CN108287473A - 一种基于任务集及系统状态演化分析的舰队防空资源子调度控制系统与方法 - Google Patents

一种基于任务集及系统状态演化分析的舰队防空资源子调度控制系统与方法 Download PDF

Info

Publication number
CN108287473A
CN108287473A CN201711387620.5A CN201711387620A CN108287473A CN 108287473 A CN108287473 A CN 108287473A CN 201711387620 A CN201711387620 A CN 201711387620A CN 108287473 A CN108287473 A CN 108287473A
Authority
CN
China
Prior art keywords
task
resource
target
state
evolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711387620.5A
Other languages
English (en)
Other versions
CN108287473B (zh
Inventor
史红权
陈行军
张晓盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Naval Vessels College Navy P L A
Original Assignee
Dalian Naval Vessels College Navy P L A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Naval Vessels College Navy P L A filed Critical Dalian Naval Vessels College Navy P L A
Priority to CN201711387620.5A priority Critical patent/CN108287473B/zh
Publication of CN108287473A publication Critical patent/CN108287473A/zh
Application granted granted Critical
Publication of CN108287473B publication Critical patent/CN108287473B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种基于任务集控制及系统作战状态演化分析的舰队防空资源子调度控制系统与方法。该方法与系统为舰队防空资源的子调度计划建立任务集;在任务集的控制下,执行系统状态的演化分析;建立表示系统状态演化的有限状态机(FSM)模型;状态演化的有限状态机(FSM)模型基础上,求解系统状态演化的控制变量;以及应用控制变量进行防空资源子调度过程的计划编制和防空资源设施控制。

