多个信标装置或至少一个信标装置,其中控制元件能够直接或间接地附接到或集成到待跟踪的对象中。
跟踪系统可以适于发起跟踪系统本身和/或一个或多个单独装置的一个或多个动作。为了后一目的,跟踪系统(优选地跟踪控制器)可以具有用于发起至少一个动作的一个或多个无线和/或有线接口和/或其它类型的控制连接。优选地,所述至少一个跟踪控制器可以适于根据对象的至少一个实际位置来发起至少一个动作。作为例子,该动作可以选自:预测对象的未来位置;将至少一个装置指向对象;将至少一个装置指向检测器;照射对象;照射检测器。
作为跟踪系统的应用的例子,跟踪系统可以用于连续地将至少一个第一对象指向至少一个第二对象,即使第一对象和/或第二对象可能移动。另外,可能的例子可以在工业应用中找到,例如在机器人技术中找到和/或例如在生产线或装配线中的制造期间,用于连续地加工制品,即使该制品正在移动。附加地或替代地,跟踪系统可能被用于照射目的,例如通过连续地将照射源指向对象而持续照射对象,即使对象可能正在移动。另外的应用可以在通信系统中找到,例如以便通过将发射机指向移动对象来持续向移动对象发送信息。
跟踪系统可进一步包括可连接到对象的至少一个信标装置。有关信标装置的可能的限定,可参考WO 2014/097181A1。跟踪系统优选地适于使得检测器可以产生关于至少一个信标装置的对象的位置的信息,特别地适于产生关于包括呈现特定光谱灵敏度的特定信标装置的对象的位置的信息。因此,本发明的检测器可以(优选地以同时的方式)跟踪呈现不同光谱灵敏度的多于一个的信标。在此,信标装置可以完全或部分地体现为有源信标装置和/或无源信标装置。作为例子,信标装置可以包括至少一个照射源,该照射源适于产生待发送到检测器的至少一个光束。附加地或替代地,信标装置可以包括至少一个反射器,该反射器适于反射由照射源产生的光,由此产生将被发送到检测器的反射光束。
在本发明的另一方面中,提供了一种用于确定至少一个对象的至少一个位置的扫描系统。如本文中所使用的,所述扫描系统是适于发射至少一个光束装置的装置,所述至少一个光束被配置为用于照射位于所述至少一个对象的至少一个表面处的至少一个点,并且用于产生关于所述至少一个点与所述扫描系统之间的距离的至少一项信息。为了产生关于所述至少一个点与所述扫描系统之间的距离的至少一项信息,所述扫描系统包括根据本发明的检测器中的至少一个,例如在上面列出的一个或多个实施例中公开的和/或在下面的一个或多个实施例中公开的检测器中的至少一个。
因此,所述扫描系统包括至少一个照射源,所述照射源适于发射至少一个光束,所述至少一个光束被配置为用于照射位于所述至少一个对象的至少一个表面处的至少一个点。如本文中所使用的,术语“点”是指对象表面的一部分上的小区域,其例如可以由扫描系统的用户选择为被照射源照射。优选地,该点可以呈现一方面可以尽可能小的尺寸,以便允许扫描系统尽可能精确地确定该扫描系统所包括的照射源与该点所在的对象的表面的部分之间的距离值,另一方面可以尽可能大,以便允许扫描系统的用户或扫描系统本身(特别地通过自动程序)检测对象表面的相关部分上的该点的存在。
为此,照射源可以包括人造照射源,特别地,至少一个激光源和/或至少一个白炽灯和/或至少一个半导体光源,例如至少一个发光二极管,特别地,有机和/或无机发光二极管。由于通常限定的光束轮廓和可操作性的其它特性,特别优选地使用至少一个激光源作为照射源。在此,可以优选地使用单个激光源,特别是在提供用户容易存储和运输的紧凑型扫描系统很重要的情况下。优选地,照射源可以包括适于产生具有不同波长的光束的单个激光源。因此,照射源可以优选地为检测器的构成部分,因此,可以特别地集成到检测器中,例如集成到检测器的壳体中。在优选实施例中,特别地,扫描系统的壳体可以包括至少一个显示器,所述至少一个显示器被配置为例如以易于阅读的方式向用户提供有关距离的信息。在进一步的优选的实施例中,特别地,扫描系统的壳体另外还可以包括至少一个按钮,该按钮可以被配置为操作与扫描系统相关的至少一个功能,例如用于设置一个或多个操作模式。在进一步优选的实施例中,特别地,扫描系统的壳体可以另外还包括被配置为将扫描系统紧固到另一表面的至少一个紧固单元,例如橡胶脚垫、底板或墙上支架(例如磁包括性材料),特别地,用于增加用户测量距离的准确性和/或用户对扫描系统的可操作性。
在特别优选的实施例中,扫描系统的照射源因此可以发射单个激光束,该激光束可以被配置为照射位于对象表面处的单个点。因此,通过使用根据本发明的检测器中的至少一个,可以产生关于所述至少一个点与扫描系统之间的距离的至少一项信息。由此,优选地,例如通过采用所述至少一个检测器所包括的评估装置,可以确定所述扫描系统所包括的照射系统与由照射源产生的单个点之间的距离。然而,扫描系统可进一步包括特别适合实现该目的的另外的评估系统。替代地或附加地,可以考虑扫描系统的尺寸,特别是扫描系统的壳体的尺寸,因此可以替代地确定扫描系统的壳体上的特定点(例如壳体的前边缘或后边缘)与单个点之间的距离。
替代地,为了提供具有不同波长的至少两个光束,照射源可以包括发送不同波长的光的两个激光源。照射源可以发射至少两个激光束。每个激光束可被配置为照射位于对象表面上的单个点。此外,扫描系统的照射源可以发射两个单独的激光束,这些激光束可以被配置为提供光束的发射方向之间的相应角,例如直角,由此可以照射位于同一对象的表面处或两个单独的对象的两个不同表面处的两个相应的点。然而,两个单独激光束之间的相应角的其它值也是可行的。该特征特别地可用于间接测量功能,例如用于推导不能直接取得(例如由于在扫描系统与点之间存在一个或多个障碍物)或者难以达到的间接距离。举例来说,因此可以通过测量两个单独的距离并使用毕达哥拉斯公式推导高度来确定对象的高度值。特别是为了能够保持相对于对象的预定水平,扫描系统可进一步包括至少一个调平单元(leveling unit),特别地,集成的气泡瓶,用户可以使用该调平单元保持预定水平。
作为另一种替代例,扫描系统的照射源可以发射多个单独的激光束,例如这样的激光束的阵列:其可以呈现相对于彼此的相应间距(特别地,规则间距),并且可以以能够产生位于至少一个对象的至少一个表面上的点的阵列的方式布置。为此,可以提供专门适用的光学元件,例如分束装置和反射镜,这些光学元件可以允许产生所描述的激光束的阵列。
因此,扫描系统可以提供被置于一个或多个对象的一个或多个表面上的一个或多个点的静态布置。替代地,扫描系统的照射源,特别是一个或多个激光束,例如上述激光束的阵列,可以被配置为提供一个或多个光束,所述光束可呈现出随时间变化的强度和/或可以随着时间推移而使发射方向交替。因此,照射源可以被配置为通过使用由扫描装置的至少一个照射源产生的具有交替特征的一个或多个光束来扫描至少一个对象的至少一个表面的一部分作为图像。特别地,扫描系统因此可以使用至少一个行扫描和/或列扫描来例如依次或同时扫描一个或多个对象的一个或多个表面。作为非限制性例子,扫描系统可用于安全激光扫描仪(例如,在生产环境中);和/或用于用来确定对象形状的3D扫描装置,例如与3D打印、身体扫描、质量控制相关联;用于建造应用,例如作为测距仪;用于物流应用,例如用于确定包裹大小或体积;用于家庭应用,例如用于机器人真空吸尘器或割草机;或用于可能包括扫描步骤的其它类型的应用。
在本发明的另一方面中,提供了用于产生至少一个对象的至少一个单个圆形三维图像的立体系统。如本文中所使用的,上面和/或下面公开的立体系统可以包括作为光学传感器的至少两个FiP传感器,其中第一FiP传感器可以被包括在跟踪系统中,特别地被包括在根据本发明的跟踪系统中,而第二FiP传感器可以被包括在扫描系统中,特别地被包括在根据本发明的扫描系统中。在此,FiP传感器可以优选地以准直的布置被布置在分开的光束路径中,例如通过使FiP传感器平行于该立体系统的光轴对准,以及垂直于该立体系统的光轴个体地位移。因此,FiP传感器能够产生或增强对深度信息的感知,尤其是通过组合来自具有重叠视野并且优选地对个体(individual)调制频率敏感的个体FiP传感器的视觉信息而获得深度信息。为此,个体FiP传感器可以优选地彼此间隔开1cm到100cm,优选地为10cm到25cm的距离,该距离是在垂直于光轴的方向上确定的。因此在该优选实施例中,可以采用跟踪系统来确定调制的活动目标的位置,而适于将一个或多个点投影到一个或多个对象的一个或多个表面上的扫描系统可被用于产生关于所述至少一个点与扫描系统之间的距离的至少一项信息。另外,如本申请中其它地方所述,立体系统可进一步包括单独的位敏装置,所述位敏装置适于产生关于所述至少一个对象在图像内的横向位置的信息项。
除了允许立体视觉之外,主要基于多于一个的光学传感器的使用的立体系统的另一特定优点特别地可以包括总强度的增加和/或较低的检测阈值。此外,在包括至少两个常规位敏装置的常规立体系统中,各个图像中的相应像素必须通过应用相当大的计算量来确定,而在根据本发明的包括至少两个FiP传感器的立体系统中,通过使用FiP传感器(其中每个FiP传感器可以以不同的调制频率操作)记录的各个图像中的相应像素可以明显地相对于彼此分配。因此,需要强调的是,根据本发明的立体系统可允许在减少计算量的情况下产生关于对象的纵向位置以及关于对象的横向位置的至少一项信息。
有关立体系统的更多细节,可分别参考跟踪系统和扫描系统的描述。
在本发明的另一方面中,公开了一种用于对至少一个对象成像的相机。该相机包括至少一个根据本发明的检测器,例如在上面给出的或在下面进一步详细给出的一个或多个实施例中公开的检测器。因此,检测器可以是摄影装置的一部分,具体地数字相机的一部分。具体而言,检测器可用于3D摄影,具体地数字3D摄影。因此,检测器可以形成数字3D相机,或者可以是数字3D相机的一部分。如本文中所使用的,术语“摄影”通常是指获取至少一个对象的图像信息的技术。如本文进一步使用的,“相机”通常是适合于执行摄影的装置。如本文进一步使用的,术语“数字摄影”通常是指通过使用适于产生指示照射的强度的电信号(优选地数字电信号)的多个光敏元件来获取至少一个对象的图像信息的技术。如本文进一步使用的,术语“3D摄影”通常是指获取至少一个对象的在三个空间维度上的图像信息的技术。因此,3D相机是适于执行3D摄影的装置。该相机通常可以适于获取单个图像(例如单个3D图像),或者可以适于获取多个图像(例如图像序列)。因此,该相机也可以是适于视频应用的摄影机,例如用于获取数字视频序列。
因此,一般而言,本发明进一步涉及用于对至少一个对象成像的相机,具体地数字相机,更具体地3D相机或数字3D相机。如上所述,如本文中所使用的,术语“成像”通常是指获取至少一个对象的图像信息。该相机包括至少一个根据本发明的检测器。如上所述,该相机可以适于获取单个图像或适于获取多个图像(例如图像序列),优选适于获取数字视频序列。因此,作为例子,该相机可以是或可以包括摄影机。在后一种情况下,该相机优选地包括用于存储图像序列的数据存储器。
在本发明的另一方面中,公开了根据本发明的(例如在上述一个或多个实施例中公开的和/或在下面进一步详细给出的一个或多个实施例中公开的)光学检测器的用途,其用于选自以下项的使用目的:交通技术中的位置测量;娱乐应用;安全应用;人机接口应用;跟踪应用;扫描应用;摄影应用;用于产生诸如选自房间、建筑物(building)和街道的至少一个空间的地图的地图绘制应用;移动应用;网络摄像头;音频装置;杜比环绕音频系统;计算机外围装置;游戏应用;音频应用;相机或视频应用;安全应用;监视应用;汽车应用;运输应用;医疗应用;农业应用;与动植物养殖有关的应用;作物保护应用;运动应用;机器视觉应用;车辆应用;飞机应用;船舶应用;航天器应用;建筑应用;建造应用;制图应用;制造应用;机器人技术应用;质量控制应用;制造应用;与立体相机组合的使用;质量控制应用;与至少一个飞行时间检测器组合的使用;与结构化照射源组合的使用;与立体相机组合的使用。附加地或替代地,可以提及本地和/或全球定位系统中的应用,尤其是具体用于轿车或其它交通工具(例如火车、摩托车、自行车、用于货物运输的卡车)、机器人,或者由行人使用的基于地标的定位和/或室内和/室外导航。此外,可以提及作为潜在的应用的室内定位系统,例如用于家庭应用和/或用于制造技术中使用的机器人。
此外,根据本发明的光学检测器可以用于自动开门器,例如用于所谓的智能推拉门,例如在Jie-Ci Yang等人的Sensors 2013,13(5),5923-5936;doi:10.3390/s130505923中所公开的智能推拉门。根据本发明的至少一个光学检测器可以用于检测人或对象何时接近门,并且门可以自动打开。
如上所述,另外的应用可以是全球定位系统、本地定位系统、室内导航系统等。因此,根据本发明的装置,即光学检测器、检测器系统、人机接口、娱乐装置、跟踪系统或相机中的一者或多者具体地可以是本地或全球定位系统的一部分。附加地或替代地,这些装置可以是可见光通信系统的一部分。其它用途也是可行的。
根据本发明的装置,即光学检测器、检测器系统、人机接口、娱乐装置、跟踪系统、扫描系统或相机中的一者或多者更具体地可以与本地或全球定位系统(例如用于室内或室外导航)组合使用。作为例子,根据本发明的一个或多个装置可以与软件/数据库组合(例如Google或Google Street)组合。根据本发明的装置可进一步被用于分析到周围对象(其位置可以在数据库中找到)的距离。根据到已知对象的位置的距离,可以计算用户的本地或全球位置。
因此,根据本发明的光学检测器、检测器系统、人机接口、娱乐装置、跟踪系统、扫描系统或相机(在下文中被简称为“根据本发明的装置”或在不将本发明限制到FiP效应的潜在用途的情况下,“FiP装置”)可用于多个应用目的,例如下面进一步详细公开的目的中的一个或多个。