Description

一种基于任务集及系统状态演化分析的舰队防空资源子调度 控制系统与方法
技术领域:
本发明涉及水面舰艇编队多平台协同防空指挥和调度领域,尤其涉及一种基于任务集及系统状态演化分析的舰队防空资源子调度控制系统与方法。
背景技术:
水面舰艇编队防空决策与自动化调度控制问题通常被归结于WTA(Weapon TargetAssignment)问题,主要考虑武器与目标的优化匹配,这种处理的合理性在于防空系统中武器通道不可重组。在水面舰艇编队多平台协同防空信息系统(简称MCE)支持下,编队可统一组织调度防空作战资源,针对来袭目标跨平台构建多个涵盖探测、决策、目指、跟踪、发射、制导全过程的武器信息通道对来自空中目标实施抗击,如何优化组织防空作战资源,提高编队协同区域防空能力,成为迫切需要解决的问题。MCE条件下编队协同区域防空需要解决防空通道的组织,以及武器通道与目标的匹配。现有技术中,通过先实现武器与目标的匹配,再围绕武器为其组织信息通道来解决此问题,但基于这种分步优化的策略难以保障决策通道组织与火力分配方案的整体优化。
动态调度策略有三种模式,分别是反应式(completely reactive scheduling)、规划-重调度(predictive-reactive scheduling)及鲁棒性调度(robust pro-reactivescheduling)。协同区域防空资源调度的特点是集中规划、分散实施,考虑到通道组织需要有一定的时间,因此反应式调度虽然具有实时性好的优势,却容易造成“顾此失彼”;防空作战的特点是不确定性和准实时性,与生产过程调度中的不确定性相比,防空作战过程中的不确定性部分源于对抗性;鲁棒性调度适于处理那些能够采用随机变量描述的不确定性因素,如适用于处理方案执行偏差的不确定性,但无法从整体上来解决防空资源的动态调度。
规划-重调度的调度策略可以采用滚动时域的框架,该框架具有很强的适用性和可操作性,且能兼顾动态调整和区段优化两方面的优势。滚动时域调度框架的基本要素是:场景预测、子过程建模和重调度决策
其中,子过程建模一直是决定滚动时域调度质量的关键因素,因为它是优化计算的最终载体,本质上它是一个短时段的静态调度建模,为了让滚动的短时段静态调度能够拼接成一个长期的动态优化策略,需要从两方面来考虑,一是在静态模型中考虑波动抑制问题,也就是考虑短时段静态模型在这个短时段内稳定的问题,如果子过程优化解在运用过程中被频繁调整,也就没有“滚动时域”的意义了,但在动态环境下,所谓的“短时段”也是动态的,所以子过程优化类似于鲁棒优化;另一方面是子过程终端目标的设置,这是滚动时域中的一个重要概念,指的是子过程优化模型不能直接以全过程优化目标为目标,而应考虑时域滚动的衔接问题,子过程的优化除了过程内的状态优化外,还要考虑将下一个过程开始时其状态调配到一个比较好情况,这通常通过将下一个子过程开始状态设置为优化目标来实现。
重调度决策和子过程建模是紧密关联的,从本质上说,当子过程优化模型不能实现优化效果了,就应启动重调度并进行时域滚动,因此子过程模型的质量和有效性直接影响重调度决策的效果,如果子过程模型的稳定性强,那么可以采取简单的“到期滚动”策略,也就是等待子过程自然结束到期,再启动下一阶段,但是在动态性较强的环境下,更多的是“事件触发”策略,也就是对场景变化进行评价,当变化幅度超过子过程模型的处理能力就启动重调度,因此触发的频度受到场景自然的动态性和子过程模型的鲁棒性两方面影响,考虑到联合调度的对抗性较强,而场景变化主要受编队动作所影响,所以我们认为子过程模型的鲁棒性在其中发挥更大的作用。
综合上述分析可以看出,子过程建模在舰队防空资源调度控制当中是主要的核心问题。从另一个角度来分析子过程模型的要求,滚动时域调度本质上是一个用分段优化拟合原有非线性动态优化的框架,因此子过程模型一定要比原有动态模型更简单才有意义,当然,子过程参数规模一定比原有模型简单,但更关键的是,我们希望子过程模型的形式和复杂度更简单,考虑实战要求,子过程模型应该达到在短时间内精确求解的要求,否则就失去了滚动时域调度的意义,这一要求对子过程模型的形式提出了限制,考虑到资源分配优化通常表示为0-1整数规划,为了能在短时间内精确求解,我们希望子过程模型达到线性的程度。
发明内容
本申请提供了一种基于任务集控制及系统作战状态演化分析的舰队防空资源子调度控制系统与方法。
本申请提供了一种基于任务集控制及系统作战状态演化分析的舰队防空资源子调度控制方法,其特征在于,包括以下步骤:
为舰队防空资源的子调度计划建立任务集;
在任务集的控制下,执行系统状态的演化分析;
建立表示系统状态演化的有限状态机(FSM)模型;
状态演化的有限状态机(FSM)模型基础上,求解系统状态演化的控制变量;以及
应用控制变量进行防空资源子调度过程的计划编制和防空资源设施控制。
优选的是,所述任务集M={m}由子调度计划中的若干个任务向量m构成,所述任务向量m表示为m=(gm,fm,am,em,tm),其中gm∈G,fm∈F,am∈Z+,em∈E;G、F和E分别表示制导资源集合、发射资源集合和目标集合,gm和fm分别表示执行任务m的制导资源和发射资源,am表示执行任务m时发射的弹药数量,em表示任务m打击的目标,tm表示任务的时间属性。
优选的是,所述系统状态演化分析包括:
目标状态演化分析,从给定的任务集M中,将其中与目标e相关的任务选出来构成子集Me
Me={m∈M,em=e}
将Me按照任务开始时间进行排序得到目标e的打击序列Le,令|Le|表示序列中的任务数,mei表示Le中的第i个任务,假定目标状态的转换发生在任务结束时刻,并令ttei表示mei的结束时刻,sei表示在ttei时刻状态转换之后的目标状态,由于目标的初始状态为1,那么可以得到sei的概率:
所以目标生存状态的演化函数为分段函数:
优选的是,所述系统状态演化分析包括:
目标打击效果分析,定义与目标e相关的时变函数λe(t)和γe(t),λe(t)表示“威胁等级”,γe(t)表示“抗击损耗”;其中λe(t)是单调增函数,表示目标的威胁性对时间不断增大;γe(t)是单调非减函数,表示在t时刻编队为抗击目标e所付出的各类资源损耗以及目标持续活动造成不稳定性的综合累积效果,在抗击过程中γe(t)是一个累积量;对于给定的攻击序列Le,可以给出其末端威胁等级Λe(Le)和末端抗击损耗Γe(Le),下式假定计划期开始时间为0:
上述Λe(Le)和Γe(Le)反映了打击序列在目标持续运动过程中的打击效果。
优选的是,所述系统状态演化分析包括:
系统作战状态演化分析,用于确定给定打击任务所对应的完全演化路径;对于某个任务m所建立的制导资源gm、发射资源fm和目标em之间的耦合关联作为子系统m,所述完全演化路径表示在所有可能情况下子系统m的状态演化全过程;基于完全演化路径,分析打击过程。
优选的是,建立表示系统状态演化的有限状态机(FSM)模型包括:建立差分及0-1整数型状态变量形式下面向可行调度的状态转移方程:
其中上述方程满足以下约束条件:
以及,
在t时刻g同时执行跟踪制导任务的数量不能超过在t时刻制导资源g的最大容量,在t时刻f同时执行打击任务的数量不能超过在t时刻发射资源f的最大容量,某个发射资源计划期内所有任务所耗费的弹药量不能超过其计划期开始时的总载弹量;
其中,g为制导资源,f为发射资源,e为目标,a为弹药资源,sijgfet表示子系统(g,f,e)在时刻t处于si.j状态,mgfaet表示任务集中在时刻t的一个任务;|G|、|F|、|A|分别表示计划期内跟踪资源、发射资源、导弹资源的规模,GELge表示由(g,e)参与的制导资源与目标的关联关系G-E关联准备任务的执行时间,GFLgf表示由(g,f)参与的制导资源与发射资源的关联关系G-F关联准备任务的执行时间,GELge和GFLgf均为整数值;ψgfet表示在t时刻是否产生一个Close-GE(g,f,e,t)事件,表示在t时刻是否产生一个Close-GF(g,f,e,t)事件,φgfet表示在t时刻是否产生一个Close-ALL(g,f,e,t)事件,其中,Close-GE(g,f,e,t)事件表示在t时刻仅关闭子系统(g,f,e)的G-E关联,Close-GF(g,f,e,t)事件表示在t时刻仅关闭子系统(g,f,e)的G-F关联,Close-ALL(g,f,e,t)事件表示在t时刻关闭子系统(g,f,e)的所有关联,ψgfetφgfet、的取值均为0或1;DMAX为所有Lgfe、GELge、GFLgf中的最大值,DMAX表示所有的工作执行时间参量中的最大值。
优选的是,在状态演化的有限状态机(FSM)模型基础上,求解系统状态演化的控制变量包括:基于差分状态转移方程,确定相应的0-1整数规划模型;所述0-1整数规划模型包括特定约束条件下的目标函数和约束条件;针对所述0-1整数规划模型执行求解。
本申请提供了一种基于任务集控制及系统作战状态演化分析的舰队防空资源子调度控制系统,其特征在于,包括:
任务集设定模块,用于为舰队防空资源的子调度计划建立任务集;
演化分析模块,用于在任务集的控制下,执行系统状态的演化分析;
状态演化建模模块,用于建立表示系统状态演化的有限状态机(FSM)模型;
控制变量计算模块,用于在状态演化的有限状态机(FSM)模型基础上,求解系统状态演化的控制变量;以及
资源控制模块,应用控制变量进行防空资源子调度过程的计划编制和防空资源设施控制。