因此,首先,根据本发明的装置(也被命名为“FiP装置”)可用于移动电话、平板计算机、膝上型计算机、智能面板或其它固定或移动的计算机或通信应用中。因此,根据本发明的装置可以与至少一个有源光源(例如发射可见光范围或红外光谱范围内的光的光源)组合,以提高性能。因此,作为例子,根据本发明的装置可以用作相机和/或传感器,例如与用于扫描环境、对象和生物的移动软件组合。为了增强成像效果,根据本发明的装置甚至可以与诸如传统相机的2D相机组合。根据本发明的装置可进一步用于监视和/或用于记录目的,或者用作控制移动装置的输入装置,尤其是与手势识别相结合。因此,具体而言,根据本发明的充当人机接口的装置(也被称为FiP输入装置)可用于移动应用,例如用于通过移动装置(例如移动电话)来控制其它电子装置或组件。作为例子,包括至少一个FiP装置的移动应用可用于控制电视机、游戏机、音乐播放器或音乐装置或其它娱乐装置。
此外,根据本发明的装置可以在用于计算应用的网络摄像头或其它外围装置中使用。因此,作为例子,根据本发明的装置可以与用于成像、记录、监视、扫描或运动检测的软件相组合来使用。如在人机接口和/或娱乐装置的上下文中所述的,根据本发明的装置对于通过面部表情和/或身体表情提供命令特别有用。根据本发明的装置可以与其它输入生成装置(例如,鼠标、键盘、触摸板等)组合。此外,根据本发明的装置可用于游戏应用,例如通过使用网络摄像头。此外,根据本发明的装置可用于虚拟训练应用和/或视频会议。此外,根据本发明的装置可用于识别或跟踪在虚拟现实或增强现实应用中使用的手、手臂或对象,尤其是当佩戴头戴式显示器时。
此外,如上面部分地解释的,根据本发明的装置可用于移动音频装置、电视装置和游戏装置。具体而言,根据本发明的装置可用作用于电子装置、娱乐装置等的控件或控制装置。此外,根据本发明的装置可用于眼睛检测或眼睛跟踪,例如在2D和3D显示技术中,尤其是在用于增强现实应用的透明显示器和/或用于识别是否在观看显示器和/或从哪个视角观看显示器。此外,根据本发明的装置可用于浏览与虚拟或增强现实应用有关的房间、边界、障碍物,尤其是当佩戴头戴式显示器时。
此外,根据本发明的装置可用于或用作数码相机(例如DSC相机)和/或用于或用作反射式相机(例如SLR相机)。对于这些应用,可以参考上面公开的根据本发明的装置在诸如移动电话的移动应用中的用途。
此外,根据本发明的装置可用于安全和监视应用中。因此,作为例子,FiP传感器通常可以与一个或多个数字和/或模拟电子装置组合,所述数字和/或模拟电子装置可以在对象位于预定区域之内或之外时发出信号(例如,用于银行或博物馆中的监视应用)。具体地,根据本发明的装置可用于光学加密。基于FiP的检测可以与其它检测装置组合以补充波长,例如利用IR、X射线、UV-VIS、雷达或超声波检测器。根据本发明的装置可以进一步与主动式红外光源组合以允许在弱光环境中进行检测。与有源检测器系统相比,根据本发明的装置(例如基于FiP的传感器)通常是有利的,具体是因为根据本发明的装置避免了如例如在雷达应用、超声波应用、LIDAR或类似的有源检测器装置中的情况下那样主动发送可被第三方检测到的信号。因此,一般而言,根据本发明的装置可用于对移动对象进行不可识别和不可检测的跟踪和/或扫描。此外,与传统装置相比,根据本发明的装置通常不太容易被操纵和刺激。
此外,考虑到通过使用根据本发明的装置的3D感测的容易性和准确性,根据本发明的装置通常可用于面部、身体和人的识别与鉴别。其中,根据本发明的装置可以与用于识别或个性化目的的其它检测手段(例如密码、指纹、虹膜检测、语音识别或其它手段)结合。因此,一般而言,根据本发明的装置可用于安全装置和其它个性化应用中。
此外,根据本发明的装置可被用作用于产品识别的3D条形码读取器。
除了上面提到的安全和监视应用之外,根据本发明的装置通常还可用于监视和监控空间和区域。因此,根据本发明的装置可用于勘测和监控空间和区域,并且作为例子,用于在侵入禁区时触发或执行警报。因此,一般而言,根据本发明的装置可用于在建筑物监视或博物馆中的监视目的,可选地与其它类型的传感器组合,例如与运动或热传感器组合,与图像增强器或图像增强装置和/或光电倍增管组合。此外,根据本发明的装置可用于公共空间或拥挤空间中以检测潜在的危险活动,例如犯罪行为(如停车场中的盗窃),或无人看管的对象,例如机场中无人看管的行李。
此外,根据本发明的装置可以有利地应用于例如视频和摄像机应用之类的相机应用。因此,根据本发明的装置可用于运动捕捉和3D电影记录。其中,根据本发明的装置通常提供大量优于传统光学装置的优点。因此,根据本发明的装置通常在光学组件方面要求较低的复杂度。因此,例如与传统光学装置相比,例如通过提供根据本发明的仅具有一个透镜的装置,可以减少透镜的数量。由于复杂性降低,可以实现非常紧凑的装置,例如用于移动使用。具有两个或更多个高质量透镜的传统光学系统例如因为一般需要大体积分束器,因此通常体积庞大。此外,根据本发明的装置通常可用于诸如自动对焦相机之类的聚焦/自动聚焦装置。此外,根据本发明的装置还可用于光学显微镜,尤其是共焦显微镜。
此外,根据本发明的装置适用于汽车技术和运输技术的技术领域。因此,作为例子,根据本发明的装置可以用作距离和监视传感器,例如用于自适应巡航控制、紧急制动辅助、车道偏离警告、环绕观察,盲点检测、后部交叉交通警报,以及其它汽车和交通应用。此外,FiP传感器还可用于速度和/或加速度测量,例如通过分析使用FiP传感器获得的位置信息的第一和第二时间导数。该特征通常可适用于汽车技术、运输技术或一般交通技术。在其它技术领域中的应用是可行的。室内定位系统的一个具体应用是检测运输中的乘客的位置,更具体地是为了以电子方式控制安全系统(如安全气囊)的使用。如果对于乘客处于气囊的使用会造成严重伤害的位置,则可以防止安全气囊的使用。
在这些或其它应用中,一般而言,根据本发明的装置可用作独立装置,或与其它传感器装置组合使用,例如与雷达和/或超声波装置组合使用。具体而言,根据本发明的装置可用于自主驾驶和安全问题。此外,在这些应用中,根据本发明的装置可以与红外传感器、作为声波传感器的雷达传感器、二维相机或其它类型的传感器组合使用。在这些应用中,根据本发明的典型装置的通常无源的特性是有利的。因此,由于根据本发明的装置一般不需要发射信号,因此可以避免有源传感器信号干扰其它信号源的风险。根据本发明的装置具体地可以与识别软件(例如标准图像识别软件)组合使用。因此,由根据本发明的装置提供的信号和数据通常易于处理,因此与已建立的立体视觉系统(例如LIDAR)相比,一般需要更低的计算能力。考虑到空间需求低,诸如使用FiP效应的相机之类的根据本发明的装置实际可被置于车辆的任何位置,例如在窗屏上、在前罩上、在保险杠上、在灯上、在反射镜上或其它位置等。基于FiP效应的各种检测器可以被组合,例如以便允许自主驾驶车辆或以便以增加主动安全概念的性能。因此,各种基于FiP的传感器可以例如在诸如后窗、侧窗或前窗的窗中、在保险杠上或在灯上与其它基于FiP的传感器和/或传统传感器组合。
根据本发明的至少一个装置(例如根据本发明的至少一个检测器)与一个或多个雨水检测传感器的组合也是可能的。这是由于如下事实:根据本发明的装置一般优于传统传感器技术,例如雷达,特别是在暴雨期间。至少一个FiP装置与至少一个传统感测技术(例如雷达)的组合可允许软件来拾取根据天气条件的信号的正确组合。
此外,根据本发明的装置一般可被用作中断辅助和/或停车辅助和/或用于速度测量。速度测量可被集成在车辆中或者可在车辆外面使用,例如以便在交通控制中测量其它汽车的速度。另外,根据本发明的装置可被用于检测在停车场中的空闲停车位。
此外,根据本发明的装置可被用于医疗系统和运动领域中。因此,在医疗技术的领域中,可提及例如用在内窥镜中的手术机器人,因为如上所概述,根据本发明的装置可仅要求小体积,并且可被集成到其它装置中。具体而言,根据本发明的至多具有一个透镜的装置可被用于捕获在医疗装置(例如内窥镜)中的3D信息。另外,根据本发明的装置可与适当的监视软件组合,以便能够跟踪和/或扫描,以及分析运动。这可以允许诸如内窥镜或解剖刀之类的医疗装置的位置与来自医学成像的(例如从磁共振成像、X射线成像或超声成像获得的)结果即时重叠。这些应用例如在医疗、远程诊断以及远程医疗中特别有价值。此外,根据本发明的装置可用于3D身体扫描。身体扫描可应用于医学领域中,例如应用于牙科手术、整形手术、减肥手术或美容整形手术中,或者其可以应用于医学诊断领域中,例如应用于肌筋膜疼痛综合征、癌症、身体畸形障碍或其它疾病的诊断中。身体扫描可进一步应用于运动领域以评估运动装备的人体工程学使用或适合性。
身体扫描可进一步用于服装领域,例如用于确定衣服的合适尺寸和适合性。这种技术可用于服装量身定做领域,或用于从互联网或自助购物装置(如微型售货亭装置或顾客管家装置)订购衣服和鞋的领域。服装领域的身体扫描对于扫描全身穿着的顾客特别重要。
此外,根据本发明的装置可用于人数统计系统领域,例如统计电梯、火车、公交车、汽车或飞机中的人数,或者统计通过走廊、门、过道、零售商店、体育场、娱乐场所、博物馆、图书馆、公共场所、电影院、剧院等的人数。此外,人数统计系统中的3D功能可用于获得或估计关于被计数的人们的进一步信息,例如身高、体重、年龄、身体素质等。这些信息可用于商业智能度量,和/或用于进一步优化可能统计人数的地点以使其更具吸引力或更安全。在零售环境中,根据本发明的装置在人数统计情况下可用于识别回头客或交叉购物者,评估购物行为,评估进行购物的访客的百分比,优化员工轮班制度,或者监视每位访客的购物商场成本。此外,人数统计系统可用于评估顾客通过超市、购物商城等的路径。此外,人数统计系统可用于人体测量学调查。此外,根据本发明的装置可用于公共交通系统中,以便根据运输长度而自动向乘客计费。此外,根据本发明的装置可用于儿童游乐场中,以识别受伤的儿童或进行危险活动的儿童,以允许与游乐场玩具的额外互动,以确保游乐场玩具等的安全使用。
此外,根据本发明的装置可用于建造工具(例如确定到对象或到墙壁的距离的测距仪)中,以评估表面是否为平面,以将对象对准或以有序的方式放置对象,或者用于在建筑环境中使用的检查相机中。
此外,根据本发明的装置可应用于运动和锻炼领域中,例如用于训练、遥控指令或比赛的目的。具体而言,根据本发明的装置可应用于舞蹈、有氧运动、足球、英式足球、篮球、棒球、板球、曲棍球、田径、游泳、马球、手球、排球、橄榄球、相扑、柔道、击剑、拳击等的领域中。根据本发明的装置可用于检测运动和游戏中的球、球拍、剑、动作等的位置,例如以监视比赛、支持裁判或支持特定运动情形的判决,特别是自动判决,例如判决是否实际得分或投中。
根据本发明的装置可进一步用于支持音乐乐器的练习,特别是远程课程,例如以下乐器的课程:弦乐器,例如提琴、小提琴、中提琴、大提琴、贝司、竖琴、吉他、班卓琴或尤克里里;键盘乐器,例如钢琴、风琴、键盘、大键琴、小风琴、或手风琴;和/或鼓乐器,例如爵士鼓、定音鼓、马林巴琴、木琴、电颤琴、邦戈鼓、康加鼓、天巴鼓、非洲鼓或塔布拉鼓。
根据本发明的装置进一步可用于康复和物理治疗,以鼓励训练和/或调查和纠正运动。在此,根据本发明的装置也可应用于距离诊断。
此外,根据本发明的装置可应用于机器视觉的领域中。因此,根据本发明的一个或多个装置可被用作例如用于机器人的自主驾驶和/或工作的无源控制单元。与移动机器人组合,根据本发明的装置可允许自主移动和部件中的故障的自主检测。根据本发明的装置也可被用于制造和安全监视,例如以便避免包括但不限于在机器人、产品部件和活物之间的碰撞的事故。在机器人技术中,人和机器人的安全和直接交互常常是个问题,因为当人未被识别时机器人可能严重伤害人。根据本发明的装置可帮助机器人更好地和更快速地定位对象和人,并且允许安全的交互。考虑根据本发明的装置的无源性质,根据本发明的装置相对于有源装置是有利的,和/或可被用于像雷达、超声、2D照相机、IR检测等的现存的解决方案的补充。根据本发明的装置的一个特别的优点是信号干扰的低可能性。因此,多个传感器可在相同的环境中在相同的时间工作,而没有信号干扰的风险。因此,根据本发明的装置一般在高度自动化的生产环境(像例如但不限于汽车、采矿、钢铁等)中可以是有用的。根据本发明的装置也可被用于在生产中的质量控制,例如与其它传感器(像2D成像、雷达、超声、IR等)组合,例如用于质量控制或其它目的。另外,根据本发明的装置可被用于表面质量的评价,例如用于调查产品的表面均匀性或到特定尺寸(从微米的范围到米的范围)的粘附。其它质量控制应用是可行的。在制造环境中,根据本发明的装置对于处理具有复杂的3维结构的天然产品(例如食品或木材)尤其有用,以避免大量的浪费的材料。此外,根据本发明的装置可用于监测罐、桶等的填充水平。此外,根据本发明的装置可用于检查复杂产品的缺失部件、不完整部件、松散部件、低质量部件等,例如用于如印刷电路板的自动光学检查、用于组件或子组件的检查、工程部件的验证、发动机部件检查、木材质量检查、标签检查、医疗装置的检查、产品取向的检查、包装检查、食品包装检查等。
特别地,根据本发明的装置可用于工业质量控制,以识别与产品(特别地,包含非固相,尤其是包含诸如液体、乳剂、气体、气雾剂或它们的混合物之类的流体的产品)的制造、包装和分发相关的特性。一般存在于化学、制药、化妆品、食品和饮料工业以及其它工业领域中的这些类型的产品通常需要固体贮器,该固体贮器可以被表示为容器、箱子或瓶子,其中该贮器可以优选地是完全或至少部分透明的。为了简单起见,在下文中,术语“瓶子”可以用作特别频繁的示例,但不意味着任何实际限制,例如对贮器的形状或材料的限制。因此,包括相应产品的瓶子可以通过多个可用于质量控制的光学参数来表征,优选地通过采用根据本发明的光学检测器或包括光学检测器的系统。在此方面,光学检测器尤其可以用于检测以下光学参数中的一者或多者,这些参数可以包括瓶子内的产品的填充水平、瓶子的形状以及可附到瓶子上的标签(特别是用于包括相应产品信息)的特性。
根据现有技术,通常可以通过使用工业相机和随后的图像分析来执行这种工业质量控制,以便通过记录和评估相应图像来评估所述光学参数中的一者或多者,由此,由于工业质量控制通常要求的答案是仅能获得TRUE值(即,质量足够)或FALSE值(即质量不足)的逻辑语句,因此,通常会丢弃所获取的关于光学参数的复杂信息中的大部分。举例来说,需要工业相机来记录瓶子的图像,其中可以在随后的图像分析中评估该图像,以便检测填充标签、瓶子形状的任何可能的变形、以及在附于瓶子上的相应标签上包括的任何错误和/或遗漏。特别地,由于偏差通常相当小,同一产品的不同记录图像都非常相似。因此,采用简单工具(例如色度或灰度)的图像分析通常是不够的。此外,传统的大面积图像传感器基本不产生信息,特别地是因为它们与入射光束的功率线性无关。
与此相对比,根据本发明的光学检测器已经包括具有这样的一个或多个光学传感器的设置:该一个或多个光学传感器呈现与入射光束的功率的已知相关性,这尤其可以导致关于上述光学参数(例如瓶子内产品的填充水平、瓶子形状,附在瓶子上的标签的至少一个特性)对产品图像的较大影响。特别地,光学传感器因此可以适于直接将包含在产品图像内的复杂信息压缩成一个或多个传感器信号,例如容易获取的(accessible)电流信号,从而避免现有的执行复杂图像分析的必要性。此外,如上所述,本发明的对象(特别是指提供自动聚焦装置,其中诸如相应时间间隔内的传感器电流的局部最大值或最小值之类的传感器信号可以指示正在研究的产品实际上已经被聚焦)可以进一步支持根据相应产品的图像对上述光学参数的评估。即使在自动聚焦装置可用于现有技术中已知的相机中的情况下,透镜系统通常会仅覆盖有限范围的距离,这是因为在测量期间,焦点通常保持不变。然而,基于可调焦透镜的使用的本发明的测量构思可以涵盖宽地多的范围,这是因为可以通过采用本文所描述的测量构思而使焦点在大范围内改变。此外,特别适合的传送装置、照射源(例如被配置为提供对称破裂和/或调制照射的装置)、调制装置和/或传感器堆叠的使用可以在质量控制期间进一步增强所获取的信息的可靠性。
进一步地,根据本发明的装置可用于poll、车辆、火车、飞机、船舶、航天器以及其它交通应用。因此,除了上面提及的在交通应用的领域中的应用以外,可提及用于飞行器、车辆等的无源跟踪系统。用于监视移动对象的速度和/或方向的根据本发明的至少一个装置(例如根据本发明的至少一个检测器)的用途是可行的。具体地,可提及在陆地、海上和在空中(包括太空中)的快速移动对象的跟踪。所述至少一个FiP传感器具体地可以安装在静止的和/或移动的装置上。所述至少一个FiP装置的输出信号可与例如用于另一个对象的自主的或被引导的移动的引导机构组合。因此,用于避免碰撞或用于使得在跟踪的与操控的对象之间能够碰撞的应用是可行的。由于所要求的计算能力低、瞬时响应并且由于检测系统的无源性质(与有源系统(像例如雷达)相比,该检测系统一般更难以检测和扰乱),根据本发明的装置一般是有用的和有利的。此外,根据本发明的装置可用于在着陆或起飞过程中辅助飞机,尤其是在接近跑道时,此时雷达系统可能无法足够精确地工作。这种着陆或起飞辅助装置可以通过固定在诸如跑道之类的地面或固定在飞机上的信标装置实现,或者可以通过固定在飞机和/或地面上的照射和测量装置实现。根据本发明的装置尤其是有用的,但不限于例如速度控制和空中交通控制装置。此外,根据本发明的装置可用于道路收费的自动收费系统。
根据本发明的装置通常可用于无源应用中。无源应用包括用于在港口或在危险区中的船舶以及用于在着陆或起飞时的飞行器的引导,其中,固定的、已知的有源目标可被用于精确引导。其同样可用于在危险但明确限定的路线上行驶的车辆,例如采矿车辆。此外,根据本发明的装置可用于快速检测接近的对象,例如汽车、火车、飞行物、动物等。此外,根据本发明的装置可用于检测对象的速度或加速度,或者通过跟踪依赖于时间的对象位置、速度和/或加速度中的一者或多者来预测对象的移动。
此外,如上所述,根据本发明的装置可用于游戏领域中。因此,对于具有相同或不同的大小、颜色、形状等的多个对象的使用,例如对于与将移动包含到其内容中的软件相组合的移动检测,根据本发明的装置可以是无源的。特别地,在将移动实施成图形输出的方面的应用是可行的。此外,例如通过使用根据本发明的用于手势或面部识别的装置中的一个或多个,根据本发明的用于给出命令的装置的应用是可行的。根据本发明的装置可与有源系统组合,以便在例如弱光条件下或在需要增强周围条件的其它情形中工作。附加地或替代地,可以将根据本发明的装置中的一个或多个与一个或多个IR或VIS光源进行组合,例如与基于FiP效应的检测装置组合。也可以组合基于FiP的检测器与特殊装置,这可以通过系统及其软件容易地区分,例如但不限于,特殊颜色、形状,与其它装置的相对位置、移动速度、光、用于调制在装置上的光源的频率、表面特性,所使用的材料、反射特性、透明度、吸收特性等。除了其它可能性之外,该装置可类似于杆、球拍、球棒、枪、刀、轮、环、方向盘、瓶子、球、玻璃杯、花瓶、勺子、叉子、立方体、骰子、人物、木偶、玩具、烧杯、踏板、开关、手套、首饰、乐器或用于演奏乐器的辅助装置,如拨片,鼓槌等。其它选择是可行的。
此外,根据本发明的装置可用于检测和或跟踪自身发射光的对象,例如由于高温或另外的光发射过程。发光部分可以是排气流等。此外,根据本发明的装置可用于跟踪反射对象并分析这些对象的旋转或取向。
此外,根据本发明的装置通常可用于建筑、建造和制图领域。因此,一般而言,可以使用一个或多个根据本发明的装置以测量和/或监测环境区域,例如农村或建筑物。其中,一个或多个根据本发明的装置可以与其它方法和装置组合,或者可以单独地使用,以便监视建筑物项目、正变化的对象、房屋等的进度和准确度。根据本发明的装置可用于生成被扫描的环境的三维模型,以便从地面或从空中构建房间、街道、房屋、社区或景观的地图。潜在的应用领域可以是建筑、室内设计;室内家具摆放;制图、房地产管理、土地测量等。作为例子,根据本发明的装置可用于多功能机(multicopter)中,以监视建筑物、农业生产环境(例如田地、生产工厂或景观),支持救援操作,或者发现或监视一个或多个人或动物等。此外,根据本发明的装置可用于生产环境,以测量管线长度、储罐容积、或与生产设备或反应器相关的其它几何体。
此外,根据本发明的装置可用于家用电器的互连网络(例如CHAIN(Cedec家用电器互操作网络))内,以在家庭中互连、自动执行和控制基本的家用电器相关服务,例如能源或负荷管理、远程诊断、宠物相关电器、儿童相关电器、儿童监视、与家用电器相关的监视、对老人或病人的支持或服务、家庭安全和/或监视、电器操作的远程控制以及自动维修支持。此外,根据本发明的装置可用于诸如空调系统之类的加热或冷却系统,以定位房间的哪个部分应达到特定的温度或湿度,特别是依赖于一个或多个人的位置。此外,根据本发明的装置可用于家庭机器人中,例如可用于家务劳动的服务或自主机器人。根据本发明的装置可用于许多不同的目的,例如用于避免碰撞或绘制环境地图,另外还用于识别用户,针对给定用户个性化机器人的性能,为了安全目的,或者为了手势或面部识别。作为例子,根据本发明的装置可用于机器人真空吸尘器、地板清洗机器人、干扫机器人、用于熨烫衣服的熨烫机器人、诸如猫砂机器人之类的动物垃圾机器人、检测入侵者的安保机器人、机器人割草机、自动泳池清洗器、雨槽清洁机器人、窗户清洗机器人、玩具机器人、远端临场机器人、为活动较少人员提供陪伴的社交机器人,或者将语音翻译为手语或将手语翻译为语音的机器人。在诸如老年人的活动较少人员的情况下,可以使用具有根据本发明的装置的家用机器人来拾取对象,运输对象以及以安全的方式与对象和用户进行交互。此外,根据本发明的装置可用于处理危险材料或对象的机器人或处于危险环境中的机器人。作为非限制性的例子,根据本发明的装置可用于机器人或无人遥控车辆中,以便处理危险材料(例如化学品或放射性材料),特别是在灾害之后,或处理其它危险或潜在危险的对象,例如地雷、未爆炸的武器等,或者在不安全的环境中工作或调查不安全的环境,例如接近燃烧对象的环境或灾后地区。此外,根据本发明的装置可用于评估健康功能(例如血压、心率、体温等)的机器人中。
此外,根据本发明的装置可用于家用装置、移动装置或娱乐装置,例如冰箱、微波炉、洗衣机、遮光帘或百叶窗、家用警报器、空调装置、加热装置、电视机、音频装置、智能手表、移动电话、电话、洗碗机、炉子等,以检测人的存在,监视装置的内容或功能,或者与人交互和/或与另外的家用装置、移动装置或娱乐装置共享有关人的信息。
根据本发明的装置可进一步用于农业中,例如以便完全或部分地检测和分选害虫、杂草和/或被感染的农作物,其中农作物可能被真菌或昆虫感染。此外,为了收获农作物,根据本发明的装置可用于检测诸如鹿之类的动物,以防这些动物被收割装置伤害。此外,根据本发明的装置可用于监视田地或温室中植物的生长,特别是用于针对田地或温室中的给定区域、或者甚至针对给定作物,调节水、肥料或作物保护产品的量。此外,在农业生物技术中,根据本发明的装置可用于监视植物的大小和形状。此外,根据本发明的装置可用于耕种或畜牧业环境,例如清洗牲畜棚,用于自动化牛奶支柱,用于处理杂草、干草、稻草等,用于收获禽蛋,用于割作物、杂草或草地,用于屠宰动物,用于给禽类拔毛等等。
此外,根据本发明的装置可以与用于检测化学物质或污染物的传感器、电子鼻芯片、用于检测细菌或病毒等的微生物传感器芯片、盖革计数器、触觉传感器、热传感器等组合。例如,这可用于构造用于处理危险或困难任务的智能机器人,例如用于治疗高度传染性的患者、处理或清除高度危险性的对象、清洁高度污染的区域(如高放射性区域或化学泄漏区域),或农业害虫防治。
此外,根据本发明的装置可用于安全应用,例如监视区域内的可疑对象、人或行为。
根据本发明的一个或多个装置可进一步用于扫描对象,例如与CAD或类似的软件相组合,例如用于附加的制造和/或3D打印。其中,可以使用根据本发明的装置的高维精度,例如沿x、y或z方向或沿这些方向的任意组合,例如同时地。此外,根据本发明的装置可用于检查和维护,例如管道检查仪。此外,在生产环境中,根据本发明的装置可用于处理例如形状不容易限定的对象(例如自然生长的对象),例如按形状或尺寸对蔬菜或其它天然产物进行分选,或者切割诸如肉类、水果、面包、豆腐、蔬菜、蛋之类的产品或切割以低于处理步骤所需的精度制造的对象。作为非限制性的例子,根据本发明的装置可用于在生产环境中在包装步骤之前或之后挑选出劣质的天然产品。
此外,根据本发明的装置可用于本地导航系统,以允许自主或部分自主地移动的车辆或多功能机等通过室内或室外空间。非限制性的例子可以包括移动通过自动存储库以选取对象并将其放在不同位置处的车辆。室内导航可进一步用于购物中心、零售商店、博物馆、机场或火车站、以跟踪移动货物、移动装置、行李、客户或员工的位置,或为用户提供位置特定信息(例如地图上的当前位置),或关于所售商品的信息等。此外,根据本发明的装置可以用于制造环境,以例如用机器人臂拾取对象并将其放置在其它地方,例如放在传送带上。作为非限制性的例子,与根据本发明的一个或多个装置相组合的机器人臂可以从箱子中拾取螺钉并将其拧入在传送带上传送的对象的特定位置中。
此外,根据本发明的装置可用于通过监视速度、倾斜度、即将到来的障碍物、道路不平坦度或曲线等来确保摩托车的安全驾驶,例如摩托车驾驶辅助。此外,根据本发明的装置可用于火车或有轨电车中以避免碰撞。
此外,根据本发明的装置可用于手持装置,例如用于扫描包装或包裹以优化物流过程。此外,根据本发明的装置可用于其它手持装置,例如个人购物装置、RFID读取器、用于医院或健康环境的手持装置,例如用于医疗用途,或用于获得、交换或记录与患者或患者的健康有关的信息,用于零售或健康环境的智能徽章等。
如上所述,根据本发明的装置可进一步用于制造、质量控制或识别应用中,例如用于产品识别或尺寸识别(例如用于发现最佳位置或包装以减少浪费等)中。此外,根据本发明的装置可用于物流应用。因此,根据本发明的装置可用于优化的装载或包装容器或运输工具。此外,根据本发明的装置可用于在制造领域中监视或控制表面损坏,用于监视或控制诸如租赁车辆之类的租赁对象和/或用于保险应用(例如用于损害评估)。此外,根据本发明的装置可用于识别材料、对象或工具的尺寸,例如用于最佳材料处理,尤其是与机器人组合。此外,根据本发明的装置可用于生产中的处理控制,例如用于观察罐的填充水平。此外,根据本发明的装置可用于维护生产物资,例如但不限于罐、管、反应器、工具等。此外,根据本发明的装置可用于分析3D质量标志。此外,根据本发明的装置可用于制造定制的商品,例如牙嵌体、牙齿矫正器、假体、衣服等。根据本发明的装置还可以与一个或多个3D打印机组合以用于快速制成原型、3D复制等。此外,根据本发明的装置可用于检测一个或多个制品的形状,例如用于反产品盗版和用于防伪目的。
优选地,有关光学检测器、方法、人机接口、娱乐装置、跟踪系统、相机以及检测器的各种用途的更多可能的细节,特别是关于传送装置、纵向光学传感器、评估装置以及(如果适用)横向光学传感器、调制装置、照射源和成像装置,具体地关于可能的材料、设置和其它细节,可以参考WO 2012/110924 A1、US 2012/206336 A1、WO 2014/097181 A1和US2014/291480 A1的一个或多个,这些文献的全部内容通过引用被包括在本文中。
上述检测器、方法、人机接口和娱乐装置以及所提出的用途与现有技术相比具有大量优点。因此,一般而言,可以提供用于精确确定至少一个对象在空间中的位置的简单且高效的检测器。其中,作为例子,可以以快速有效的方式确定对象或其一部分的三维坐标。
与本领域已知的装置相比,所提出的检测器提供了高度的简单性,特别是关于检测器的光学设置。因此,单个纵向光学传感器足以实现明确的位置检测。该高度简单性特别适用于机器控制,例如在人机接口中,并且更优选地在游戏、跟踪、扫描和立体视觉中。因此,可以提供可用于大量游戏、娱乐、跟踪、扫描和立体视觉目的的经济有效的娱乐装置。
总之,在本发明的上下文中,以下实施例被认为是特别优选的:
实施例1:一种用于至少一个对象的光学检测的检测器,包括:
-至少一个纵向光学传感器,其中所述纵向光学传感器具有至少一个传感器区域,其中所述纵向光学传感器被设计为以依赖于光束对所述传感器区域的照射的方式产生至少一个纵向传感器信号,其中在给定相同的照射总功率的情况下,所述纵向传感器信号依赖于所述光束在所述传感器区域中的光束横截面,
-其中所述纵向传感器信号进一步依赖于所述纵向光学传感器的至少一个特性,其中所述纵向光学传感器的所述特性是可调节的;以及