优选的是,所述任务集设定模块所设定的任务集M={m}由子调度计划中的若干个任务向量m构成,所述任务向量m表示为m=(gm,fm,am,em,tm),其中gm∈G,fm∈F,am∈Z+,em∈E;G、F和E分别表示制导资源集合、发射资源集合和目标集合,gm和fm分别表示执行任务m的制导资源和发射资源,am表示执行任务m时发射的弹药数量,em表示任务m打击的目标,tm表示任务的时间属性。
优选的是,所述演化分析模块执行的系统状态演化分析包括:
目标状态演化分析,从给定的任务集M中,将其中与目标e相关的任务选出来构成子集Me
Me={m∈M,em=e}
将Me按照任务开始时间进行排序得到目标e的打击序列Le,令|Le|表示序列中的任务数,mei表示Le中的第i个任务,假定目标状态的转换发生在任务结束时刻,并令ttei表示mei的结束时刻,sei表示在ttei时刻状态转换之后的目标状态,由于目标的初始状态为1,那么可以得到sei的概率:
所以目标生存状态的演化函数为分段函数:
优选的是,所述演化分析模块执行的系统状态演化分析包括:
目标打击效果分析,定义与目标e相关的时变函数λe(t)和γe(t),λe(t)表示“威胁等级”,γe(t)表示“抗击损耗”;其中λe(t)是单调增函数,表示目标的威胁性对时间不断增大;γe(t)是单调非减函数,表示在t时刻编队为抗击目标e所付出的各类资源损耗以及目标持续活动造成不稳定性的综合累积效果,在抗击过程中γe(t)是一个累积量;对于给定的攻击序列Le,可以给出其末端威胁等级Λe(Le)和末端抗击损耗Γe(Le),下式假定计划期开始时间为0:
上述Λe(Le)和Γe(Le)反映了打击序列在目标持续运动过程中的打击效果。
优选的是,所述演化分析模块执行的系统状态演化分析包括:
系统作战状态演化分析,用于确定给定打击任务所对应的完全演化路径;对于某个任务m所建立的制导资源gm、发射资源fm和目标em之间的耦合关联作为子系统m,所述完全演化路径表示在所有可能情况下子系统m的状态演化全过程;基于完全演化路径,分析打击过程。
可见,本发明面向舰队防空资源的子调度过程,定义了子调度计划的任务集,基于任务集进行了系统演化状态分析,并且定义了演化状态分析的有限状态机(FSM)模型,最终实现了系统状态演化的控制变量的规范、高效求解,从而实现了舰队防空资源子调度过程中对防空资源设施的调度与控制。
附图说明
图1是本发明的防空资源运行时序图;
图2是本发明的petri网络形式的任务m执行过程示意图;
图3是本发明进行目标状态演化分析过程中的目标生存状态示意图;
图4是本发明进行目标状态演化分析过程中的毁伤概率降低率临界曲线图;
图5是本发明作战系统特定时刻状态示意图;
图6是本发明进行作战系统状态演化分析过程中的完全演化路径示意图;
图7是本发明的给定三元组(g,f,e)定义的子系统在t时刻状态演化FSM模型示意图;
图8是本发明简化的状态演化FSM模型示意图;
图9是本发明面向可行调度方案的0-1差分FSM模型示意图。
具体实施方式
现在将参照附图详细说明本发明构思的特定实施例。
首先,针对本发明中使用的术语的含义定义如下:
资源:指的是参与到防空任务过程中的各类设备实体,包括三个类别:用于探测和跟踪目标的资源,例如监测雷达、制导雷达等,由于协同防空主要针对舰空导弹的打击形式,因此本方案中将这类资源称为“制导资源”;用于实施攻击的资源,主要是舰空导弹,因此本方案中将这类资源称为“发射资源”;作为打击目标的资源主要是敌方飞行器,在本方案中称为“目标资源”,或者在不发生歧义的情况下简称“目标”。
任务:一个协同防空任务指的是针对目标资源所制定的具有相对独立性的一次完整打击过程,其中包括了对监测、定位、制导、武器发射、观效等过程的执行时间、协同方式、打击强度、评判准则等参数的给定。
通道:基于任务中给定的具体参数值,可以针对特定目标在制导资源、发射资源、打击强度3者上形成一个控制逻辑或者通讯上的联合体,这个联合体称为一个“通道”,是发起防空打击的抽象主体,也是本方案调度模型中最小粒度的优化单元。
动态调度:动态调度指的是在给定防空时段内,基于对舰艇编队形式、资源工作状态、目标运行状态的动态演化和不确定扰动的预测,通过优化计算形成迭代式的协同防空任务序列和调整策略的过程。
本发明提供了基于任务集控制及系统作战状态演化分析的舰队防空资源子调度控制系统与方法。在滚动时域的决策和自动化调度控制框架之下,本发明针对滚动时域当中的子过程建模这一环节,建立子调度通用数学模型,并提出了基于任务集控制下的系统状态演化分析方法。
下面首先介绍本发明对子调度通用数学模型的建立。
舰队防空过程中的一次联合打击是利用监控资源发现目标、利用制导资源实施跟踪制导、利用发射资源实施、对打击效果进行评估的一连串过程,子调度计划的目的是根据现有情况,确定一个相关较短时段(计划期)内各种资源的任务序列。
真实的对抗过程具有高度的动态性和不确定性,而且涉及到各种博弈行为,进行精确建模相当困难,但在滚动时域框架下,由于子调度计划期较短,且存在重调度机制,因此可以对子调度的工作状态进行适当简化。因此,本发明针对子调度计划的建模采取以下基本假设:
(1)不考虑平台空间位置所形成的打击盲区和其他限制区域。本模型不考虑空间因素对打击过程的影响,在当前的技术条件下这一假设是合理的。
(2)在子调度开始前所有目标均已被发现,不考虑在子调度进行中新目标的进入问题,也不考虑子调度进行中已发现目标的监控中断问题。
(3)不考虑子调度进行中的新增各类资源或者各类资源突发故障问题,但是在子调度开始是正在发生故障的资源状态是需要考虑的。假设条件(2)、(3)在滚动时域调度框架下是非常合理的,因为我们可以将新目标进入和资源的突发故障设置为重调度触发条件,从而保证在任何子调度中都满足上述假设条件。
(4)不考虑打击过程中目标行为的机动性,即目标在整个子调度计划期内的航迹仅依赖于子调度开始时的初始信息,且是完全可预测的。严格的说,在具备监控和跟踪能力的编队打击过程中,目标的机动性并不会对计划任务的有效性产生根本性的影响,但会影响实际打击效果,我们假定子调度计划时段的时长选择可以将这种影响限制在比较轻微的程度下,如果实际打击效果与计划打击效果产生较大偏离,我们可以启动重调度过程。
(5)任务是不可中断的,任务的打击效果只考虑击毁目标和打击失败两种,其中打击失败是指未击中目标,不考虑目标部分受损的情况。
(6)在任务执行过程中制导资源与发射资源都与目标形成一一对应的关系,即不存在同一时间多个制导资源对同一目标实施制导,或者同一时间多个发射资源向同一目标发射火力的情况。
(7)在任务执行过程中相关组合资源的工作过程是同步进行的,在编队中不同平台联合打击目标的过程中涉及到制导资源对目标的跟踪制导和武器资源对目标的发射攻击。严格的说,按照“发射-观效”策略,在共同执行打击任务的过程中这两类资源的工作过程是异步的,制导资源应该先工作,达到发射条件后通知武器资源启动并发射,然后制导资源还要进行打击观效,而武器资源在发射完毕后原则上应能再次承担其他任务。虽然对这种异步行为进行精细建模可以提升调度计划的执行效率,但极大增加了模型的复杂度,考虑在高度动态的环境下我们更关系调度计划的指导意义,在对执行效率影响不剧烈的情况下以提高模型可解性为目标的简化是合理的。
在以上假设条件的基础之上,本发明以定义任务集的形式,建立子调度计划的概念模型。
具体来说,基于上述假设,我们在子调度的计划期内可以不考虑监控资源的任务安排,从而将一个打击任务视为发射资源与制导资源组合起来对特定目标实施的行为。调度计划可以视为一个任务集M={m},对于一个给定任务m,需要确定其在资源属性和时间属性上的具体安排,可以给出任务的向量表示如下:
m=(gm,fm,am,em,gt1m,gt2m,ft1m,ft2m),
gm∈G,fm∈F,am∈Z+,em∈E,gt1m,gt2m,ft1m,ft2m∈R+.
其中:G、F和E分别表示制导资源集合、发射资源集合和目标集合,根据假设条件(2)-(3),这些集合在整个计划期内都是恒定不变的。gm和fm分别表示执行任务m的制导资源和发射资源,am表示执行任务m时发射的弹药数量,em表示任务m打击的目标,gt1m和gt2m分别表示任务m中制导资源工作的开始时间和结束时间,ft1m和ft2m分别表示任务m中发射资源工作的开始时间和结束时间,Z+表示正整数。
但基于前述假设条件(7),资源工作过程同步进行的,也就是gt1m=ft1m,gt2m=ft2m,因此gt1m-gt2m=ft1m-ft2m,我们称其为任务执行时间(打击时长)。而根据前述假设条件(2-4),任务执行时间可以表达为基于任务属性值的函数,且函数的形式可以在计划期开始时确定。因此任务的时间属性可以进一步简化为一个实数变量tm,表示任务开始时间(即制导资源和发射资源开始工作的时间),任务m的向量表示可以简化为:
m=(gm,fm,am,em,tm). (1)
本质上说,计划任务集M是对尚未开始的战斗过程的预编排,而实际发生的战斗过程是动态的,我们真正关心的是在实际发生的战斗中各类资源和目标的状态演化及其所产生的效果。为了描述子调度计划的概念模型,我们假定在计划期内所发生的实际战斗中,在启动重调度之前,所有的攻击任务均严格按照计划执行,除非目标提前被消灭,那么在给定初始条件下,资源和目标的状态演化过程将完全由任务集所控制。
参见图1所示的防空资源运行时序图,该图表示了基于在假设条件(1)-(7)下,给定任务执行过程的总体时序概念模型,其中任务打击在时间上分为两个部分“重新跟踪制导”和“目标打击”,但是如果承担任务的制导资源在任务开始前已经实施过指定目标的制导过程,并一直保留着制导信息,则无需实施“重新跟踪制导”过程。对某个目标的打击任务完成后制导资源一般仍然会持续监测该目标,但在特殊情况下会中断这一过程,从而造成制导信息的丢失,主要原因有两个:1)资源发生故障;2)由于同时制导的目标数量限制,需要清空已完成任务的制导信息,以便为新的任务提供制导。由于我们不考虑计划期内的资源故障,因此实施“重新跟踪制导”的原因主要是第2点。
从系统状态转换的角度来看,制导资源的状态是其空闲制导能力的数量,发射资源的状态是其空闲攻击能力的数量及其弹药数量,目标的状态是“生存”和“死亡”,其中制导能力和攻击能力是可回收的,而弹药是不可回收的,如果目标被击毁,则无需执行其后所有针对该目标的任务。那么根据假设条件(6),计划期的打击过程在特定目标的视角下是串行的,在特定资源的视角下是并行的且循环使用的,因此可以如图2所示,以petri网形式表达给定任务m的执行过程。
在定义了子调度计划的任务集之后,可以在任务集的控制下,展开系统状态演化分析。包括:目标状态演化分析;目标效果分析;作战系统状态演化分析。
关于目标状态演化分析,对于一个给定的目标e,与之相关的打击任务是串行的,因此它的状态演化过程比较简单。根据假设条件(5),每次打击之后目标可能的状态只有“生存”和“死亡”两种,如果目标“死亡”,那么打击过程结束,否则将继续抗击。对于一个给定的打击任务计划控制下的目标状态演化,我们假定其为马尔克夫过程,用0-1表示其状态,其中1表示生存,其转移矩阵如表1,为:
表1 抗击过程中目标状态转移矩阵
其中h(m)称为“毁伤概率”,我们假定毁伤概率只与任务的属性相关。对于给定的任务集M,将其中与目标e相关的任务选出来构成子集Me
Me={m∈M,em=e}
将Me按照任务开始时间进行排序得到目标e的打击序列Le,令|Le|表示序列中的任务数,mei表示Le中的第i个任务,由于打击过程有一定的执行时间,我们假定目标状态的转换发生在任务结束时刻,并令ttei表示mei的结束时刻,sei表示在ttei时刻状态转换之后的目标状态,由于目标的初始状态为1,那么可以得到sei的概率:
所以目标生存状态的演化函数为分段函数:
函数形态如下图3所示。
关于目标打击效果分析,基于给定任务序列预测的目标状态演化具有随机性,因此目标打击效果只能在此基础上进行概率意义上的评价。实施打击之后目标的生存概率本身是一个非常重要的评价指标,但生存概率本身是一个状态量,在打击过程持续滚动实施的情景下,我们应该在全面打击过程的背景下来考虑阶段性打击的效果。考虑到目标的实际行为是持续逼近并不断产生威胁,在不考虑目标机动的情况下,我们定义两类与e相关的时变函数λe(t)和γe(t),分别表示“威胁等级”和相应的“抗击损耗”。其中λe(t)是单调增函数,表示目标的威胁性对时间不断增大,因此应该尽快消灭目标;γe(t)是单调非减函数,由于在目标活动的过程中,各类资源要对其保持持续的处理,而且目标还活跃时段内具有持续变动的机会,造成打击过程的不稳定性,γe(t)表示在t时刻编队为抗击目标e所付出的各类资源损耗以及目标持续活动造成不稳定性的综合累积效果,在抗击过程中γe(t)是一个累积量。那么在概率意义下,对于给定的攻击序列Le,可以给出其末端威胁等级Λe(Le)和末端抗击损耗Γe(Le),下式假定计划期开始时间为0:
上述Λe(Le)和Γe(Le)反映了打击序列在目标持续运动过程中的打击效果,我们希望二者尽量小。根据Λe(Le),假设任务打击的毁伤概率仅与打击资源配置相关(在子调度的计划期内这种假设是合理的),而与任务开始时间无关,即:
h(m)=h(gm,fm,am,em)
那么在保持任务集资源配置不变的情况下,考虑到λe(t)的单调递增性,我们需要使最后一次打击的完成时间(tte|Le|)尽量小,也就是尽可能快速完成打击序列,这与直觉是一致的。
另一方面,考虑Γe(Le)的性质。通常情况下可以假设γe(t)为常数函数,那么此时Γe(Le)的值正比于图3中函数折线下部的面积,不妨令γe(t)≡1,可得:
考虑任务顺序对Γe(Le)的影响,假设我们将任务m和m的资源配置互换(从而其毁伤概率也发生了互换),其中1≤α<β≤|Le|,用Γαβe(Le)表示互换后的末端抗击损耗,那么:
显然,当h(m)>h(m)时,Δαβ<0,这说明先执行毁伤概率大的任务将有助于Γe(Le)的减小,因此在任务序列中任务的毁伤概率应尽量降序排列。
另一方面,在Γe(Le)中假设任务序列中各项任务的结束时间保持不变,那么可以通过改善任务中的资源配置提高毁伤概率h(mej),从而降低Γe(Le)的取值。比较两种方案,一种将h(m)提高为(h(m)+k)从而得到Γαe(Le),另一方案将h(m)提高为(h(m)+k)从而得到Γβe(Le),其中1≤α<β≤|Le|,那么可得
则:
根据上式,当h(m)≥h(m)时,Δαβ,这一结论进一步表明,在任务序列中的任务毁伤概率降序排序的前提下,我们提高初期任务毁伤概率的效果将优于提高后期任务的毁伤概率。
综合上述分析,尽早执行毁伤概率较高的打击任务会取得更好的效果。在给定资源组合的情况下,提高发射弹药的数量是提升毁伤概率的有效途径,然而弹药属于不可再生资源,增加弹药消耗必然会减少可执行任务的数量,由于本文针对的场景中一个任务打击主要有单发和双发齐射两种弹药消耗模式,我们针对这两种模式对打击过程的影响进行分析。假定某次任务m选择双发齐射模式,其毁伤概率是h,如果在保持资源组合不变的情况下转化为单发模式,其毁伤概率降低为μh,其中μ<1,但在弹药消耗量相等的情况下,单发模式可以实施两次连续打击,比较两种情况下目标在打击结束后的生存概率(1-μh)2和(1-h),那么当时,减少弹药消耗反而能在更大概率上击毁目标,函数图像可由图4表示。显然μ始终应大于0.5,但当h本身较小时,μ可以取较小的值
下表是在一个典型的场景中,各种资源组合情况下针对不同目标的μ值和对应的临界值:
表2 典型场景中的单发毁伤概率降低率与临界值的对比
可以看出所有的μ值都大于临界值,说明在这一场景下,仅从最终毁伤概率来看,如果考虑打击过程的长期性,减小耗弹量从而为后续打击保留更多的任务执行机会是合理的选择。这一现象实际上具有普遍性,因为双发齐射涉及到各种复杂操作并受到综合因素的影响,不会成倍提高毁伤效率。
综上所述,基于目标状态演化的分析给出了提高全局打击效果的三个定性化的策略:1)尽早完成打击任务;2)尽量增加近期任务的毁伤概率;3)尽量减小耗弹量。在滚动时域过程中,每个子调度是依次拼接的,因此以上述策略作为子调度基本优化目标可以提高全局过程的打击效果。
关于作战系统状态演化分析,从系统动力学的角度来看,在整个打击过程中,由制导资源、发射资源和目标共同组成作战系统的状态演化依赖于打击任务安排和目标状态演化。我们采用图5的形式来形象表达一个作战系统在特定时刻的瞬态状态。
根据图5,在特定时刻,作战系统的状态可以用各类对象之间的关联关系来表达,其中制导资源与目标的关联关系(简称G-E关联)表示了对目标的跟踪制导,制导资源与发射资源的关联关系(简称G-F关联)表示了打击通道的建立,而发射资源与目标之间的关联关系(简称F-E关联)表示了对目标实施的打击,根据实际的作战动作要求,每种关联都具有3种状态:连接未建立(None,图5中用点划线表示)、连接准备中(Prepare,图5中用黑色虚线表示)和连接已建立(Ready,图中用黑色实线表示);另一方面,每个对象具有两种状态:可用(对于目标来说就是生存状态)、不可用(对于目标来说就是死亡状态)。在此基础上,系统的状态演化可以转化为上图中各类对象和关联的状态演化,而这一演化过程是由系统的固有规则和任务安排共同决定的,上文已经分析过目标状态演化,而根据前文假设,我们不关注计划期内作战资源的突发故障,因此在系统状态演化分析过程中,我们主要对关联关系的状态演化特征进行分析。因此,作战系统状态演化分析可以包括以下步骤:
(1)确定给定打击任务所对应的完全演化路径。当给定某个任务m后,就建立了制导资源gm、发射资源fm和目标em之间的耦合关联,我们称之为“子系统m”。完全演化路径考虑的是在所有可能情况下,子系统m的状态演化全过程,从时间上我们将其分为初始状态、通道准备、通道建立、实施打击和打击结束5个阶段状态,分别用s1~s5来表示,其中s1和s2状态又可以细分为3种情况,分别用s1.1~s1.3和s2.1~s2.3来表示,其演化路径可由图6表示。图中虚线箭头线表示状态转换可以瞬时发生,而实线箭头线表示状态转换需要消耗一定的工作时间。
(2)基于完全演化路径,分析打击过程。只有s4状态才是真正的打击任务执行状态,而s5状态与s3状态在表现形式上是一致的,在状态空间中两者是重合的,但从演化过程的时间序列来看,两者表达的是不同的工作阶段。考虑连续打击过程,根据图6所示,当任务开始时子系统m可能处于s1或者s5状态下,在不同的初始状态下执行任务所需的时间是不同的,令Lm表示从s4到s5的转换时间,RGLm表示制导资源对目标的重新跟踪定位时间(即图中s2.3到s3的状态转换时间),GFLm表示制导资源与发射资源之间建立通道所需的时间(即图中s2.2到s3的状态转换时间),如果重新跟踪定位和建立通道两个过程可以并行执行,那么图中s2.1到s3的状态转换时间应为max{RGLm,GFLm},因此一个任务的完整执行时间有三种情况:Lm、Lm+RGLm和Lm+GFLm。另一方面,子系统m进入s5状态后打击任务已经执行完毕,此后的状态变迁反映了作战系统对目标信息和通道信息的保存策略,显然图6表明尽量保持目标的跟踪信息和资源的通道关联信息有助于降低任务执行时间,但信息保存收到资源存储能力的限制,我们假定在满足存储能力的前提下,作战系统将尽可能保持各种关联信息,即图6中如果不违反存储能力,s5状态会一直保持下去,直至全系统状态在某个时刻转换到使某个关联对应的资源能力达到限制容量,然后s5会相应的转化为s1状态的各种情况。