-至少一个评估装置,其中所述评估装置被设计为通过评估所述纵向光学传感器的所述纵向传感器信号而产生关于所述对象的纵向位置的至少一项信息。
实施例2:根据前述实施例所述的检测器,其中所述检测器包括至少一个切换装置,所述切换装置被配置为施加至少一个外部影响和/或至少一个内部影响。
实施例3:根据任一前述实施例所述的检测器,其中所述评估装置被设计为明确地评估所述纵向光学传感器信号。
实施例4:根据任一前述实施例所述的检测器,其中所述纵向光学传感器能够在至少两个操作模式下操作。
实施例5:根据前一实施例所述的检测器,其中所述检测器被配置为通过调节所述纵向光学传感器的所述特性来实现在操作模式之间切换和/或改变。
实施例6:根据前一实施例所述的检测器,其中所述切换装置被配置为在所述纵向光学传感器的至少两个操作模式之间切换。
实施例7:根据前三项实施例中任一项所述的检测器,其中在依赖于所述纵向光学传感器的特性的至少一个正操作模式下,所述纵向传感器信号的幅度随着所述光束在所述传感器区域中产生的光斑的横截面减小而增大。
实施例8:根据前四项实施例中任一项所述的检测器,其中在依赖于所述纵向光学传感器的特性的至少一个负操作模式下,所述纵向传感器信号的幅度随着所述光束在所述传感器区域中产生的光斑的横截面减小而减小。
实施例9:根据前五项实施例中任一项所述的检测器,其中在依赖于所述纵向传感器信号的特性的至少一个中性操作模式下,所述纵向传感器信号的幅度基本上独立于所述光束在所述传感器区域中产生的光斑的横截面的变化。
实施例10:根据前一实施例所述的检测器,其中所述检测器被配置为能够在以下项构成的组中的至少两个操作模式之间进行切换和/或改变:所述正操作模式;所述负操作模式;以及所述中性操作模式。
实施例11:根据前七项实施例中任一项所述的检测器,其中所述评估装置被设计为确定所述纵向光学传感器的操作模式。
实施例12:根据前一实施例所述的检测器,其中所述评估装置被设计为在至少两个操作模式下依次和/或同时确定所述纵向传感器信号。
实施例13:根据前两项实施例中任一项所述的检测器,其中所述评估装置被设计为通过考虑在至少两个不同的操作模式下确定的至少两个纵向传感器信号来解决模糊性。
实施例14:根据任一前述实施例所述的检测器,其中所述纵向光学传感器的特性是电学和/或光学可调的。
实施例15:根据任一前述实施例所述的检测器,其中所述检测器包括至少一个偏置装置。
实施例16:根据前一实施例所述的检测器,其中所述偏置装置被配置为向所述纵向光学传感器施加至少一个偏置电压。
实施例17:根据前一实施例所述的检测器,其中所述纵向光学传感器的特性是通过使用不同的偏置电压可调节的。
实施例18:根据前三项实施例中任一项所述的检测器,其中所述纵向光学传感器包括以光电导模式驱动的至少一个光电二极管,其中所述光电导模式是指采用光电二极管的电路,其中所述至少一个光电二极管被包括在反向偏置模式中,其中所述光电二极管的阴极以相对于阳极的正电压驱动。
实施例19:根据任一前述实施例所述的检测器,其中所述纵向光学传感器的特性是通过所述光束的至少一个特性可调节的,特别地可改变的。
实施例20:根据前一实施例所述的检测器,其中所述光束的特性是波长和/或调制频率。
实施例21:根据任一前述实施例所述的检测器,还包括至少一个照射源。
实施例22:根据前一实施例所述的检测器,其中所述照射源适于发射至少两个不同的波长的光。
实施例23:根据前两项实施例中任一项所述的检测器,其中所述照射源被配置为在发射至少一个第一波长的光与发射至少一个第二波长的光之间切换。
实施例24:根据前三项实施例中任一项所述的检测器,其中所述照射源被设计为发射至少两个光束,其中第一光束的至少一个特性不同于第二光束的至少一个特性,其中所述特性从由至少一个光源的至少一个波长、至少一个调制频率、至少一个强度、至少一个大小构成的组中选择。
实施例25:根据前一实施例所述的检测器,其中所述第一光束和所述第二光束被同时或依次发射。
实施例26:根据前两项实施例中任一项所述的检测器,其中所述第一光束具有第一波长,所述第二光束具有第二波长,其中所述纵向光学传感器的特性通过用所述第一光束和所述第二光束照射而被调节,特别地改变。
实施例27:根据前六项实施例中任一项所述的检测器,其中所述照射源选自:至少部分地被连接到所述对象和/或至少部分地与所述对象相同的照射源;被设计为用初级辐射至少部分地照射所述对象的照射源。
实施例28:根据前述实施例所述的检测器,其中所述光束通过所述初级辐射在所述对象上的反射和/或通过由所述初级辐射激发的所述对象本身的光发射而产生。
实施例29:根据前一实施例所述的检测器,其中所述纵向光学传感器的所述光谱灵敏度被所述照射源的所述光谱范围所覆盖。
实施例30:根据任一前述实施例所述的检测器,其中所述检测器还具有用于调制照射的至少一个调制装置。
实施例31:根据任一前述实施例所述的检测器,其中所述光束是经调制的光束。
实施例32:根据前一实施例所述的检测器,其中所述检测器被设计为在不同调制情况下检测至少两个纵向传感器信号,特别地在分别不同的调制频率下的至少两个传感器信号,其中所述评估装置被设计为通过评估所述至少两个纵向传感器信号而产生关于所述对象的所述纵向位置的所述至少一项信息。
实施例33:根据任一前述实施例所述的检测器,其中所述纵向光学传感器进一步以这样的方式被设计:该方式使得在给定相同的照射总功率的情况下,所述纵向传感器信号依赖于所述照射的调制的调制频率。
实施例34:根据前一实施例所述的检测器,其中所述光束为未调制的连续波光束。
实施例35:根据任一前述实施例所述的检测器,其中所述评估装置适于标准化所述纵向传感器信号,并且适于与所述光束的强度无关地产生关于所述对象的纵向位置的信息。
实施例36:根据任一前述实施例所述的检测器,其中所述评估装置适于通过从所述至少一个纵向传感器信号确定所述光束的直径来产生关于所述对象的纵向位置的所述至少一项信息。
实施例37:根据前一实施例所述的检测器,其中所述评估装置适于将所述光束的直径与所述光束的已知光束特性进行比较,以便确定关于所述对象的所述纵向位置的所述至少一项信息,这优选地根据所述光束的光束直径对所述光束的传播方向上的至少一个传播坐标的已知依赖性和/或根据所述光束的已知高斯轮廓实现。
实施例38:根据任一前述实施例所述的检测器,其中所述传感器区域包括至少一种能够维持电流的材料,其中在给定相同的照射总功率的情况下,所述材料的至少一个特性依赖于所述光束在所述传感器区域中的光束横截面,其中所述纵向传感器信号依赖于所述至少一个特性。
实施例39:根据前一实施例所述的检测器,其中所述材料的所述至少一个特性是所述材料的导电性或另一材料特性。
实施例40:根据前两项实施例中任一项所述的检测器,其中所述能够维持电流的材料包括非晶硅、包含非晶硅的合金、微晶硅或碲化镉(CdTe)中的一种或多种。
实施例41:根据前一实施例所述的检测器,其中所述包含非晶硅的合金是包含硅和碳的非晶合金或包含硅和锗的非晶合金。
实施例42:根据前两项实施例中任一项所述的检测器,其中所述非晶硅通过使用氢而被钝化。
实施例43:根据前三项实施例中任一项所述的检测器,其中所述纵向光学传感器是光电检测器,所述光电检测器具有至少一个第一电极、至少一个第二电极、以及位于所述第一电极与所述第二电极之间的所述非晶硅、所述包含非晶硅的合金、或所述微晶硅,其中所述第一电极和所述第二电极中的至少一者是透明电极。
实施例44:根据前一实施例所述的检测器,其中所述透明电极包括透明导电氧化物(TCO),特别地氧化铟锡(ITO)。
实施例45:根据前两项实施例中任一项所述的检测器,其中位于所述第一电极与所述第二电极之间的所述非晶硅、所述包含非晶硅的合金、或所述微晶硅被布置为PIN二极管,其中所述PIN二极管包括位于n型半导体层与p型半导体层之间的i型半导体层。
实施例46:根据前一实施例所述的检测器,其中所述i型半导体层包括非晶硅,并且呈现的厚度超过所述n型半导体层和所述p型半导体层中的每一者的厚度,特别地超过至少2倍、优选地至少5倍,更优选地至少10倍。
实施例47:根据前一实施例所述的检测器,其中所述p型半导体层包括硅和碳的合金,并且呈现从2nm到20nm,优选地从4nm到10nm的厚度。
实施例48:根据前一实施例所述的检测器,其中所述i型半导体层包括硅和碳合金,并且呈现从2nm到20nm,优选地从4nm到10nm的厚度。
实施例49:根据任一前述实施例所述的检测器,进一步包括至少一个横向光学传感器,所述横向光学传感器适于确定从所述对象行进到所述检测器的所述光束的横向位置,所述横向位置是与所述检测器的光轴垂直的至少一个维度中的位置,所述横向光学传感器适于产生至少一个横向传感器信号,其中所述评估装置进一步被设计为通过评估所述横向传感器信号而产生关于所述对象的横向位置的至少一项信息。
实施例50:根据前一实施例所述的检测器,其中所述横向光学传感器是光电检测器,该光电检测器具有至少一个第一电极、至少一个第二电极和被嵌入在两个分离的透明导电氧化物层之间的至少一种光伏材料,其中所述横向光学传感器具有传感器区域,其中所述第一电极和所述第二电极被施加到所述透明导电氧化物层之一的不同位置,其中所述至少一个横向传感器信号指示所述光束在所述传感器区域中的位置。
实施例51:根据任一前述实施例所述的检测器,其中所述检测器包括至少一个传送装置,例如光学透镜,特别地一个或多个折射透镜,尤其是会聚的薄折射透镜,例如凸面或双凸面薄透镜,和/或一个或多个凸面镜,其进一步沿公共光轴布置。
实施例52:根据任一前述实施例所述的检测器,其中所述检测器包括至少一个成像装置。
实施例53:一种用于确定至少一个对象的位置的检测器系统,所述检测器系统包括至少一个根据任一前述实施例所述的检测器,所述检测器系统进一步包括至少一个信标装置,所述至少一个信标装置适于将至少一个光束导向所述检测器,其中所述信标装置为能够附接到所述对象、能够由所述对象保持、以及能够集成到所述对象中的至少一种。
实施例54:根据前一实施例所述的检测器系统,其中所述检测器系统包括至少两个信标装置,其中由第一信标装置发射的光束的至少一个特性不同于由第二信标装置发射的光束的至少一个特性。
实施例55:根据前两项实施例中任一项所述的检测器系统,其中所述第一信标装置的光束和所述第二信标装置的光束同时或依次被发射。
实施例56:一种用于至少一个对象的光学检测的方法,特别地使用根据涉及检测器的任一前述实施例所述的检测器,包括以下步骤:
-调节所述纵向光学传感器的至少一个特性;
-通过使用至少一个纵向光学传感器产生至少一个纵向传感器信号,其中所述纵向传感器信号依赖于所述光束对所述纵向光学传感器的传感器区域的照射,其中在给定相同的照射总功率的情况下,所述纵向传感器信号依赖于所述光束在所述传感器区域中的光束横截面,其中所述纵向传感器信号进一步依赖于所述纵向光学传感器的至少一个特性;以及
-通过使用至少一个评估装置评估所述纵向传感器信号,并且产生关于所述对象的纵向位置的至少一项信息。
实施例57:根据前一实施例所述的方法,其中所述纵向光学传感器的特性由用户和/或通过外部影响来调节。
实施例58:根据前两项实施例中任一项所述的方法,其中所述纵向光学传感器信号被明确地(unambiguously)评估。
实施例59:根据涉及方法的任一前述实施例所述的方法,其中所述纵向光学传感器在至少两个操作模式下操作。
实施例60:根据前一实施例所述的方法,其中至少两个纵向传感器信号被评估,其中第一纵向传感器信号在第一操作模式下被评估,第二纵向传感器信号在第二操作模式下被评估。
实施例61:根据前一实施例所述的方法,其中通过比较所述第一纵向传感器信号和所述第二纵向传感器信号而解决模糊性。
实施例62:一种用于在用户与机器之间交换至少一项信息的人机接口,其中所述人机接口包括至少一个根据涉及检测器系统的任意前述实施例所述的检测器系统,其中所述至少一个信标装置适于为直接或间接地附接到所述用户、以及由所述用户保持中的至少一种,其中所述人机接口被设计为借助所述检测器系统确定所述用户的至少一个位置,其中所述人机接口被设计为向所述位置分配至少一项信息。
实施例63:一种用于执行至少一种娱乐功能的娱乐装置,其中所述娱乐装置包括至少一个根据前一权利要求所述的人机接口,其中所述娱乐装置被设计为使得玩家能够借助所述人机接口输入至少一项信息,其中所述娱乐装置被设计为根据所述信息改变所述娱乐功能。
实施例64:一种用于跟踪至少一个可移动对象的位置的跟踪系统,所述跟踪系统包括至少一个根据涉及检测器系统的任一前述实施例所述的检测器系统,所述跟踪系统进一步包括至少一个跟踪控制器,其中所述跟踪控制器适于跟踪所述对象在特定时间点的一系列位置。
实施例65:一种用于确定至少一个对象的至少一个位置的扫描系统,所述扫描系统包括至少一个根据涉及检测器的任一前述实施例所述的检测器,其中所述扫描系统进一步包括适于发射至少一个光束的至少一个照射源,所述至少一个光束被配置为用于照射位于所述至少一个对象的至少一个表面上的至少一个点,其中所述扫描系统被设计为通过使用所述至少一个检测器产生关于所述至少一个点与所述扫描系统之间的距离的至少一项信息
实施例66:一种立体系统,包括至少一个根据前前实施例所述的跟踪系统和至少一个根据前一实施例所述的扫描系统,其中所述跟踪系统和所述扫描系统分别包括至少一个纵向光学传感器,所述纵向光学传感器以在平行于所述立体系统的光轴的取向上对准且在垂直于所述立体系统的光轴的取向上呈现个体位移(individual displacement)的方式,以准直的布置定位。
实施例67:一种用于对至少一个对象成像的相机,所述相机包括至少一个根据涉及检测器的任一前述实施例所述的检测器。
实施例68:一种根据涉及检测器的任一前述实施例所述的检测器的用途,其用于从由以下项构成的组中选择的使用目的:交通技术中的位置测量;娱乐应用;安保应用;监视应用;安全应用;人机接口应用;跟踪应用;摄影应用;与至少一个飞行时间检测器相组合的使用;与结构化光源相组合的使用;与立体相机相组合的使用;机器视觉应用;机器人应用;质量控制应用;制造应用;与结构化照射源相组合的使用;与立体相机相组合的使用。