在演化状态分析的基础上,建立系统状态演化的有限状态机(FSM)模型。图6反映出由制导资源、发射资源和目标组成的三元组(g,f,e)及其对象之间的关联构成了系统状态演化的基本单元,利用FSM模型可以在更精细的层面刻画三元组在s1~s5状态之间的演化过程。促使状态发生转化的事件有三类:任务安排、工作完毕、容量超限;其中从初始状态s1.x或者s5转换至s2.x或者s3的触发条件是出现一个与该三元组对象相一致的任务,我们用Attack(g,f,e,t)表示t时刻利用制导资源g和发射资源f打击目标e的任务安排,由于任务本身是一个五元组(g,f,a,e,t),Attack(g,f,e,t)实际上对应于任意弹药量(a分量的取值)情况下的(g,f,a,e,t);从s2.x或者s4转换至s3或者s5的触发条件是相应的通道准备工作或者目标打击工作执行完毕,我们定义Finish-GE(g,t)、Finish-GF(f,t)、Finish-FE(e,t)分别表示在t时刻与制导资源g、发射资源f和目标e相关的G-E关联、G-F关联和F-E关联工作任务执行完毕的事件;任务完成后关联状态倾向于保持不变,即s5转换到s3,而此时如果出现制导资源或者发射资源的任务容量超限,则会由s5转换到s1.x。实际上容量超限事件并不仅仅作用于s5状态的转换,作为一种硬约束,在任意时刻如果发生容量超限事件,子系统m的状态都会调整到相应的初始状态并退出任务执行过程。在t时刻,我们定义Lmt-GE(g,t)表示由制导资源g所产生的“制导资源-目标”关联中发生了容量超限事件,其具体含义是,制导资源g在t时刻同时跟踪的目标总数超过g的容量限制,而同时跟踪的目标总数等价于t时刻全系统内由g所产生的“制导资源-目标”关联中处于Prepare或者Ready状态的关联个数。同理,我们定义Lmt-GF(f,t)表示t时刻由发射资源f产生的“制导资源-发射资源”关联中发生了容量超限事件,其具体含义是,发射资源f在t时刻同时攻击的目标总数超过g的容量限制,其中同时攻击的目标总数等价于t时刻全系统内由f所产生的“制导资源-发射资源”关联中处于Prepare或者Ready状态的关联个数。基于上述分析,图7表示了由给定三元组(g,f,e)定义的子系统在t时刻状态演化FSM模型。
在上图中从s3到s4的状态转换不需要触发条件,如果将s3与s4合并,并不影响FSM模型的表达结果,但简化了状态空间,因此在后文的分析中我们基于图8所示的简化后的等价FSM模型,该模型取消了s3状态,将其合并入s4。
仔细分析状态演化的三种触发事件可以看出,在联合打击任务调度的背景下,“工作完毕”和“容量超限”两类事件与系统的内生状态相关,是随着系统状态演化而自发产生的事件,而“任务安排”来自于系统的外生状态,即系统控制者的主动调度行为,因此如果从系统控制的角度来看,将“任务安排”作为系统状态演化的控制变量,这是求解调度计划编制的基础。
在上述状态演化的有限状态机(FSM)模型基础上,求解系统状态演化的控制变量;并应用控制变量进行防空资源子调度过程的计划编制和防空资源设施控制。
理论上说,子调度计划编制问题就是在指定目标下求解系统状态演化的控制变量,而控制变量应等价于联合打击任务。系统状态演化的数学模型本质上应该是微分方程形式,但为了便于计算机求解,需求将其转化为差分形式,并在此基础上构建离散时间变量支持下的数学规划模型。
关于时间变量的离散化,合理设计离散化时间点,尽可能使所有可能发生的状态转换均发生在离散化时间点所在的时刻。根据前文给出的FSM模型,状态演化时长主要由两类时间变量控制:任务开始时间和工作持续时间;任务开始时间属于外生变量,由外部控制者主动赋值,一般情况下其值域不具备有限可数性质,但从调度问题的本质来看,最终有效的任务开始时间应达到指标的优化目标,根据前文对打击效果的分析,一个优化的任务计划方案应满足尽早打击的要求,也就是说合理的任务开始时间应与某些工作的结束时间重合,因此在给定计划期起始时间的条件下,如果工作持续时间的值域属于有限可数实数集,那么合理的任务开始时间也构成有限可数实数集。另一方面,如果考察FSM模型可以看出,工作持续时间主要由三类参数控制:G-E关联的准备时长、G-F关联的准备时长、F-E关联的工作时长;严格的说,这三类参数与相关资源和目标的时空状态和设备物理状态相关,是复杂的时变参数,但根据前文提出的假设条件(1)~(7),从统计意义上看在较短的调度计划期内可以将这三类时间参数近似为与联结对象相关的非时变参数,而在不考虑对象突发事件的前提下,这三类时间参数以及由其所控制的各种工作持续时间值域将构成有限可数的非时变实数集。综上所述,本文的求解模型其差分时间间隔取值要求使得在所有情况下的工作执行时间都是间隔时长的整数倍。
联合打击任务调度问题是一个典型的组合优化问题,且根据FSM模型,状态演化的触发事件主要是逻辑运算操作形式,因此我们采用0-1整数形式表达状态变量。在离散时间条件下,状态仅与三元组(g,f,e)和时间点t相关,所以状态变量的基本形式应为sgfet∈{0,1},当取值为1时表示(g,f,e)在t时刻处于s状态。但是,在时间变量离散化分析中,为了得到时间参量值域有限可数的条件,实际上已将原FSM模型中的“工作执行完毕”事件变更为“工作执行到期”事件,其中执行时间期限为时不变整数参量,表示预定义的工作执行期离散时间间隔跨度,这一变更使得在s2.x至s4以及s4至s5转换过程中需要等待相关工作执行完毕,造成这两类转换不满足Markov条件,将给差分方程建模带来困难。因此,为了使所有转换变迁都符合Markov条件,在离散时间条件下,将s2.x状态和s4状态拓展为(s2.x,τ)和(s4,τ)的形式,其中1≤τ≤DMAX,表示状态对应工作的剩余执行时间跨度,DMAX表示所有的工作执行时间参量中的最大值,通常DMAX<|T|,这一拓展过程实际上增加了状态变量数目。基于上述分析,模型中的状态变量及其意义见下表所示:
表3 模型状态变量表
在差分及0-1整数状态变量形式下,建立差分及0-1整数型状态变量形式下面向可行调度的FSM模型。在差分及0-1整数状态变量形式下,系统状态的形式和演化过程均发生了变化,基于前文中的简化FSM模型,我们给出差分形式下基于0-1状态变量的FSM模型(以下称为“0-1差分FSM模型”),该模型建立的目的是为求解优化调度方案提供理论基础,因此我们仅针对可行调度的情况进行建模,这将显著降低模型复杂度。从FSM模型的角度来看,一个“可行”的调度计划方案指的是通过合理的状态控制使得在任意时刻系统都不触发容量超限时间,在可行方案的背景下,FSM模型中所有由容量超限事件的引发的状态变迁都可以忽略。观察前述简化FSM模型可以看出,一部分容量超限事件引发的状态变迁出现在s2.x至s1.x变迁以及s4至s5变迁上,这两类变迁属于任务执行中断,一个可行的任务集方案应避免出现这类情况,可行任务集控制下的状态演化过程在任务执行过程中不会触发容量超限事件,但这并不能避免从s5至s1.x之间的容量超限事件,因此为了完全规避这类事件造成的状态变迁,需要将s5至s1.x之间的状态变迁条件设计为新的控制事件从而取代容量超限的判断,定义Close-GE(g,f,e,t)事件表示在t时刻仅关闭子系统(g,f,e)的G-E关联,Close-GF(g,f,e,t)事件表示在t时刻仅关闭子系统(g,f,e)的G-F关联,Close-ALL(g,f,e,t)事件表示在t时刻关闭子系统(g,f,e)的所有关联。规避容量超限事件能使子系统演化的FSM各种参量限制在子系统内部,而无需考虑全系统状态,大大降低状态转移方程的复杂度。
“时间变量的离散化”部分中假设各类任务的执行时间属于计划编制前已知的非时变参数,且仅与执行任务的资源编号和目标编号相关,为此我们引入参量Lgfe表示由(g,f,e)参与的打击任务的执行时间,参量GELge表示由(g,e)参与的G-E关联准备任务的执行时间,参量GFLgf表示由(g,f)参与的G-F关联准备任务的执行时间,在差分形式下上述时间参量都是整数值,表示时间跨度所包含的差分时间间隔数,在实际情况中一般认为GELge>GFLgf
另外,从连续时间演化的角度来看,差分化后的任何状态变迁都潜在包含了至少一个时间间隔的原状态持续过程,瞬时状态变迁实际上是不存在的,因此对于原FSM模型中各种瞬时状态变迁需要进行提前量的修正,主要针对s5至s1.x的状态变迁过程。
基于上述分析和相关参量设计,给出面向可行调度方案的0-1差分FSM模型如图9所示,根据瞬时状态变迁的提前量修正要求,为了任务执行完毕后瞬时切断G-E或者G-F关联的状态变迁过程,我们在(s4,1)状态后也添加至s1.x的状态变迁。另外,s1.x和s5属于非任务执行状态,在这类状态下,系统具有保持关联信息的倾向,即在无事件输入的情况下将进行自返式变迁。
根据0-1差分FSM模型,控制变量包括两类,分别对应于任务安排事件和关闭关联事件,也应采用0-1整数形式。
根据前文分析,打击任务由五元组表达:m=(gm,fm,am,em,tm)
在时间离散化处理后,上述五元组中的所有元素都在有限可数整数集内取值,因此与任务安排事件对应的0-1整数控制变量集为:
{mgfaet=0,1|1≤g≤|G|,1≤f≤|F|,1≤a≤|A|,1≤e≤|E|,1≤t≤|T|}
其中|G|、|F|、|A|、|E|、|T|分别表示计划期内各类资源、目标和离散时间点集的规模,mgfaet值为1表示任务集中存在一个任务(g,f,a,e,t),而无论下标a为何值都表示触发一个Attack(g,f,e,t)事件,显然每个打击任务只能在可选的弹药发射量方案中选择一种,因此Σ(1≤a≤|A|)mgfaet≤1,所以可以用Σ(1≤a≤|A|)mgfaet表达Attack(g,f,e,t)事件的发生。
而与Close-GE(g,f,e,t)、Close-GF(g,f,e,t)、Close-ALL(g,f,e,t)事件对应的控制变量可以表示为0-1整数变量集:
gfet=0,1|1≤g≤|G|,1≤f≤|F|,1≤e≤|E|,1≤t≤|T|};
gfet=0,1|1≤g≤|G|,1≤f≤|F|,1≤e≤|E|,1≤t≤|T|};
其中ψgfet=1表示在t时刻产生一个Close-GE(g,f,e,t)事件,表示在t时刻产生一个Close-GF(g,f,e,t)事件,φgfet=1表示在t时刻产生一个Close-ALL(g,f,e,t)事件。
在以上状态变量表达形式的基础上,能够建立差分及0-1整数型状态变量形式下面向可行调度的状态转移方程。基于上表的状态变量表达形式,给定三元组(g,f,e)在t时刻的状态实际上是由所有下标包括(g,f,e,t)的状态变量构成的向量,其状态转移方程是由向量中每一个分量对应的状态转移差分方程所构成的方程组,该方程组完全依赖于0-1差分FSM模型,根据该模型可以得到如下形式:
上式可以看作0-1差分FSM模型的等价代数模型,但该模型并不能计算计划期起始时刻(即t=1)的子系统状态,因为根据状态演化规律,计划期起始时刻的状态与计划期前的状态相关,我们称之为“初始状态”,由于初始状态在计划期开始前已经确定,因此与之对应的代数量应称为“初始状态参量”,为了表达形式的一致性,我们将状态变量的t下标扩展至0,并令t=0时的状态量表示初始状态参量,那么在0≤t<|T|的意义下(3.4.5.1)式可以表达计划期内所有的状态变迁。
基于差分状态转移方程,可进一步进行0-1整数规划模型。利用差分状态转移方程可以精确计算每个时间段内的系统状态,通过合理设计控制变量的取值,可以通过精确调整系统状态演化进程来搜索优化任务集,这是基于差分状态转移方程构建子调度计划编制数学规模模型的理论基础。
关于规划模型的决策变量,规划模型的决策变量由0-1差分FSM模型的控制变量和状态变量组成,其中控制变量表达了任务集和任务结束后关联信息保持策略两方面的求解结果,是主要的决策变量,而状态变量实际上依赖于控制变量,但将其作为决策变量有利于简化模型表达以及模型线性化,因此属于辅助决策变量。
关于模型辅助参量,建立数学规划模型所需的参量包括初始状态参量和其他模型辅助参量,初始状态参量已在前文描述过,其他的模型辅助参量及其意义如下表所示。
表4.模型参量表
确定规划模型的约束条件。约束条件描述了数学规划模型中各类决策变量和模型参量之间的约束关系,前述状态方程是状态变量之间的基本约束,但为了使调度方案可行,还需添加其他的约束条件,可以分为两部分:1)控制变量和状态变量的互斥性约束;2)资源容量限制性约束。其中控制变量和状态变量的互斥性约束分为三个层面:
(1)子系统(g,f,e)控制的非歧义性:子系统在任意时刻接收的控制变量应该不多于一个,否则状态转换就出现了歧义性:
(2)子系统(g,f,e)状态互斥性:任意时刻任意子系统有且仅有一种状态,在0-1整数型状态变量条件下,状态唯一性约束可以表达为:
(3)目标打击状态互斥性:根据编队打击的执行规则,不能在同一时刻对同一目标执行两个不同的打击任务,从状态演化的角度来说,就是在任意时刻针对同一目标的所有子系统中处于目标打击状态的子系统不多于一个,在0-1差分FSM模型中我们将(s2.x,*)和(s4,*)状态集称为目标打击状态集,其互斥性约束可以由下式表达:
系统中各类资源的容量限制形成的约束是任务执行的实际物理限制,也是在0-1差分FSM模型中规避容量超限事件的理论基础,主要包括制导资源同时跟踪目标数量限制、发射资源同时打击目标数量限制以及发射资源载弹量限制三类约束。但是所有这些限制条件都以目标打击任务的执行为基础,如果目标被击毁,那么后续计划中的任务将不被执行,然而在计划编制时对于目标的生存状态只能进行概率估算,所以本质上说,对于计划任务资源使用状况的一切计算都只有概率意义,针对这一特征,我们对每一类约束都给出3种形式:保守形式、期望形式和概率形式。
“保守形式”指的是在所有目标都生存的情况下任务集需符合的约束,这是在任意概率情况下都能保证任务集可行的约束;“期望形式”是指按照毁伤概率的期望值约束平均意义下的任务集可行性,由于各个任务是独立执行,因此多个任务执行状态的总体期望值应等于独立期望值之和,而任务独立执行的期望值由目标的毁伤概率决定;而“概率形式”是基于各个时段内任务总体执行状态概率分布测算的精细化约束,通常先预定义违反约束状态的概率上限Θ,然后依次考察各个时段,使每个时段内的总体执行状态违反约束的概率小于Θ,这其中涉及到独立但不同分布组合随机过程的概率计算,往往非常复杂,但能更精确反映任务集的可行程度。
值得注意的是,“保守形式”可以保证任务集在任意条件下可行,但在存在高毁伤概率任务的情况下,资源利用效率会比较低,且目标状态空间的演化与预测情况会产生较大偏离;而满足上述“平均形式”或者“概率形式”的任务集在实际执行中可能会出现资源冲突的情况,需要进行临时的冲突消解操作,从而使得资源状态空间的演化与预测情况产生偏离;可以利用这些偏移来定义重调度触发条件。
(1)制导资源同时跟踪目标数量限制。根据子系统状态的定义,当与给定制导资源g相关的任意一个子系统(g,f,e)处于除s1.1和s1.3状态之外的任一状态下,都表示g在执行某个跟踪制导任务,而在t时刻g同时执行跟踪制导任务的数量不能超过MGgt,因此:
i.保守形式:
ii.平均形式:
其中Y(e,t)表示目标e在t时刻的生存概率,因为假设目标的生存概率仅在打击任务结束时(也就是s4gfet1=1的状态下)发生变化,但打击通道的信息是在任务开始时(mgfaet=1的事件下)获取的,所以Y(e,t)的计算比较复杂,我们定义C(g,f,a,e,τ,t)∈{0,1}表示是否在τ时刻开始执行了一个(g,f,a,e,τ)任务并在t时刻前结束,可按下式计算:
则Y(e,t)可由下式计算:
iii.概率形式:
(2)发射资源同时跟踪目标数量限制。根据子系统状态的定义,当与给定发射资源f相关的任意一个子系统(g,f,e)处于除s1.1和s1.2状态之外的任一状态下,都表示f在执行某个攻击任务,而在t时刻f同时执行打击任务的数量不能超过MFft,因此:
i.保守形式:
ii.平均形式:
iii.概率形式:
(3)弹药限制:对某个发射资源而言,其计划期内所有任务所耗费的弹药量不能超过其计划期开始时的总载弹量,由于发射弹药仅与执行任务一一对应,因此可以不使用状态变量而仅利用控制变量mgfaet进行简化表达。
i.保守形式:
ii.平均形式:
iii.概率形式:
确定优化目标。根据前文分析,我们主要从三个方面来评价任务集的打击效果;末端威胁等级、末端抗击损耗和总耗弹量,由于前两项指标本身就是基于目标毁伤概率来构建的因此不存在如约束条件所述的形式差别,最后一项耗弹量目标需要进行概率运算,作为整体目标,我们仅考虑其保守形式和平均形式。因此三个优化指标如下:
(1)末端威胁等级最小化
(2)末端抗击损耗最小化
(3)总耗弹量最小化
i.保守形式:
ii.平均形式:
综上所述,可以分别总结出“保守形式”、“平均形式”和“概率形式”下的0-1整数规划模型。如下表5所示,其中各种形式下模型的决策变量都是一致的,包括控制变量mgfaet∈{0,1}、ψgfet∈{0,1}、φgfet∈{0,1}、和所有的状态变量。
此外,由于控制变量仅在某些特定的状态下起作用,为了简化模型的解空间,我们根据0-1差分FSM模型对上述控制变量设置如下约束:
表5 三种形式下的0-1整数规划模型
了使调度方案可行,还需添加其他的约束条件,可以分为两部分:1)控制变量和状态变量的互斥性约束;2)资源容量限制性约束。其中控制变量和状态变量的互斥性约束分为三个层面:
在本发明中,针对保守形式下子调度计划编制的0-1整数规划模型执行求解,主要原因是:1)保守形式下与状态变迁过程完全对应,利于展开深层次的理论分析;2)保守形式下得到的计划方案具有最高的可靠性,并能反映出调度优化效果的下限,利于建立统一的优化策略评价参考准则;3)保守形式下的模型更利于进行线性化处理。
可见,本发明面向舰队防空资源的子调度过程,定义了子调度计划的任务集,基于任务集进行了系统演化状态分析,并且定义了演化状态分析的有限状态机(FSM)模型,最终实现了系统状态演化的控制变量的规范、高效求解,从而实现了舰队防空资源子调度过程中对防空资源设施的调度与控制。
以上实施例仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。