附图说明
本发明的另外可选的细节和特征从与从属权利要求结合遵循的优选示例性实施例的描述中显而易见。在该上下文中,特定的特征可以单独或与几个组合地实现。本发明并不限于示例性实施例。示例性实施例在附图中示意性示出。在各个附图中相同的参考标记表示相同的元件或具有相同功能的元件,或者关于它们的功能彼此对应的元件。
具体地,在附图中:
图1示出了根据本发明的检测器的示例性实施例;
图2示出了图1的检测器的示例性示意设置;
图3示出了根据本发明的用于至少一个对象的光学检测的方法的示例性示意设置;
图4A和4B示出了展示纵向传感器信号对波长的依赖性的实验结果;以及
图5示出了根据本发明的检测器、检测器系统、人机接口、娱乐装置和跟踪系统的示例性实施例。
具体实施方式
图1以高度示意性的方式示出了根据本发明的光学检测器110的示例性实施例,其用于确定至少一个对象112的位置。然而,其它实施例也是可行的。光学检测器110包括至少一个纵向光学传感器114,在该特定实施例中,该纵向光学传感器114沿着检测器110的光轴116布置。具体而言,光轴116可以是光学传感器114的设置的对称轴和/或旋转轴。光学传感器114可以位于检测器110的壳体118内。此外,可以包括至少一个传送装置120,优选地为折射透镜122。可以特别地关于光轴116同心地定位的壳体118中的开口124优选地限定检测器110的观察方向126。可以定义坐标系128,其中与光轴116平行或反平行的方向被定义为纵向方向,而垂直于光轴116的方向被定义为横向方向。在图1符号化地示出的坐标系128中,纵向方向由z表示,而横向方向分别由x和y表示。然而,其它类型的坐标系128也是可行的。
此外,纵向光学传感器114被设计为以依赖于光束132对传感器区域130的照射的方式产生至少一个纵向传感器信号。因此,根据FiP效应,在给定相同的照射总功率的情况下,该纵向传感器信号依赖于光束132在相应传感器区域130中的光束横截面,这将在下面更详细地描述。
根据本发明,传感器区域130可以包括至少一种光电导材料134,特别地,非晶硅、包含非晶硅的合金、或微晶硅。作为在传感器区域130中使用光电导材料134的结果,在给定相同的照射总功率的情况下,传感器区域130的电导率可以依赖于光束132在传感器区域130中的光束横截面。因此,在光束132照射时由纵向光学传感器114提供的所得到的纵向传感器信号可依赖于传感器区域130中的光电导材料134的电导率,由此允许确定光束132在传感器区域130中的光束截面。经由纵向信号引线136,纵向传感器信号可以被传送到评估装置138,其将在下面进一步详细解释。优选地,纵向光学传感器114的传感器区域130相对于从对象112行进到检测器110的光束132可以是透明或半透明的。然而,可以不需要该特征,因为纵向光学传感器114的传感器区域130也可以是不透明的。
纵向传感器信号进一步依赖于纵向光学传感器114的至少一个特性。纵向光学传感器114的该特性是可调节的。检测器可以包括至少一个切换装置140,切换装置140被配置为施加至少一个外部影响和/或至少一个内部影响。例如,切换装置140可以是评估装置138的一部分。纵向光学传感器114的特性可以是电学和/或光学可调的。纵向光学传感器114的特性可以由偏置装置140电学调节。
评估装置138通常被设计为通过评估纵向光学传感器114的传感器信号而产生关于对象112的位置的至少一项信息。为此,评估装置138可以包括一个或多个电子装置和/或一个或多个软件组件,以便评估传感器信号,这些传感器信号由纵向评估单元142以符号方式表示(由“z”表示)。如下面更详细地解释的,评估装置138可以适于通过比较纵向光学传感器114的多于一个纵向传感器信号而确定关于对象112的纵向位置的至少一项信息。
纵向光学传感器114可以在至少两个操作模式下操作。操作模式可以依赖于纵向光学传感器114的可调节的特性。在光束132照射在纵向光学传感器114上的情况下,纵向光学传感器114在第一操作模式下可以产生与在第二操作模式下产生的纵向传感器信号不同的纵向传感器信号。纵向光学传感器114可以被配置为在至少两个操作模式下光学检测至少一个对象。检测器110可以被配置为通过调节纵向光学传感器114的特性使得能够在操作模式之间切换和/或改变。具体而言,切换装置140可以被配置为在纵向光学传感器114的至少两个操作模式之间切换。切换装置140可以被配置为在基于FiP的检测器的操作状态之间切换,特别地在其中FiP可被配置为执行基于FiP的检测的操作状态与其中FiP检测器被配置为执行如下检测的状态之间切换:在该检测中,纵向传感器信号基本上独立于光束132在至少一个纵向光学传感器114的传感器区域130中的光束横截面。
在依赖于纵向光学传感器114的特性的至少一个正操作模式下,纵向传感器信号的幅度可随着光束132在传感器区域130中产生的光斑的横截面减小而增大。在光束132的照射总功率相同的情况下,所述至少一个纵向传感器信号依赖于光束132在至少一个纵向光学传感器114的传感器区域130中的光束横截面。在正操作模式下,在给定相同总功率的情况下,纵向传感器信号可以针对一个或多个焦点和/或针对传感器区域130上或传感器区域130内的一个或多个特定大小的光斑呈现至少一个明显的最大值。
在依赖于纵向光学传感器114的特性的至少一个负操作模式下,纵向传感器信号的幅度可随着光束132在传感器区域130中产生的光斑的横截面减小而减小。在光束132的照射总功率相同的情况下,所述至少一个纵向传感器信号依赖于光束132在至少一个纵向光学传感器的传感器区域130中的光束横截面。在负操作模式下,在给定相同总功率的情况下,纵向传感器信号可以针对一个或多个焦点和/或针对传感器区域130上或传感器区域130内的一个或多个特定大小的光斑呈现至少一个明显的最小值。
在依赖于纵向传感器114的特性的至少一个中性操作模式下,纵向传感器信号的幅度可以基本上独立于光束132在传感器区域130中产生的光斑的横截面的变化。特别地,纵向传感器信号可以基本上与焦点无关。特别地,在中性模式下,不会观察到全局极值。
检测器110可以被配置为使得能够在由正操作模式、负操作模式、以及中性操作模式构成的组中的至少两个操作模式之间切换和/或改变。因此,例如,纵向光学传感器114可以处于正操作模式。切换装置140可以被配置为施加至少一个影响,使得纵向光学传感器114的操作模式例如改变为负操作模式或中性操作模式。例如,纵向光学传感器114可以处于负操作模式。切换装置140可以被配置为施加至少一个内部影响,使得纵向光学传感器114的操作模式例如改变为正操作模式或中性操作模式。例如,纵向光学传感器114可以处于中性操作模式。切换装置140可以被配置为施加至少一个影响,使得纵向光学传感器114的操作模式例如改变为正操作模式或负操作模式。
评估装置138可被设计为确定纵向光学传感器114的操作模式。评估装置138可以被配置为对纵向光学传感器114的操作模式进行分类。特别地,评估装置138可以被配置为观察和/或识别全局极值,例如全局最小值或全局最大值。在未观察到或识别出极值的情况下,评估装置138可以将操作模式分类为中性操作模式。评估装置138可以被配置为执行纵向传感器信号的分析,特别地纵向传感器信号的曲线分析。
评估装置138可以被配置为确定纵向传感器信号的幅度。评估装置138可被设计为在至少两个操作模式下顺序地和/或同时地确定纵向传感器信号。因此,评估装置138可以被配置为同时评估至少两个纵向传感器信号。评估装置138可被设计为通过考虑在至少两个不同的操作模式下确定的至少两个纵向传感器信号来解决模糊性。因此,可以评估至少两个纵向传感器信号,其中可以在第一操作模式下评估第一纵向传感器信号,并且可以在第二操作模式下评估第二纵向传感器信号。评估装置138可以被配置为通过比较第一纵向传感器信号和第二纵向传感器信号来解决模糊性。评估装置138可以适于标准化纵向传感器信号,并且独立于光束132的强度而产生关于对象112的纵向位置的信息。例如,可以选择第一或第二纵向传感器信号中的一者作为参考信号。例如,可以选择在中性操作模式下评估的纵向传感器信号作为参考信号。例如,可以选择在正操作模式下评估的纵向传感器信号或在负操作模式下评估的纵向传感器信号中的至少一者作为参考信号。通过比较所选择的参考信号与另一纵向信号,可以消除模糊性。可以比较纵向传感器信号,以便获得有关光束132的总功率和/或强度的信息,和/或以便针对光束132的总功率和/或总强度标准化纵向传感器信号和/或关于对象112的纵向位置的至少一项信息。例如,纵向传感器信号可通过除以所选择的参考纵向传感器信号(特别地在中性操作模式下评估的纵向传感器信号)而被标准化,由此产生标准化的纵向光学传感器信号,然后通过使用上述已知的关系将标准化的纵向光学传感器信号变换为关于对象的至少一项纵向信息。因此,该变换可以独立于光束132的总功率和/或强度。例如,在正操作模式或负操作模式中的一者下评估的至少一个纵向传感器信号可以除以在正操作模式或负操作模式中的另一者下评估的纵向传感器信号。由此,通过相除,可以消除模糊性。
如上所述,在光束132照射时由纵向光学传感器114提供的纵向传感器信号可依赖于传感器区域130中的光电导材料134的电导率。为了确定光电导材料134的电导率的变化,如图1示意性地示出的,可以有利地测量通过纵向光学传感器114的电流,其也被命名为“光电流”。为此,检测器可以包括至少一个偏置装置143,该至少一个偏置装置143被配置为向纵向光学传感器114施加至少一个偏置电压。偏置装置143可以包括偏置电压源144。偏置电压源144可以被配置为提供高于地146的偏置电压。切换装置140可以适于对偏置电压源施加影响以设定偏置电压。纵向光学传感器114的特性可以通过使用不同的偏置电压来调节。纵向光学传感器114可以包括以光电导模式驱动的至少一个光电二极管147,其中光电导模式是指采用光电二极管的电路,其中至少一个光电二极管被包括在反向偏置模式中,其中光电二极管的阴极以相对于阳极的正电压驱动。纵向光学传感器114的特性可以通过向光电二极管147施加不同的偏置电压而被电学调节。偏置装置143可以被配置为向光电二极管147施加至少两个不同的偏置电压,使得有可能在纵向光学传感器114的操作模式之间切换。例如,可以使用零偏置电压,使得光电二极管147可以未被偏置,且处于光伏模式下。在该情况下,纵向光学传感器可处于中性操作模式下。例如,可将非零偏置电压施加到光电二极管147,具体地,反向偏置,例如正电压可以被施加到阴极。在该情况下,纵向光学传感器114可处于正操作模式或负操作模式下。此外,由纵向光学传感器114提供的纵向传感器信号可以首先通过应用放大器148而被放大,然后被提供给纵向评估单元142。
用于照射纵向光学传感器114的传感器区域130的光束132可以由发光对象112产生。替代地或附加地,光束132可以由单独的照射源150产生,该单独的照射源150可以包括环境光源和/或人造光源,例如至少一个激光源和/或至少一个白炽灯和/或至少一个半导体光源,例如至少一个发光二极管,特别地有机和/或无机发光二极管,其适于照射对象112,使得对象112能够通过这样的方式反射由照射源150产生的光的至少一部分:该方式使得光束132可以被配置为,优选地沿着光轴116通过开口124进入光学检测器110的壳体118,到达纵向光学传感器114的传感器区域130。
在具体实施例中,照射源150可以是经调制的光源152,其中照射源150的一个或多个调制特性可以由至少一个可选的调制装置154来控制。替代地或附加地,可以在照射源150与对象112之间和/或在对象112与纵向光学传感器114之间的光束路径中实现调制。可以构想其它可能性。在该具体实施例中,当评估纵向光学传感器114的传感器信号以确定关于对象112的位置的至少一项信息时,可以有利地考虑到一个或多个调制特性,特别地,调制频率。为此,由调制装置154提供的相应特性也可以被提供给放大器148,在该具体实施例中,放大器148可以是锁定放大器156。切换装置140可以适于对调制装置150施加影响,以便设定所发射的光束的调制频率。照射源150可以适于发射具有不同调制频率的至少两个光束。在照射源150可以发射两个或更多个光束的情况下,切换装置140可以适于对调制装置154施加影响,以便设定所发射的光束的调制频率。
照射源150可以适于发射至少两个不同的波长的光。照射源150可以被配置为在发射至少一个第一波长与发射至少一个第二波长之间切换。照射源150可以被设计为发射至少两个光束,其中第一光束的至少一个特性可以不同于第二光束的至少一个特性,其中该特性可以选自波长、调制频率。为了提供具有不同波长的至少两个光束,照射源150可以包括两个发射不同波长的光的光源,特别地,两个人造光源,例如激光源和/或发光二极管。第一光束和第二光束可以同时或依次发射。或者,照射源150可以包括适于产生具有不同波长的光束的单个激光源。切换装置140可以适于对光源150施加影响,以便设定所发射的光束的波长和/或所发射的至少两个光束的波长。纵向光学传感器114的特性可以通过光束132的至少一个特性来调节。在此,光束132的至少一个特性是波长和/或调制频率。
通常,评估装置138可以是数据处理装置158的一部分和/或可以包括一个或多个数据处理装置158。评估装置138可以完全或部分地被集成到壳体118中和/或可以完全或部分地体现为以无线或有线方式电连接到纵向光学传感器114的单独装置。评估装置138可进一步包括一个或多个附加组件,例如一个或多个电子硬件组件和/或一个或多个软件组件,例如一个或多个测量单元和/或一个或多个评估单元和/或一个或多个控制单元(图1中未示出)。
图2以高度示意性的图示示出了图1所示的检测器110的示例性示意设置。由照射源150发射的光束132可以被传送装置120聚焦并且可以照射在纵向光传感器114上。如上所述,照射源150可以适于发射至少两个不同波长的光。在图2中,为了简化表示,示出了示例性光束132。例如,为了提供具有不同波长的至少两个光束,照射源150可以包括两个发射不同波长的光的光源,特别地两个人造光源,例如激光源和/或发光二极管。照射源150可以包括至少第一光源160和至少第二光源162。照射源150可以包括至少一个光圈164,光可以通过光圈164离开照射源150。第一光束和第二光束可以同时或依次发射。或者,照射源150可以包括适于产生具有不同波长的光束的单个激光源。切换装置140可以适于对照射源150施加影响,以便设定所发射的光束的波长和/或所发射的至少两个光束的波长。提供第一光束的第一光源160可保持接通,而第二光源162可提供第二光束。第一光束可以具有第一波长并且第二光束可以具有第二波长,其中纵向光学传感器144的特性可以通过用第一光束和第二光束照射来调节,特别地,改变。第一光束的照射可导致调节纵向光学传感器114的特性,使得纵向光学传感器114处于中性操作模式、正操作模式或负操作模式中的一者。第二光束的照射可导致调节纵向光学传感器114的特性,使得纵向光学传感器可处于与第一光束的照射期间的操作模式不同的另一操作模式。通过在至少两个波长之间切换,可以调节纵向光学传感器的特性,使得纵向光学传感器114能够在至少两个操作模式下操作。如上所述,评估装置138可被设计为通过考虑在至少两个不同的操作模式下确定的至少两个纵向传感器信号来解决模糊性。
图3示出了根据本发明的用于至少一个对象112的光学检测的方法的示例性示意设置。在该方法中,可以使用检测器110。然而,也可以使用其它类型的检测器。在图2所示的示例性实施例中,方法步骤可以如下。首先,可以调节纵向光学传感器114的至少一个特性,如参考标号166所示。例如,可通过设定偏置电压来电学调节特性,和/或可通过设定至少一个光束的特性来调节特性。纵向光学传感器114的特性可以由用户和/或通过外部影响来调节。然后,在参考标号168所示的下一个步骤中,可以通过使用至少一个纵向光学传感器114产生至少第一纵向传感器信号,其中纵向传感器信号依赖于光束132对对纵向光学传感器114的传感器区域130的照射,其中在给定相同照射总功率的情况下,纵向传感器信号依赖于光束132在传感器区域130中的光束横截面,其中纵向传感器信号进一步依赖于纵向光学传感器114的至少一个特性。随后或同时地,如参考标号170所示,例如可以通过将偏置电压设定为不同的值和/或通过将单个光束的特性设定为不同的值和/或如果使用两个光束,则通过将第二光束的特性设定为与第一光束的特性不同的值,重新电学调节纵向光学传感器114的特性。在参考标号172所示的下一步骤(该步骤可以在步骤168之后或与步骤168同时执行)中,可以通过使用至少一个纵向光学传感器114产生至少第二纵向传感器信号。第一纵向传感器信号可以是在纵向光学传感器的第一操作模式下产生,例如选自中性操作模式、正操作模式和负操作模式的操作模式。第二纵向传感器信号可以像第一纵向传感器信号那样在纵向光学传感器的另一操作模式下产生。可以通过考虑在至少两个不同的操作模式下确定的至少两个纵向传感器信号来解决模糊性。
可以通过使用评估装置138评估这两个纵向传感器信号,并且可以产生关于对象112的纵向位置的至少一项信息,如参考标号174所示。可以明确地评估纵向光学传感器信号。可以同时评估所述至少两个纵向传感器信号。可以通过比较第一纵向传感器信号与第二纵向传感器信号来解决模糊性。该方法可以进一步包括比较步骤,其中比较第一纵向传感器信号和第二纵向传感器信号。例如,在比较步骤中,纵向传感器信号可以被标准化以独立于光束132的强度产生关于对象112的纵向位置的信息。例如,可以选择第一或第二纵向传感器信号之一作为参考信号。例如,可以选择在中性操作模式下评估的纵向传感器信号作为参考信号。例如,可以选择在正操作模式或负操作模式下评估的纵向传感器信号中的至少一者作为参考信号。通过比较所选择的参考信号和另一个纵向信号,可消除模糊性。可以比较纵向传感器信号,以便获得关于光束的总功率和/或强度的信息,和/或以便针对光束的总功率和/或总强度标准化纵向传感器信号和/或关于对象的纵向位置的至少一项信息。例如,纵向传感器信号可通过除以所选择的参考纵向传感器信号(特别地,在中性操作模式下评估的纵向传感器信号)而被标准化,由此产生标准化的纵向光学传感器信号,然后可以通过使用上述已知的关系将标准化的纵向光学传感器信号变换为关于对象的至少一项纵向信息。因此,该变换可以独立于光束132的总功率和/或强度。例如,在正操作模式或负操作模式中的一者下评估的至少一个纵向传感器信号可以除以在正操作模式或负操作模式中的另一者下评估的纵向传感器信号。由此,通过相除,可以消除模糊性。
该方法可以进一步包括对纵向光学传感器114的操作模式进行确定和/或分类。因此,该方法可以包括分析步骤,其中可以分析纵向信号。特别地,可以确定曲线特性和进度,更具体地,可以确定全局极值,例如全局最小值或全局最大值。在未观察到或识别出极值的情况下,操作模式可被分类为中性操作模式。例如,可以确定纵向传感器信号的幅度。
图4A和4B示出了展示纵向传感器信号对波长的依赖性的实验结果。纵向光学传感器114以50mm的距离被放置在传送装置120的前面。在这两个图中都示出了以nA为单位的纵向传感器信号I对以mm为单位的距离dz的依赖性。
在图4A中,照射源可以以367mA的电流被驱动并且可以发射具有405nm的波长的光束。在该特定实验中,通过使用调制装置154,以不同调制频率调制照射源150。对于测量曲线176、178和180,光束的频率分别为27Hz、375Hz和2177Hz。结果,测量曲线176呈现负FiP效应,而测量曲线180显示基本平坦的曲线形状,因此基本上与焦点无关。因此,可以选择与高频组合的波长405nm,特别地曲线180,作为参考。
在图4B中,照射源可以以367mA的电流被驱动并且可以发射具有530nm的波长的光束。在该特定实验中,通过使用调制装置154,以不同调制频率调制照射源150。对于测量曲线182、184和186,光束的频率分别为27Hz、375Hz和2177Hz。结果,测量曲线182、184和186呈现正FiP效应。
因此,与第二波长相比,第一波长可以是短波长。特别地,第一波长可以在可见光谱范围内,优选地在380到450nm的范围内,更优选地在390到420nm的范围内,最优选地在400到410nm的范围内。例如,第二波长也可以在可见光谱范围内,优选地在500到560nm的范围内,更优选地在510到550nm的范围内,最优选地在520到540nm的范围内。
作为例子,图5示出了检测器系统188的示例性实施例,其包括至少一个光学检测器110,例如在图1到2所示的一个或多个实施例中公开的光学检测器110。在此,光学检测器110可以体现为相机190,具体地,用于3D成像的相机,其可以用于获取图像和/或图像序列,例如数字视频短片。此外,图5示出了包括至少一个检测器110和/或至少一个检测器系统188的人机接口192的示例性实施例,并且进一步示出了包括人机接口192的娱乐装置194的示例性实施例。图5进一步示出了适于跟踪至少一个对象112的位置的跟踪系统196的实施例,该跟踪系统包括检测器110和/或检测器系统188。
关于光学检测器110和检测器系统188,可参考本申请的全部公开内容。基本上,检测器110的所有可能的实施例也可以体现在图5所示的实施例中。评估装置138可以(特别地通过信号引线136)被连接到至少一个纵向光学传感器114。例如,可以使用两个或优选地使用三个纵向光学传感器114。评估装置138可以(特别地通过信号引线136)进一步被连接到至少一个可选的横向光学传感器198。举例来说,可以提供信号引线136和/或一个或多个接口,所述接口可以是无线接口和/或有线接口。此外,信号引线136可以包括用于生成传感器信号和/或用于修改传感器信号的一个或多个驱动器和/或一个或多个测量装置。此外,至少一个传送装置120可以特别地作为折射透镜122或凸面镜被提供。光学检测器110可以进一步包括至少一个壳体118,该壳体例如可以包围一个或多个组件114、198。
此外,评估装置138可以完全或部分地被集成到光学传感器114、198中和/或被集成到光学检测器110的其它组件中。评估装置138也可以被封入壳体118和/或单独的壳体中。评估装置138可以包括一个或多个电子装置和/或一个或多个软件组件,以便评估传感器信号,这些传感器信号由纵向评估单元142以符号方式表示(由“z”表示)以及由横向评估单元200以符号方式表示(由“xy”表示)。通过组合这些评估单元142、200推导出的结果,可以产生位置信息202,优选地三维位置信息(由“x、y、z”表示)。类似于根据图1的实施例,可以提供偏置电压源144,其被配置为提供高于地146的偏置电压。此外,由纵向光学传感器114提供的纵向传感器信号可以在被提供给纵向评估单元142之前首先借助于放大器148而被放大。
此外,光学检测器110和/或检测器系统188可以包括可以以各种方式配置的成像装置204。因此,如图5所示,成像装置204例如可以是检测器壳体118内的检测器110的一部分。在此,成像装置信号可以通过一个或多个成像装置信号引线136而被传送到评估装置138。或者,成像装置204可以独立地位于检测器壳体118的外部。成像装置204可以完全或部分地透明或不透明。成像装置204可以是或可以包括有机成像装置或无机成像装置。优选地,成像装置204可以包括至少一个像素矩阵,其中像素矩阵可以特别地选自:诸如CCD芯片和/或CMOS芯片之类的无机半导体传感器装置;有机半导体传感器装置。
在图5所示的示例性实施例中,作为例子,待检测的对象112可以被设计为运动器材制品和/或可以形成控制元件206,这些制品和控制元件的位置和/或取向可以由用户208操纵。因此,一般而言,在图5所示的实施例中或在检测器系统188、人机接口192、娱乐装置194或跟踪系统196的任何其它实施例中,对象112本身可以是所述装置的一部分,并且具体地可以包括至少一个控制元件206,具体而言,其中至少一个控制元件206具有一个或多个信标装置210,其中控制元件206的位置和/或取向可以优选地由用户208操纵。作为例子,对象112可以是或可以包括球棒、球拍、球杆或任何其它运动器材制品和/或假运动器材中的一者或多者。其它类型的对象112也是可能的。此外,用户208可以被视为对象112,其位置应该被检测到。作为例子,用户208可以携带直接或间接地附接到其身体上的一个或多个信标装置210。
光学检测器110可以适于确定关于一个或多个信标装置210的纵向位置的至少一项,以及可选地,关于其横向位置的至少一项信息,和/或关于对象112的纵向位置的至少另一项信息,以及可选地,关于对象112的横向位置的至少一项信息。特别地,光学检测器110可以适于识别颜色和/或用于对对象112进行成像,例如对象112的不同颜色,更特别地,可能包括不同颜色的信标装置210的颜色。优选地可以关于检测器110的光轴116同心地定位的壳体118中的开口124可以优选地限定光学检测器110的观察方向126。
光学检测器110可以适于确定至少一个对象112的位置。另外,光学检测器110,具体地,包括相机190的实施例,可以适于获取对象112的至少一个图像,优选地3D图像。如上所述,通过使用光学检测器110和/或检测器系统188对对象112和/或其一部分的位置的确定可用于提供人机接口192,以便向机器212提供至少一项信息。在图5示意性地示出的实施例中,机器212可以是或可以包括至少一个具有数据处理装置158的计算机和/或计算机系统。其它实施例也是可行的。评估装置138可以是计算机和/或可以包括计算机和/或可以完全地或部分地体现为单独的装置和/或可以完全或部分地被集成到机器212,特别地计算机中。这对于跟踪系统196的跟踪控制器214同样适用,其可完全或部分地形成评估装置138和/或机器212的一部分。
类似地,如上所述,人机接口192可以形成娱乐装置194的一部分。因此,借助于充当对象112的用户208和/或借助于处理对象112的用户208和/或借助于充当对象112的控制元件206,用户208可将诸如至少一个控制命令之类的至少一项信息输入到机器212,特别地计算机中,由此改变娱乐功能,例如控制计算机游戏的过程。
图5进一步示出了用于确定至少一个对象112的至少一个位置的扫描系统216的示例性实施例。扫描系统216包括至少一个检测器110,以及进一步地包括至少一个照射源150,该照射源适于发射至少一个光束132,该光束被配置为照射位于至少一个对象112的至少一个表面上的至少一个点(例如,位于信标装置210的一个或多个位置上的点)。扫描系统216被设计为通过使用至少一个检测器110产生关于所述至少一个点与扫描系统216(具体地,检测器110)之间的距离的至少一项信息。
参考标号列表
110 检测器
112 对象
114 纵向光学传感器
116 光轴
118 壳体
120 传送装置
122 折射透镜
124 开口
126 观察方向
128 坐标系
130 传感器区域
132 光束
134 光电导材料
136 信号引线
138 评估装置
140 切换装置
142 纵向评估单元
143 偏置装置
144 偏置电压源
146 地
147 光电二极管
148 放大器
150 照射源
152 经调制的照射源
154 调制装置
156 锁定放大器
158 数据处理装置
160 第一光源
162 第二光源
164 光圈
166 调节
168 下一步骤
170 调节
172 下一步骤
174 评估
176 测量曲线
178 测量曲线
180 测量曲线
182 测量曲线
184 测量曲线
186 测量曲线
188 检测器系统
190 相机
192 人机接口
194 娱乐装置
196 跟踪系统
198 横向光学检测器
200 横向评估单元
202 位置信息
204 成像装置
206 控制元件
208 用户
210 信标装置
212 机器
214 跟踪控制器
216 扫描系统

Claims (56)

1.一种用于至少一个对象(112)的光学检测的检测器(110),包括:
-至少一个纵向光学传感器(114),其中所述纵向光学传感器(114)具有至少一个传感器区域(130),其中所述纵向光学传感器(114)被设计为以依赖于光束(132)对所述传感器区域(130)的照射的方式产生至少一个纵向传感器信号,其中在给定相同的照射总功率的情况下,所述纵向传感器信号依赖于所述光束(132)在所述传感器区域(130)中的光束横截面,
其中所述纵向传感器信号进一步依赖于所述纵向光学传感器(114)的至少一个特性,其中所述纵向光学传感器(114)的所述特性是可调节的;以及
-至少一个评估装置(138),其中所述评估装置(138)被设计为通过评估所述纵向光学传感器(114)的所述纵向传感器信号而产生关于所述对象(112)的纵向位置的至少一项信息。
2.根据前一权利要求所述的检测器(110),其中所述检测器(110)包括至少一个切换装置(140),所述至少一个切换装置(140)被配置为施加至少一个外部影响和/或至少一个内部影响。
3.根据任一前述权利要求所述的检测器(110),其中所述纵向光学传感器(114)能够在至少两个操作模式下操作。
4.根据前一权利要求所述的检测器(110),其中所述检测器(110)被配置为通过调节所述纵向光学传感器(114)的所述特性来实现在操作模式之间切换和/或改变。
5.根据前一权利要求所述的检测器(110),其中所述切换装置(140)被配置为在所述纵向光学传感器(114)的至少两个操作模式之间切换。
6.根据前三项权利要求中任一项所述的检测器(110),其中在依赖于所述纵向光学传感器(114)的所述特性的至少一个正操作模式下,所述纵向传感器信号的幅度随着所述光束(132)在所述传感器区域(130)中产生的光斑的横截面减小而增大。
7.根据前四项权利要求中任一项所述的检测器(110),其中在依赖于所述纵向光学传感器(114)的所述特性的至少一个负操作模式下,所述纵向传感器信号的幅度随着所述光束(132)在所述传感器区域(130)中产生的光斑的横截面减小而减小。
8.根据前五项权利要求中任一项所述的检测器(110),其中在依赖于所述纵向传感器信号的所述特性的至少一个中性操作模式下,所述纵向传感器信号的幅度基本上独立于所述光束(132)在所述传感器区域(130)中产生的光斑的横截面的变化。
9.根据前一权利要求所述的检测器(110),其中所述检测器被配置为能够在由以下项构成的组中的至少两个操作模式之间进行切换和/或改变:所述正操作模式;所述负操作模式;以及所述中性操作模式。
10.根据前七项权利要求中任一项所述的检测器(110),其中所述评估装置(138)被设计为确定所述纵向光学传感器(114)的操作模式。
11.根据前一权利要求所述的检测器(110),其中所述评估装置(138)被设计为在至少两个操作模式下依次和/或同时确定所述纵向传感器信号。
12.根据前两项权利要求中任一项所述的检测器(110),其中所述评估装置(138)被设计为通过考虑在至少两个不同的操作模式下确定的至少两个纵向传感器信号来解决模糊性。
13.根据任一前述权利要求所述的检测器(110),其中所述纵向光学传感器(114)的所述特性是电学和/或光学可调的。
14.根据任一前述权利要求所述的检测器(110),其中所述检测器(110)包括至少一个偏置装置(143)。
15.根据前一权利要求所述的检测器(110),其中所述偏置装置(143)被配置为向所述纵向光学传感器(114)施加至少一个偏置电压。
16.根据前一权利要求所述的检测器(110),其中所述纵向光学传感器(114)的所述特性是通过使用不同的偏置电压可调节的。
17.根据前三项权利要求中任一项所述的检测器(110),其中所述纵向光学传感器(110)包括以光电导模式驱动的至少一个光电二极管(147),其中所述光电导模式是指采用光电二极管(147)的电路,其中所述至少一个光电二极管(147)被包括在反向偏置模式中,其中所述光电二极管(147)的阴极以相对于阳极的正电压驱动。
18.根据任一前述权利要求所述的检测器(110),其中所述纵向光学传感器(114)的所述特性是通过所述光束(132)的至少一个特性可调节的,特别地可改变的。
19.根据前一权利要求所述的检测器(110),其中所述光束(132)的所述特性是波长和/或调制频率。
20.根据任一前述权利要求所述的检测器(110),还包括至少一个照射源(150)。
21.根据前一权利要求所述的检测器(110),其中所述照射源(150)适于发射至少两个不同的波长的光。
22.根据前两项权利要求中任一项所述的检测器(110),其中所述照射源(150)被配置为在发射至少一个第一波长的光与发射至少一个第二波长的光之间切换。
23.根据前三项权利要求中任一项所述的检测器(110),其中所述照射源(150)被设计为发射至少两个光束,其中第一光束的至少一个特性不同于第二光束的至少一个特性,其中所述特性从由至少一个光源的至少一个波长、至少一个调制频率、至少一个大小构成的组中选择。
24.根据前一权利要求所述的检测器(110),其中所述第一光束和所述第二光束被同时或依次发射。
25.根据前两项权利要求中任一项所述的检测器(110),其中所述第一光束具有第一波长,所述第二光束具有第二波长,其中所述纵向光学传感器(114)的所述特性通过用所述第一光束和所述第二光束的照射而被调节,特别地改变。
26.根据任一前述权利要求所述的检测器(110),其中所述检测器(110)还具有用于调制照射的至少一个调制装置(154)。
27.根据任一前述权利要求所述的检测器(110),其中所述光束(132)是经调制的光束。
28.根据前一权利要求所述的检测器(110),其中所述检测器(110)被设计为在不同调制的情况下检测至少两个纵向传感器信号,特别地在分别不同的调制频率下的至少两个传感器信号,其中所述评估装置(138)被设计为通过评估所述至少两个纵向传感器信号而产生关于所述对象(112)的纵向位置的所述至少一项信息。
29.根据任一前述权利要求所述的检测器(110),其中所述纵向光学传感器(114)进一步以这样的方式被设计:该方式使得在给定相同的照射总功率的情况下,所述纵向传感器信号依赖于所述照射的调制的调制频率。
30.根据任一前述权利要求所述的检测器(110),其中所述评估装置(138)适于标准化所述纵向传感器信号,并且适于与所述光束(132)的强度无关地产生关于所述对象(112)的纵向位置的信息。
31.根据任一前述权利要求所述的检测器(110),其中所述评估装置(138)适于通过从所述至少一个纵向传感器信号确定光束(132)的直径来产生关于所述对象(112)的纵向位置的所述至少一项信息。
32.根据任一前述权利要求所述的检测器(110),其中所述传感器区域(130)包括至少一种能够维持电流的材料,其中在给定相同的照射总功率的情况下,所述材料的至少一个特性依赖于所述光束(132)在所述传感器区域(130)中的光束横截面,其中所述纵向传感器信号依赖于所述至少一个特性。
33.根据前一权利要求所述的检测器(110),其中所述材料的所述至少一个特性是所述材料的导电性或另一材料特性。
34.根据前两项权利要求中任一项所述的检测器(110),其中所述能够维持电流的材料包括非晶硅、包含非晶硅的合金、微晶硅或碲化镉(CdTe)中的一种或多种。
35.根据前一权利要求所述的检测器(110),其中所述包含非晶硅的合金是包含硅和碳的非晶合金或包含硅和锗的非晶合金。
36.根据前两项权利要求中任一项所述的检测器(110),其中所述非晶硅通过使用氢而被钝化。
37.根据前三项权利要求中任一项所述的检测器(110),其中所述纵向光学传感器(114)是光电检测器,所述光电检测器具有至少一个第一电极、至少一个第二电极、以及位于所述第一电极与所述第二电极之间的所述非晶硅、所述包含非晶硅的合金、或所述微晶硅,其中所述第一电极和所述第二电极中的至少一者是透明电极。
38.根据任一前述权利要求所述的检测器(110),进一步包括至少一个横向光学传感器(198),所述横向光学传感器(198)适于确定从所述对象(112)行进到所述检测器(110)的所述光束的横向位置,所述横向位置是与所述检测器(110)的光轴(116)垂直的至少一个维度中的位置,所述横向光学传感器(198)适于产生至少一个横向传感器信号,其中所述评估装置(138)进一步被设计为通过评估所述横向传感器信号而产生关于所述对象(112)的横向位置的至少一项信息。
39.根据任一前述权利要求所述的检测器(110),其中所述检测器(110)包括至少一个传送装置(120),例如光学透镜,特别地一个或多个折射透镜(122),尤其是会聚的薄折射透镜,例如凸面或双凸面薄透镜,和/或一个或多个凸面镜,其进一步沿公共光轴布置。
40.根据任一前述权利要求所述的检测器(110),其中所述检测器(110)包括至少一个成像装置(204)。
41.一种用于确定至少一个对象(112)的位置的检测器系统(188),所述检测器系统(188)包括至少一个根据任一前述权利要求所述的检测器(110),所述检测器系统(188)进一步包括至少一个信标装置(210),所述至少一个信标装置(210)适于将至少一个光束导向所述检测器,其中所述信标装置(210)为能够附接到所述对象(112)、能够由所述对象(112)保持、以及能够集成到所述对象(112)中的至少一种。
42.根据前一权利要求所述的检测器系统(188),其中所述检测器系统(188)包括至少两个信标装置(210),其中由第一信标装置发射的光束的至少一个特性不同于由第二信标装置发射的光束的至少一个特性。
43.根据前两项权利要求中任一项所述的检测器系统(188),其中所述第一信标装置的光束和所述第二信标装置的光束同时或依次被发射。
44.一种用于至少一个对象(112)的光学检测的方法,其特别地使用根据涉及检测器(110)的任一前述权利要求所述的检测器(110),包括以下步骤:
-调节所述纵向光学传感器(114)的至少一个特性;
-通过使用至少一个纵向光学传感器(114)产生至少一个纵向传感器信号,其中所述纵向传感器信号依赖于所述光束(132)对所述纵向光学传感器(114)的传感器区域(130)的照射,其中在给定相同的照射总功率的情况下,所述纵向传感器信号依赖于所述光束(132)在所述传感器区域(130)中的光束横截面,其中所述纵向传感器信号进一步依赖于所述纵向光学传感器(114)的至少一个特性;以及
-通过使用至少一个评估装置(138)评估所述纵向传感器信号,并且产生关于所述对象(112)的纵向位置的至少一项信息。
45.根据前一权利要求所述的方法,其中所述纵向光学传感器(114)的特性由用户(208)和/或通过外部影响来调节。
46.根据前两项权利要求中任一项所述的方法,其中所述纵向光学传感器信号被明确地评估。
47.根据涉及方法的任一前述权利要求所述的方法,其中所述纵向光学传感器(114)在至少两个操作模式下操作。
48.根据前一权利要求所述的方法,其中至少两个纵向传感器信号被评估,其中第一纵向传感器信号在第一操作模式下被评估,第二纵向传感器信号在第二操作模式下被评估。
49.根据前一权利要求所述的方法,其中通过比较所述第一纵向传感器信号和所述第二纵向传感器信号来解决模糊性。
50.一种用于在用户(208)与机器(212)之间交换至少一项信息的人机接口(192),其中所述人机接口(191)包括至少一个根据涉及检测器系统(188)的任一前述权利要求所述的检测器系统(188),其中所述至少一个信标装置(210)适于为直接或间接地附接到所述用户(208)、以及由所述用户(208)保持中的至少一种,其中所述人机接口(102)被设计为借助所述检测器系统(188)确定所述用户(208)的至少一个位置,其中所述人机接口(192)被设计为向所述位置分配至少一项信息。
51.一种用于执行至少一种娱乐功能的娱乐装置(194),其中所述娱乐装置(194)包括至少一个根据前一权利要求所述的人机接口(192),其中所述娱乐装置(194)被设计为使得玩家能够借助所述人机接口(192)输入至少一项信息,其中所述娱乐装置(194)被设计为根据所述信息改变所述娱乐功能。
52.一种用于跟踪至少一个可移动对象(112)的位置的跟踪系统(196),所述跟踪系统(196)包括至少一个根据涉及检测器系统(188)的任一前述权利要求所述的检测器系统(188),所述跟踪系统进一步包括至少一个跟踪控制器(214),其中所述跟踪控制器(214)适于跟踪所述对象(112)在特定时间点的一系列位置。
53.一种用于确定至少一个对象(112)的至少一个位置的扫描系统(216),所述扫描系统(216)包括至少一个根据涉及检测器(110)的任一前述权利要求所述的检测器(110),其中所述扫描系统(216)进一步包括适于发射至少一个光束的至少一个照射源(150),所述至少一个光束被配置为照射位于所述至少一个对象(112)的至少一个表面上的至少一个点,其中所述扫描系统(216)被设计为通过使用所述至少一个检测器(110)产生关于所述至少一个点与所述扫描系统(216)之间的距离的至少一项信息。
54.一种立体系统,包括至少一个根据前前权利要求所述的跟踪系统(196)和至少一个根据前一权利要求所述的扫描系统(216),其中所述跟踪系统(196)和所述扫描系统(216)分别包括至少一个纵向光学传感器(114),所述纵向光学传感器(114)以在平行于所述立体系统的光轴的取向上对准且在垂直于所述立体系统的光轴的取向上呈现个体位移的方式,以准直的布置定位。
55.一种用于对至少一个对象(122)成像的相机(190),所述相机(190)包括至少一个根据涉及检测器(110)的任一前述权利要求所述的检测器(110)。
56.一种根据涉及检测器(110)的任一前述实施例所述的检测器(110)的用途,其用于从由以下项构成的组中选择的使用目的:交通技术中的位置测量;娱乐应用;安保应用;监视应用;安全应用;人机接口应用;跟踪应用;摄影应用;与至少一个飞行时间检测器相组合的使用;与结构化光源相组合的使用;与立体相机相组合的使用;机器视觉应用;机器人应用;质量控制应用;制造应用;与结构化照射源相组合的使用;与立体相机相组合的使用。
CN201680070553.1A 2015-12-03 2016-12-02 用于光学检测至少一个对象的检测器 Pending CN108291970A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15197744.4 2015-12-03
EP15197744 2015-12-03
PCT/EP2016/079529 WO2017093453A1 (en) 2015-12-03 2016-12-02 Detector for optically detecting at least one object

Publications (1)

Publication Number Publication Date
CN108291970A true CN108291970A (zh) 2018-07-17

Family

ID=54783422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680070553.1A Pending CN108291970A (zh) 2015-12-03 2016-12-02 用于光学检测至少一个对象的检测器

Country Status (6)

Country Link
US (1) US20180356501A1 (zh)
EP (1) EP3384315A1 (zh)
JP (1) JP2018536169A (zh)
KR (1) KR20180088820A (zh)
CN (1) CN108291970A (zh)
WO (1) WO2017093453A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10983535B2 (en) * 2016-08-05 2021-04-20 SZ DJI Technology Co., Ltd. System and method for positioning a movable object
CN112703418A (zh) * 2018-09-17 2021-04-23 伟摩有限责任公司 具有对应的光学元件阵列的光检测器阵列
TWI733062B (zh) * 2018-11-06 2021-07-11 晶彩科技股份有限公司 複合檢測條件之光學影像自動擷取方法
CN113227823A (zh) * 2018-10-12 2021-08-06 硅光芯片技术公司 Lidar系统中的光学开关
CN113454419A (zh) * 2019-02-20 2021-09-28 特里纳米克斯股份有限公司 具有用于照射至少一个对象的投影仪的检测器

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109521397B (zh) 2013-06-13 2023-03-28 巴斯夫欧洲公司 用于光学地检测至少一个对象的检测器
KR102397527B1 (ko) 2014-07-08 2022-05-13 바스프 에스이 하나 이상의 물체의 위치를 결정하기 위한 검출기
WO2016092451A1 (en) 2014-12-09 2016-06-16 Basf Se Optical detector
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
JP6877418B2 (ja) 2015-07-17 2021-05-26 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング 少なくとも1個の対象物を光学的に検出するための検出器
CN108141579B (zh) 2015-09-14 2020-06-12 特里纳米克斯股份有限公司 3d相机
EP3413704A4 (en) 2016-02-11 2019-09-25 Somark Group Limited RADIO DEVICE FOR IMPLANTING AN ANIMAL, METHOD FOR PRODUCING A RADIO DEVICE FOR IMPLANTING AN ANIMAL, METHOD FOR PROVIDING ELECTRIC POWER TO A RADIO APPARATUS FIXED TO ANIMAL, METHOD FOR IMPLANTING A RADIO DEVICE INTO AN ANIMAL, ANIMAL WITH THE RADIO APPARATUS AND IMPLANTING THE RADIO APPARATUS IN A PET IMPLANT RADIO
WO2018019921A1 (en) 2016-07-29 2018-02-01 Trinamix Gmbh Optical sensor and detector for optical detection
KR102431355B1 (ko) 2016-10-25 2022-08-10 트리나미엑스 게엠베하 적어도 하나의 대상체의 광학적 검출을 위한 검출기
CN109923372B (zh) 2016-10-25 2021-12-21 特里纳米克斯股份有限公司 采用集成滤波器的红外光学检测器
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
WO2018096083A1 (en) 2016-11-25 2018-05-31 Trinamix Gmbh Optical detector comprising at least one optical waveguide
CN110392844B (zh) 2017-03-16 2024-03-12 特里纳米克斯股份有限公司 用于光学检测至少一个对象的检测器
CN110770555A (zh) 2017-04-20 2020-02-07 特里纳米克斯股份有限公司 光学检测器
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object
US10338592B2 (en) 2017-08-24 2019-07-02 Saudi Arabian Oil Company High accuracy remote coordinate machine
KR20200040780A (ko) 2017-08-28 2020-04-20 트리나미엑스 게엠베하 적어도 하나의 대상체의 위치를 결정하는 검출기
EP3676630B1 (en) 2017-08-28 2022-11-30 trinamiX GmbH Range finder for determining at least one geometric information
WO2019071320A1 (en) 2017-10-12 2019-04-18 Somark Group Limited RFID TAG INSERT CARTRIDGE AND RFID TAG INSERT TOOL
CN111587384A (zh) 2017-11-17 2020-08-25 特里纳米克斯股份有限公司 用于确定至少一个对象的位置的检测器
CN108171192B (zh) * 2018-01-05 2020-06-26 京东方科技集团股份有限公司 指纹识别检测电路及其驱动方法、显示装置
US20200350126A1 (en) * 2018-01-18 2020-11-05 Hewlett-Packard Development Company, L.P. Electrophotographic active ink compositions
EP3528004A1 (en) 2018-02-14 2019-08-21 trinamiX GmbH Detector for an optical detection of at least one object
CN108897300B (zh) * 2018-05-24 2024-01-16 格力电器(武汉)有限公司 一种空调控制器的测试设备、方法、装置和存储介质
US11053729B2 (en) * 2018-06-29 2021-07-06 Overhead Door Corporation Door system and method with early warning sensors
US11001979B2 (en) 2018-08-13 2021-05-11 Vergence Automation, Inc. Methods and apparatus for ultrawide entrance angle reflective articles for use with autonomous vehicle machine vision systems
US11762133B1 (en) 2018-09-13 2023-09-19 Vergence Automation, Inc. Retroreflective materials and articles incorporating near-ideal total internal retroreflective elements
CN109840886B (zh) * 2019-01-14 2022-10-11 陕西科技大学 确定基于人眼视觉特性的微型信息最佳放大效果的方法
USD981057S1 (en) 2019-08-15 2023-03-14 Somark Group Pty Ltd. RFID tag insertion cartridge
WO2021150448A1 (en) * 2020-01-24 2021-07-29 Argo AI, LLC Systems and methods for light detection in lidar systems
JP2023512278A (ja) * 2020-01-30 2023-03-24 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング 光導電体読み出し回路
EP4150905A1 (en) * 2020-05-15 2023-03-22 Lumileds LLC Imaging arrangement and corresponding methods and systems for depth map generation
CN112379392B (zh) * 2020-10-26 2022-10-25 华南理工大学 基于单线激光雷达通过隧道的无人车导航控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589928A (en) * 1994-09-01 1996-12-31 The Boeing Company Method and apparatus for measuring distance to a target
US20120206336A1 (en) * 2011-02-15 2012-08-16 Basf Se Detector for optically detecting at least one object
US20150183057A1 (en) * 2010-08-31 2015-07-02 First Solar, Inc. System and method for laser modulation
CN104969029A (zh) * 2012-12-19 2015-10-07 巴斯夫欧洲公司 用于光学检测至少一种物体的检测器
WO2015162528A1 (en) * 2014-04-22 2015-10-29 Basf Se Detector for optically detecting at least one object

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10353049B2 (en) * 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US20160320489A1 (en) * 2013-12-18 2016-11-03 Basf Se Target device for use in optical detection of an object

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589928A (en) * 1994-09-01 1996-12-31 The Boeing Company Method and apparatus for measuring distance to a target
US20150183057A1 (en) * 2010-08-31 2015-07-02 First Solar, Inc. System and method for laser modulation
US20120206336A1 (en) * 2011-02-15 2012-08-16 Basf Se Detector for optically detecting at least one object
CN104969029A (zh) * 2012-12-19 2015-10-07 巴斯夫欧洲公司 用于光学检测至少一种物体的检测器
WO2015162528A1 (en) * 2014-04-22 2015-10-29 Basf Se Detector for optically detecting at least one object

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10983535B2 (en) * 2016-08-05 2021-04-20 SZ DJI Technology Co., Ltd. System and method for positioning a movable object
CN112703418A (zh) * 2018-09-17 2021-04-23 伟摩有限责任公司 具有对应的光学元件阵列的光检测器阵列
CN113227823A (zh) * 2018-10-12 2021-08-06 硅光芯片技术公司 Lidar系统中的光学开关
TWI733062B (zh) * 2018-11-06 2021-07-11 晶彩科技股份有限公司 複合檢測條件之光學影像自動擷取方法
CN113454419A (zh) * 2019-02-20 2021-09-28 特里纳米克斯股份有限公司 具有用于照射至少一个对象的投影仪的检测器

Also Published As

Publication number Publication date
EP3384315A1 (en) 2018-10-10
WO2017093453A1 (en) 2017-06-08
US20180356501A1 (en) 2018-12-13
KR20180088820A (ko) 2018-08-07
JP2018536169A (ja) 2018-12-06

Similar Documents

Publication Publication Date Title
CN108291970A (zh) 用于光学检测至少一个对象的检测器
US10775505B2 (en) Detector for an optical detection of at least one object
US20190140129A1 (en) Detector for an optical detection of at least one object
CN109923372B (zh) 采用集成滤波器的红外光学检测器
CN109328310A (zh) 用于对至少一个对象进行光学检测的检测器
CN107533126A (zh) 用于至少一个对象的光学检测的检测器
CN109219891A (zh) 用于光学检测至少一个对象的检测器
KR102431355B1 (ko) 적어도 하나의 대상체의 광학적 검출을 위한 검출기
CN109564927A (zh) 光学传感器和用于光学检测的检测器
CN107003122A (zh) 光学检测器
CN107003123A (zh) 用于光学检测至少一个对象的检测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180717

WD01 Invention patent application deemed withdrawn after publication