Claims (10)

1.一种基于任务集控制及系统作战状态演化分析的舰队防空资源子调度控制方法,其特征在于,包括以下步骤:
为舰队防空资源的子调度计划建立任务集;
在任务集的控制下,执行系统状态的演化分析;
建立表示系统状态演化的有限状态机模型;
状态演化的有限状态机模型基础上,求解系统状态演化的控制变量;以及
应用控制变量进行防空资源子调度过程的计划编制和防空资源设施控制。
2.如权利要求1所述的舰队防空资源子调度控制方法,其特征在于:所述任务集M={m}由子调度计划中的若干个任务向量m构成,所述任务向量m表示为m=(gm,fm,am,em,tm),其中gm∈G,fm∈F,am∈Z+,em∈E;G、F和E分别表示制导资源集合、发射资源集合和目标集合,gm和fm分别表示执行任务m的制导资源和发射资源,am表示执行任务m时发射的弹药数量,em表示任务m打击的目标,tm表示任务的时间属性,Z+表示正整数。
3.如权利要求2所述的舰队防空资源子调度控制方法,其特征在于:所述系统状态演化分析包括:
目标状态演化分析,从给定的任务集M中,将其中与目标e相关的任务选出来构成子集Me
Me={m∈M,em=e}
将Me按照任务开始时间进行排序得到目标e的打击序列Le,令|Le|表示序列中的任务数,mei表示Le中的第i个任务,假定目标状态的转换发生在任务结束时刻,并令ttei表示mei的结束时刻,sei表示在ttei时刻状态转换之后的目标状态,由于目标的初始状态为1,那么可以得到sei的概率:
所以目标生存状态的演化函数为分段函数:
4.如权利要求3所述的舰队防空资源子调度控制方法,其特征在于:所述系统状态演化分析包括:
目标打击效果分析,定义与目标e相关的时变函数λe(t)和γe(t),λe(t)表示“威胁等级”,γe(t)表示“抗击损耗”;其中λe(t)是单调增函数,表示目标的威胁性对时间不断增大;γe(t)是单调非减函数,表示在t时刻编队为抗击目标e所付出的各类资源损耗以及目标持续活动造成不稳定性的综合累积效果,在抗击过程中γe(t)是一个累积量;对于给定的攻击序列Le,可以给出其末端威胁等级Λe(Le)和末端抗击损耗Γe(Le),下式假定计划期开始时间为0:
上述Λe(Le)和Γe(Le)反映了打击序列在目标持续运动过程中的打击效果。
5.如权利要求4所述的舰队防空资源子调度控制方法,其特征在于,所述系统状态演化分析包括:
系统作战状态演化分析,用于确定给定打击任务所对应的完全演化路径;对于某个任务m所建立的制导资源gm、发射资源fm和目标em之间的耦合关联作为子系统m,所述完全演化路径表示在所有可能情况下子系统m的状态演化全过程;基于完全演化路径,分析打击过程。
6.如权利要求5所述的舰队防空资源子调度控制方法,其特征在于,建立表示系统状态演化的有限状态机模型包括:建立差分及0-1整数型状态变量形式下面向可行调度的状态转移方程:
其中上述方程满足以下约束条件:
以及,
在t时刻g同时执行跟踪制导任务的数量不能超过在t时刻制导资源g的最大容量,在t时刻f同时执行打击任务的数量不能超过在t时刻发射资源f的最大容量,某个发射资源计划期内所有任务所耗费的弹药量不能超过其计划期开始时的总载弹量;
其中,g为制导资源,f为发射资源,e为目标,a为弹药资源,sijgfet表示子系统(g,f,e)在时刻t处于si.j状态,mgfaet表示任务集中在时刻t的一个任务;|G|、|F|、|A|分别表示计划期内跟踪资源、发射资源、导弹资源的规模,GELge表示由(g,e)参与的制导资源与目标的关联关系G-E关联准备任务的执行时间,GFLgf表示由(g,f)参与的制导资源与发射资源的关联关系G-F关联准备任务的执行时间,GELge和GFLgf均为整数值;ψgfet表示在t时刻是否产生一个Close-GE(g,f,e,t)事件,表示在t时刻是否产生一个Close-GF(g,f,e,t)事件,φgfet表示在t时刻是否产生一个Close-ALL(g,f,e,t)事件,其中,Close-GE(g,f,e,t)事件表示在t时刻仅关闭子系统(g,f,e)的G-E关联,Close-GF(g,f,e,t)事件表示在t时刻仅关闭子系统(g,f,e)的G-F关联,Close-ALL(g,f,e,t)事件表示在t时刻关闭子系统(g,f,e)的所有关联,ψgfetφgfet、的取值均为0或1;DMAX为所有Lgfe、GELge、GFLgf中的最大值,DMAX表示所有的工作执行时间参量中的最大值。
7.如权利要求6所述的舰队防空资源子调度控制方法,其特征在于,在状态演化的有限状态机(FSM)模型基础上,求解系统状态演化的控制变量包括:基于差分状态转移方程,确定相应的0-1整数规划模型;所述0-1整数规划模型包括特定约束条件下的目标函数和约束条件;针对所述0-1整数规划模型执行求解。
8.一种基于任务集控制及系统作战状态演化分析的舰队防空资源子调度控制系统,其特征在于,包括:
任务集设定模块,用于为舰队防空资源的子调度计划建立任务集;
演化分析模块,用于在任务集的控制下,执行系统状态的演化分析;
状态演化建模模块,用于建立表示系统状态演化的有限状态机(FSM)模型;
控制变量计算模块,用于在状态演化的有限状态机(FSM)模型基础上,求解系统状态演化的控制变量;以及
资源控制模块,应用控制变量进行防空资源子调度过程的计划编制和防空资源设施控制。
9.根据权利要求8所述的舰队防空资源子调度控制系统,其特征在于,任务集设定模块所设定的任务集M={m}由子调度计划中的若干个任务向量m构成,所述任务向量m表示为m=(gm,fm,am,em,tm),其中gm∈G,fm∈F,am∈Z+,em∈E;G、F和E分别表示制导资源集合、发射资源集合和目标集合,gm和fm分别表示执行任务m的制导资源和发射资源,am表示执行任务m时发射的弹药数量,em表示任务m打击的目标,tm表示任务的时间属性,Z+表示正整数。
10.根据权利要求9所述的舰队防空资源子调度控制系统,其特征在于,所述演化分析模块执行的系统状态演化分析包括:
系统作战状态演化分析,用于确定给定打击任务所对应的完全演化路径;对于某个任务m所建立的制导资源gm、发射资源fm和目标em之间的耦合关联作为子系统m,所述完全演化路径表示在所有可能情况下子系统m的状态演化全过程;基于完全演化路径,分析打击过程。
CN201711387620.5A 2017-12-20 2017-12-20 一种舰队防空资源子调度控制系统与方法 Active CN108287473B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711387620.5A CN108287473B (zh) 2017-12-20 2017-12-20 一种舰队防空资源子调度控制系统与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711387620.5A CN108287473B (zh) 2017-12-20 2017-12-20 一种舰队防空资源子调度控制系统与方法

Publications (2)

Publication Number Publication Date
CN108287473A true CN108287473A (zh) 2018-07-17
CN108287473B CN108287473B (zh) 2021-04-27

Family

ID=62832096

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711387620.5A Active CN108287473B (zh) 2017-12-20 2017-12-20 一种舰队防空资源子调度控制系统与方法

Country Status (1)

Country Link
CN (1) CN108287473B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109460027A (zh) * 2018-11-16 2019-03-12 中国人民解放军海军大连舰艇学院 基于事件图的编队防空调度方法和系统
CN112818522A (zh) * 2021-01-18 2021-05-18 中国人民解放军91776部队 弹药消耗测算方法和装置
CN114047761A (zh) * 2021-11-12 2022-02-15 中国电子科技集团公司第十五研究所 基于编队跨平台资源调度的弹性杀伤网构建方法及装置
CN114440712A (zh) * 2022-01-20 2022-05-06 北京理工大学 一种面向协同毁伤评估的探测载荷资源调度方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120209652A1 (en) * 2011-02-14 2012-08-16 Deepak Khosla System and method for resource allocation and management
CN104951631A (zh) * 2015-07-17 2015-09-30 中国人民解放军国防科学技术大学 一种面向作战模拟的作战过程建模方法及模型调度方法
CN106203870A (zh) * 2016-07-18 2016-12-07 南京航空航天大学 一种面向联合作战的目标体系分析及武器分配方法
CN107135224A (zh) * 2017-05-12 2017-09-05 中国人民解放军信息工程大学 基于Markov演化博弈的网络防御策略选取方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120209652A1 (en) * 2011-02-14 2012-08-16 Deepak Khosla System and method for resource allocation and management
CN104951631A (zh) * 2015-07-17 2015-09-30 中国人民解放军国防科学技术大学 一种面向作战模拟的作战过程建模方法及模型调度方法
CN106203870A (zh) * 2016-07-18 2016-12-07 南京航空航天大学 一种面向联合作战的目标体系分析及武器分配方法
CN107135224A (zh) * 2017-05-12 2017-09-05 中国人民解放军信息工程大学 基于Markov演化博弈的网络防御策略选取方法及其装置

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
H.NAEEM 等: "An Optimal Dynamic Threat Evaluation and Weapon Scheduling Technique", 《RESEARCH AND DEVELOPMENT IN INTELLIGENT SYSTEMS XXVI》 *
HONGQUAN SHI等: "Modeling on cooperative missile anti-air channel organization of a naval task group under multi-platform cooperative engagement", 《ICIC EXPRESS LETTERS》 *
XINGJUN CHEN 等: "Multi-platform Air Defence Scheduling Based on 0-1 Integer Linear Programming", 《2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING》 *
张磊 等: "基于作战流程的舰艇编队防空作战资源管理研究", 《舰船电子工程》 *
李凌鹏 等: "有限状态机在防空作战仿真中的应用", 《电光与控制》 *
甘斌 等: "一种基于HLA的防空作战仿真框架设计与实现", 《系统仿真学报》 *
罗江锋 等: "舰艇防空火力规划与调度方法研究", 《国防科技大学学报》 *
陈行军 等: "含时间窗联合作战计划问题的建模与求解", 《系统工程理论与实践》 *
马良 等: "基于Petri网的水面舰艇区域防空作战使用流程优化方法", 《指挥控制与仿真》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109460027A (zh) * 2018-11-16 2019-03-12 中国人民解放军海军大连舰艇学院 基于事件图的编队防空调度方法和系统
CN109460027B (zh) * 2018-11-16 2021-11-16 中国人民解放军海军大连舰艇学院 基于事件图的编队防空调度方法和系统
CN112818522A (zh) * 2021-01-18 2021-05-18 中国人民解放军91776部队 弹药消耗测算方法和装置
CN112818522B (zh) * 2021-01-18 2022-04-22 中国人民解放军91776部队 弹药消耗测算方法和装置
CN114047761A (zh) * 2021-11-12 2022-02-15 中国电子科技集团公司第十五研究所 基于编队跨平台资源调度的弹性杀伤网构建方法及装置
CN114440712A (zh) * 2022-01-20 2022-05-06 北京理工大学 一种面向协同毁伤评估的探测载荷资源调度方法
CN114440712B (zh) * 2022-01-20 2022-11-08 北京理工大学 一种面向协同毁伤评估的探测载荷资源调度方法

Also Published As

Publication number Publication date
CN108287473B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
CN108287473A (zh) 一种基于任务集及系统状态演化分析的舰队防空资源子调度控制系统与方法
CN108460509A (zh) 一种动态环境下舰队防空资源调度优化控制方法与系统
CN108287472A (zh) 采用滚动时域框架的舰队防空决策与自动化调度系统与方法
CN108364138B (zh) 基于对抗视角的武器装备发展规划建模与求解方法
CN107193639A (zh) 一种支持联合作战的多核并行仿真引擎系统
Khosla Hybrid genetic approach for the dynamic weapon-target allocation problem
CN111538950A (zh) 一种多无人平台干扰资源分配方法
CN113392521A (zh) 面向海空联合作战任务的资源编组模型构建方法及系统
CN110210115A (zh) 基于决策点和分支仿真的作战仿真方案设计及运行方法
CN108255780A (zh) 一种基于优化目标的舰队防空资源控制参量的求解计算方法
CN115951709A (zh) 基于td3的多无人机空战策略生成方法
Zhang et al. Radar jamming decision-making in cognitive electronic warfare: A review
Liu et al. A Time-Driven Dynamic Weapon Target Assignment Method
Rai et al. Optimal decision support for air power potential
Shuo et al. Research on distributed task allocation of loitering munition swarm
CN114662655A (zh) 一种基于注意力机制的兵棋推演ai分层决策方法及装置
Nedelcu Defense resources management using game theory
Chen et al. Multi-platform air defence scheduling based on 0-1 integer linear programming
Park The Korean arms race: implications in the international politics of Northeast Asia
Gong et al. Event graph based warship formation air defense scheduling model and algorithm
CN109460027A (zh) 基于事件图的编队防空调度方法和系统
CN113112079B (zh) 基于启发式动态加深优化算法的任务分配方法
Hill et al. Some experiments with agent-based combat models
Liu et al. The Optimization of Equipment System-ofsystems Resilience Protection based on Reinforcement Learning
Shi et al. Research on the Importance Data Generation of Target System Based on Complex Network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant