CN108287404A - 一种快速反射镜带宽计算方法及仿真计算模型 - Google Patents

一种快速反射镜带宽计算方法及仿真计算模型 Download PDF

Info

Publication number
CN108287404A
CN108287404A CN201711411063.6A CN201711411063A CN108287404A CN 108287404 A CN108287404 A CN 108287404A CN 201711411063 A CN201711411063 A CN 201711411063A CN 108287404 A CN108287404 A CN 108287404A
Authority
CN
China
Prior art keywords
bandwidth
fast mirror
range
deflection
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711411063.6A
Other languages
English (en)
Other versions
CN108287404B (zh
Inventor
吴伊玲
武春风
李强
姜永亮
胡黎明
张贵清
庹文波
许彦刚
雷杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Designing Institute of Hubei Space Technology Academy
Original Assignee
General Designing Institute of Hubei Space Technology Academy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Designing Institute of Hubei Space Technology Academy filed Critical General Designing Institute of Hubei Space Technology Academy
Priority to CN201711411063.6A priority Critical patent/CN108287404B/zh
Publication of CN108287404A publication Critical patent/CN108287404A/zh
Application granted granted Critical
Publication of CN108287404B publication Critical patent/CN108287404B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

本发明公开了一种快速反射镜带宽计算方法,包括如下步骤:确定设计输入量、输入设计输入量、对设计输入量进行分析和计算、输出不同偏转范围下,快速反射镜的带宽;依赖于simulink仿真平台进行,利用simulink来搭建计算模块,利用simulink的自定义模块Matlab Function编写代码,分步实现算法的功能,封装成框图的形式以供调用。本发明具有以下优点:带宽仿真计算模型能够适用于大负载快速反射镜情况;带宽仿真计算模型计算结果贴合实际应用;带宽仿真计算模型结构简单、实用,计算效率高;可以满足不同偏转范围情况下的带宽计算要求。采用该计算方法后,能够在各个偏转范围情况下,使得带宽尽量达到最大;相比不同范围,同一带宽情况,应用效果会更好。

Description

一种快速反射镜带宽计算方法及仿真计算模型
技术领域
本发明涉及快速反射镜技术领域,具体涉及一种快速反射镜带宽计算方法及仿真计算模型。
背景技术
压电陶瓷式的快速反射镜具有高分辨率、高精度的特点,在光束控制领域得到了广泛的应用,但由于现有的快速反射镜镜片质量都较小,约20g~100g,快速反射镜的带宽都是基于小负载、小偏转范围情况下进行的仿真计算,快反镜能够绕X轴、Y轴进行旋转,小偏转范围即绕X、Y轴旋转的角度小于1mrad~2mrad。而随着快速反射镜应用的进一步推广,高带宽、大负载、大偏转范围快速反射镜的需求逐步加强,高带宽即绕X轴、Y轴旋转运动能够达到很高频率,通常上百赫兹;大负载即快反镜片重量能够达到200g~500g,大偏转范围即绕X、Y轴旋转的角度达到3mrad~5mrad。但并没有一种有效的计算方法来推导出偏转范围与带宽的关系,这极大地影响了快速反射镜的应用以及快速反射镜伺服精度的提高。
发明内容
针对现有技术的缺陷和迫切需求,本发明提供了一种快速反射镜带宽计算方法,能够快速准确的计算出大负载情况下,不同偏转范围对应的快速反射镜带宽,所述的快速反射镜包括快速反射镜致动器、快速反射镜驱动控制器、快速反射镜片,所述的快速反射镜致动器包括压电陶瓷、位移放大机构、柔性铰链和外壳,所述的快速反射镜带宽计算方法包括如下步骤:
步骤一、确定设计输入量:快速反射镜片质量、快速反射镜转动惯量、快速反射镜偏转范围、压电陶瓷输出力、压电陶瓷输出位移、快速反射镜驱动控制器最大输出功率;
步骤二、输入步骤一确定的设计输入量;
步骤三、对步骤二输入的设计输入量进行分析和计算;
步骤四、输出不同偏转范围下,快速反射镜的带宽。
优选地,依赖于simulink仿真平台进行,利用simulink来搭建计算模块,利用simulink的自定义模块Matlab Function编写代码,分步实现算法的功能,封装成框图的形式以供调用,所述的步骤一、步骤二、步骤三中的设计输入量确定、输入以及输入后的分析和计算具体步骤为:
以快速反射镜片的质量为输入,以快速反射镜谐振频率为输出,快速反射镜片的质量与谐振频率存在如下关系:
式中,m1、m2为快速反射镜片质量,单位为kg;m0为压电陶瓷质量,单位为kg;f1、f2为质量m1、m2的快速反射镜所对应的谐振频率,单位为Hz;
以快速反射镜的谐振频率为输入,以快速反射镜最高带宽为输出,为了完全避开谐振带,系统的所有结构谐振频率都应远高于其控制系统的控制带宽,一般情况下要求:
f1>(2-4)fc
式中,f1为结构的一阶谐振频率,单位为Hz;fc为系统要求的工作带宽,单位为Hz;
以压电陶瓷的最大输出力、最大输出位移和快速反射镜的最大偏转范围为输入,以快速反射镜的最大角加速度为输出,快速反射镜的最大角加速度可以采用如下公式进行计算:
a=M/J=MaxF(MaxL/MaxRange)/J
式中,a为最大角加速度,单位为rad/s2;M为转矩,单位为Nm;J为转动惯量,单位为kg·m2;MaxL/MaxRange为压电陶瓷与旋转中心的距离,单位为m;
以快速反射镜最高带宽、最大角加速度、最大偏转范围和驱动控制器的最大输出功率为输入,以实际偏转范围和实际带宽为输出。
具体地,所述的步骤三中对步骤二输入的设计输入量进行分析和计算,具体分析和计算方法为:
快速反射镜的带宽与偏转范围的关系可以分成三个阶段进行仿真计算,第一阶段为小偏转范围带宽计算,根据最大角加速度进行仿真;第二阶段为中等偏转范围带宽计算,此部分为过渡部分,联合最大角加速度与最大输出功率,再通过拉格朗日插值算法进行曲线拟合与第一、三阶段进行链接;第三阶段为大偏转范围带宽计算,根据最大输出功率进行仿真计算,最终完成快速反射镜对应偏转范围的带宽计算仿真;
第二阶段曲线根据第一阶段和第三阶段数据分别拟合两条曲线,拟合至两条曲线相交处截止,拟合算法采用如下公式进行计算:
f=A0(Range)f0+A1(Range)f1+…+An(Range)fn
式中,n表示拟合所选的已知数据点数,fn、Rangen表示第n个已知点对应的频率和偏转范围,f、Range表示待拟合的第二阶段曲线对应的频率和偏转范围。
具体地,所述的步骤四中输出不同偏转范围下,快速反射镜的带宽,具体为:
当快速反射镜在大行程运动时,限制带宽的影响因素主要是快速反射镜驱动控制器的最高输出功率;当快速反射镜在小行程运动时,限制带宽的影响因素主要是快速反射镜的最大角加速度;最终,最高带宽还受到谐振频率的限制;
当快速反射镜进行正弦运动时,快速反射镜的最大角加速度与带宽及偏转范围有如下关系:
a=4π2f2Range
式中,a为最大角加速度,单位为rad/s2;Range为快速反射镜的偏转范围,单位为rad;f为带宽,单位为Hz;
快速反射镜驱动控制器的最大输出功率与带宽及偏转范围有如下关系:
P=πfCVpp=πkfCRange
式中,P为快速反射镜驱动控制器的最大输出功率,单位为W;Range为快速反射镜的偏转范围,单位为rad;f为带宽,单位为Hz;k为驱动控制器输出电压与偏转范围比例系数,单位为V/rad;C为快速反射镜的电容值,单位为F。
本发明还提供了上述一种快速反射镜带宽计算方法所使用的仿真计算模型,包括快速反射镜谐振频率计算模块、快速反射镜最高带宽计算模块、快速反射镜加速度计算模块以及综合模块,
所述的快速反射镜谐振频率计算模块以快速反射镜片的质量为输入,以快速反射镜谐振频率为输出,快速反射镜片的质量与谐振频率存在如下关系:
式中,m1、m2为快速反射镜片质量,单位为kg;m0为压电陶瓷质量,单位为kg;f1、f2为质量m1、m2的快速反射镜所对应的谐振频率,单位为Hz;
所述的快速反射镜最高带宽计算模块,以快速反射镜的谐振频率为输入,以快速反射镜最高带宽为输出,为了完全避开谐振带,系统的所有结构谐振频率都应远高于其控制系统的控制带宽,一般情况下要求:
f1>(2-4)fc
式中,f1为结构的一阶谐振频率,单位为Hz;fc为系统要求的工作带宽,单位为Hz;
所述的快速反射镜加速度计算模块,以压电陶瓷的最大输出力、最大输出位移和快速反射镜的最大偏转范围为输入,以快速反射镜的最大角加速度为输出,快速反射镜的最大角加速度可以采用如下公式进行计算:
a=M/J=MaxF(MaxL/MaxRange)/J
式中,a为最大角加速度,单位为rad/s2;M为转矩,单位为Nm;J为转动惯量,单位为kg·m2;MaxL/MaxRange为压电陶瓷与旋转中心的距离,单位为m;
所述的综合模块,以快速反射镜最高带宽、最大角加速度、最大偏转范围和驱动控制器的最大输出功率为输入,以实际偏转范围和实际带宽为输出。
本发明提供的一种快速反射镜带宽计算方法及仿真计算模型,据快速反射镜的各项设计输入,对快速反射镜的带宽与偏转范围进行了仿真计算,在以往的快速反射镜带宽计算中,很少有考虑偏转范围对带宽影响的计算。本带宽的仿真计算模型所得的计算值能够将快速反射镜在目标跟踪领域中进行较好的应用,通过快速反射镜控制光束的精密指向、跟踪与稳定,补偿大气扰动、载体振动共同引起的光束偏转,实现对目标的高精度跟踪,采用该带宽计算模型优化控制算法,根据偏转范围分段设置控制器参数,能够将跟踪精度提高至数微弧度的量级,使快速反射镜的性能应用效果达到最大化。
具体而言,具有以下优点:带宽仿真计算模型能够适用于大负载快速反射镜情况;带宽仿真计算模型计算结果贴合实际应用;带宽仿真计算模型结构简单、实用,计算效率高。总之,本发明的带宽仿真计算模型对大负载下,快速反射镜的带宽计算具有很好的适用性,可以满足不同偏转范围情况下的带宽计算要求。采用该计算方法后,能够在各个偏转范围情况下,使得带宽尽量达到最大;相比不同范围,同一带宽情况,应用效果会更好。
附图说明
图1为本发明的带宽仿真计算模型原理图;
图2为本发明的快速反射镜带宽仿真计算模型仿真结构图;
图3为本发明的快速反射镜结构谐振频率图;
图4为本发明的三阶段仿真计算方法图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图及实施例,对本发明的具体实施方式作进一步说明。应当理解,此处所描述的具体实施例仅仅用于帮助理解本发明,并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
下面结合附图和实施例对本发明做进一步的详细说明。
本发明所需计算带宽的快速反射镜包括快速反射镜致动器、快速反射镜驱动控制器、快速反射镜片。其中快速反射镜致动器包括压电陶瓷、位移放大机构、柔性铰链和外壳。
图1为本发明的带宽仿真计算模型原理图。本发明首先确定设计输入量:快速反射镜片质量、快速反射镜转动惯量、快速反射镜偏转范围、压电陶瓷输出力、压电陶瓷输出位移、快速反射镜驱动控制器最大输出功率,然后输入确定的设计输入量,这几个设计输入量(指标)进行分析和计算,最终输出不同偏转范围下,快速反射镜的带宽。
图2为快速反射镜带宽仿真计算模型仿真结构图,给出了仿真计算的实现方式。仿真计算的算法依赖于simulink仿真平台进行,利用simulink来搭建计算模块,利用simulink的自定义模块Matlab Function编写代码,分步实现算法的功能,封装成框图的形式以供调用。带宽仿真计算模型分为快速反射镜谐振频率计算模块、快速反射镜最高带宽计算模块、快速反射镜加速度计算模块以及综合模块。将快速反射镜谐振频率计算模块、快速反射镜加速度计算模块计算数据,作为快速反射镜最高带宽计算模块输入;将快速反射镜最高带宽计算模块、快速反射镜驱动控制器最大输出功率等输出信息送至综合模块,完成不同偏转范围下,快速反射镜的带宽计算。
在本发明中,快速反射镜谐振频率计算模块以快速反射镜片的质量为输入,以快速反射镜谐振频率为输出。根据经验参数,当快速反射镜片的质量为400g时,快速反射镜的谐振频率为250Hz,可以此参数为基准进行后续仿真计算。快速反射镜片的质量与谐振频率存在如下关系:
式中,m1、m2为快速反射镜片质量,单位为kg;m0为压电陶瓷质量,单位为kg;f1、f2为质量m1、m2的快速反射镜所对应的谐振频率,单位为Hz。快速反射镜所对应的谐振频率也是系统的谐振频率(固有的谐振频率点),这个频率不能重叠带宽对应的频率,而且要求远大于之;通过此式找到系统的谐振频率以便避开。
在本发明中,快速反射镜最高带宽计算模块以快速反射镜的谐振频率为输入,以快速反射镜最高带宽为输出。快速反射镜的谐振不是仅仅局限在谐振点对应的单一频率上,而是一个范围(满足下式的值均可以,具体计算时取一个点,一般以2倍为例,4倍余量太大),如图3所示。为了完全避开谐振带,从一般的仿真计算思路来讲,系统的所有结构谐振频率(即系统的谐振频率)都应远高于快速反射镜的带宽、工作带宽(即控制系统的控制带宽),一般情况下要求:
f1>(2-4)fc
式中,f1为结构的一阶谐振频率,单位为Hz;fc为系统要求的工作带宽,单位为Hz。
在本发明中,快速反射镜加速度计算模块以压电陶瓷的最大输出力、最大输出位移和快速反射镜的最大偏转范围为输入,以快速反射镜的最大角加速度为输出。本计算模型可选用的压电陶瓷的参数如表1所示。
表1压电陶瓷参数表
快速反射镜的最大角加速度可以采用如下公式进行计算:
a=M/J=MaxF(MaxL/MaxRange)/J
式中,a为最大角加速度,单位为rad/s2;M为转矩,单位为Nm;J为转动惯量,单位为kg·m2;MaxL/MaxRange为压电陶瓷与旋转中心的距离,单位为m;MaxF:陶瓷最大输出力,MaxL:陶瓷最大输出位移,MaxRange:快速反射镜最大偏转范围;压电陶瓷外形尺寸与质量约成等比例关系。
在本发明中,综合模块以快速反射镜最高带宽、最大角加速度、最大偏转范围和驱动控制器的最大输出功率为输入,以实际偏转范围和实际带宽为输出。
当快速反射镜在大行程运动时,限制带宽的影响因素主要是快速反射镜驱动控制器的最高输出功率;当快速反射镜在小行程运动时,限制带宽的影响因素主要是快速反射镜的最大角加速度。最终,最高带宽还受到谐振频率的限制。
当快速反射镜进行正弦运动时,快速反射镜的最大角加速度与带宽及偏转范围有如下关系:
a=4π2f2Range
式中,a为最大角加速度,单位为rad/s2;Range为快速反射镜的偏转范围,单位为rad;f为带宽,单位为Hz。
快速反射镜驱动控制器的最大输出功率与带宽及偏转范围有如下关系:
P=πfCVpp=πkfCRange
式中,P为快速反射镜驱动控制器的最大输出功率,单位为W;Range为快速反射镜的偏转范围,单位为rad;f为带宽,单位为Hz;k为驱动控制器输出电压与偏转范围比例系数,单位为V/rad;C为快速反射镜的电容值,单位为F。
图4中展示了快速反射镜的带宽与偏转范围的关系可以分成三个阶段进行仿真计算。第一阶段为小偏转范围带宽计算,根据最大角加速度进行仿真;第二阶段为中等偏转范围带宽计算,此部分为过渡部分,联合最大角加速度与最大输出功率,再通过拉格朗日插值算法进行曲线拟合与第一、三阶段进行链接;第三阶段为大偏转范围带宽计算,根据最大输出功率进行仿真计算,最终完成快速反射镜的带宽计算仿真。
第二阶段曲线根据第一阶段和第三阶段数据分别拟合两条曲线,拟合至两条曲线相交处截止,拟合算法采用如下公式进行计算:
f=A0(Range)f0+A1(Range)f1+…+An(Range)fn
式中,n表示拟合所选的已知数据点数,fn、Rangen表示第n个已知点对应的频率和偏转范围,f、Range表示待拟合的第二阶段曲线对应的频率和偏转范围。
选取表1中10mm×10mm×54mm压电陶瓷、偏转范围±3.2mrad、镜片质量300g、最大转动惯量4kg·cm2、快反镜驱动控制器最大输出功率70W,以此为例,输入快速反射镜带宽计算模型中,可计算得到不同偏转范围下,快速反射镜带宽如表2所示。
表2偏转范围与带宽计算结果实例
以上所述为本发明的一个实施例而已,但本发明不应该局限于该实施例和附图所公开的内容。所以凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。

Claims (5)

1.一种快速反射镜带宽计算方法,所述的快速反射镜包括快速反射镜致动器、快速反射镜驱动控制器、快速反射镜片,所述的快速反射镜致动器包括压电陶瓷、位移放大机构、柔性铰链和外壳,其特征在于所述的快速反射镜带宽计算方法包括如下步骤:
步骤一、确定设计输入量:快速反射镜片质量、快速反射镜转动惯量、快速反射镜偏转范围、压电陶瓷输出力、压电陶瓷输出位移、快速反射镜驱动控制器最大输出功率;
步骤二、输入步骤一确定的设计输入量;
步骤三、对步骤二输入的设计输入量进行分析和计算;
步骤四、输出不同偏转范围下,快速反射镜的带宽。
2.根据权利要求1所述的一种快速反射镜带宽计算方法,其特征在于依赖于simulink仿真平台进行,利用simulink来搭建计算模块,利用simulink的自定义模块MatlabFunction编写代码,分步实现算法的功能,封装成框图的形式以供调用,所述的步骤一、步骤二、步骤三中的设计输入量确定、输入以及输入后的分析和计算具体步骤为:
以快速反射镜片的质量为输入,以快速反射镜谐振频率为输出,快速反射镜片的质量与谐振频率存在如下关系:
式中,m1、m2为快速反射镜片质量,单位为kg;m0为压电陶瓷质量,单位为kg;f1、f2为质量m1、m2的快速反射镜所对应的谐振频率,单位为Hz;
以快速反射镜的谐振频率为输入,以快速反射镜最高带宽为输出,为了完全避开谐振带,系统的所有结构谐振频率都应远高于其控制系统的控制带宽,一般情况下要求:
f1>(2-4)fc
式中,f1为结构的一阶谐振频率,单位为Hz;fc为系统要求的工作带宽,单位为Hz;
以压电陶瓷的最大输出力、最大输出位移和快速反射镜的最大偏转范围为输入,以快速反射镜的最大角加速度为输出,快速反射镜的最大角加速度可以采用如下公式进行计算:
a=M/J=MaxF(MaxL/MaxRange)/J
式中,a为最大角加速度,单位为rad/s2;M为转矩,单位为Nm;J为转动惯量,单位为kg·m2;MaxL/MaxRange为压电陶瓷与旋转中心的距离,单位为m;
以快速反射镜最高带宽、最大角加速度、最大偏转范围和驱动控制器的最大输出功率为输入,以实际偏转范围和实际带宽为输出。
3.根据权利要求2所述的一种快速反射镜带宽计算方法,其特征在于所述的步骤三中对步骤二输入的设计输入量进行分析和计算,具体分析和计算方法为:
快速反射镜的带宽与偏转范围的关系可以分成三个阶段进行仿真计算,第一阶段为小偏转范围带宽计算,根据最大角加速度进行仿真;第二阶段为中等偏转范围带宽计算,此部分为过渡部分,联合最大角加速度与最大输出功率,再通过拉格朗日插值算法进行曲线拟合与第一、三阶段进行链接;第三阶段为大偏转范围带宽计算,根据最大输出功率进行仿真计算,最终完成快速反射镜对应偏转范围的带宽计算仿真;
第二阶段曲线根据第一阶段和第三阶段数据分别拟合两条曲线,拟合至两条曲线相交处截止,拟合算法采用如下公式进行计算:
f=A0(Range)f0+A1(Range)f1+…+An(Range)fn
式中,n表示拟合所选的已知数据点数,fn、Rangen表示第n个已知点对应的频率和偏转范围,f、Range表示待拟合的第二阶段曲线对应的频率和偏转范围。
4.根据权利要求3所述的一种快速反射镜带宽计算方法,其特征在于所述的步骤四中输出不同偏转范围下,快速反射镜的带宽,具体为:
当快速反射镜在大行程运动时,限制带宽的影响因素主要是快速反射镜驱动控制器的最高输出功率;当快速反射镜在小行程运动时,限制带宽的影响因素主要是快速反射镜的最大角加速度;最终,最高带宽还受到谐振频率的限制;
当快速反射镜进行正弦运动时,快速反射镜的最大角加速度与带宽及偏转范围有如下关系:
a=4π2f2Range
式中,a为最大角加速度,单位为rad/s2;Range为快速反射镜的偏转范围,单位为rad;f为带宽,单位为Hz;
快速反射镜驱动控制器的最大输出功率与带宽及偏转范围有如下关系:
P=πfCVpp=πkfCRange
式中,P为快速反射镜驱动控制器的最大输出功率,单位为W;Range为快速反射镜的偏转范围,单位为rad;f为带宽,单位为Hz;k为驱动控制器输出电压与偏转范围比例系数,单位为V/rad;C为快速反射镜的电容值,单位为F。
5.根据权利要求1~4中任一项所述的一种快速反射镜带宽计算方法所使用的仿真计算模型,其特征在于包括快速反射镜谐振频率计算模块、快速反射镜最高带宽计算模块、快速反射镜加速度计算模块以及综合模块,
所述的快速反射镜谐振频率计算模块以快速反射镜片的质量为输入,以快速反射镜谐振频率为输出,快速反射镜片的质量与谐振频率存在如下关系:
式中,m1、m2为快速反射镜片质量,单位为kg;m0为压电陶瓷质量,单位为kg;f1、f2为质量m1、m2的快速反射镜所对应的谐振频率,单位为Hz;
所述的快速反射镜最高带宽计算模块,以快速反射镜的谐振频率为输入,以快速反射镜最高带宽为输出,为了完全避开谐振带,系统的所有结构谐振频率都应远高于其控制系统的控制带宽,一般情况下要求:
f1>(2-4)fc
式中,f1为结构的一阶谐振频率,单位为Hz;fc为系统要求的工作带宽,单位为Hz;
所述的快速反射镜加速度计算模块,以压电陶瓷的最大输出力、最大输出位移和快速反射镜的最大偏转范围为输入,以快速反射镜的最大角加速度为输出,快速反射镜的最大角加速度可以采用如下公式进行计算:
a=M/J=MaxF(MaxL/MaxRange)/J
式中,a为最大角加速度,单位为rad/s2;M为转矩,单位为Nm;J为转动惯量,单位为kg·m2;MaxL/MaxRange为压电陶瓷与旋转中心的距离,单位为m;
所述的综合模块,以快速反射镜最高带宽、最大角加速度、最大偏转范围和驱动控制器的最大输出功率为输入,以实际偏转范围和实际带宽为输出。
CN201711411063.6A 2017-12-23 2017-12-23 一种快速反射镜带宽计算方法及仿真计算模型 Active CN108287404B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711411063.6A CN108287404B (zh) 2017-12-23 2017-12-23 一种快速反射镜带宽计算方法及仿真计算模型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711411063.6A CN108287404B (zh) 2017-12-23 2017-12-23 一种快速反射镜带宽计算方法及仿真计算模型

Publications (2)

Publication Number Publication Date
CN108287404A true CN108287404A (zh) 2018-07-17
CN108287404B CN108287404B (zh) 2020-11-06

Family

ID=62832055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711411063.6A Active CN108287404B (zh) 2017-12-23 2017-12-23 一种快速反射镜带宽计算方法及仿真计算模型

Country Status (1)

Country Link
CN (1) CN108287404B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283684A (zh) * 2018-09-20 2019-01-29 国营芜湖机械厂 基于Light tools仿真的透明件边缘封闭区观测棱镜的设计方法及棱镜
CN110631808A (zh) * 2019-09-25 2019-12-31 湖北航天技术研究院总体设计所 一种便携式快反镜性能自动测试系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0941497B1 (en) * 1997-10-02 2002-11-27 Raytheon Company Dynamic optical corrector
CN106338808A (zh) * 2016-10-17 2017-01-18 湖北航天技术研究院总体设计所 一种目标跟踪控制系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0941497B1 (en) * 1997-10-02 2002-11-27 Raytheon Company Dynamic optical corrector
CN106338808A (zh) * 2016-10-17 2017-01-18 湖北航天技术研究院总体设计所 一种目标跟踪控制系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283684A (zh) * 2018-09-20 2019-01-29 国营芜湖机械厂 基于Light tools仿真的透明件边缘封闭区观测棱镜的设计方法及棱镜
CN110631808A (zh) * 2019-09-25 2019-12-31 湖北航天技术研究院总体设计所 一种便携式快反镜性能自动测试系统及方法

Also Published As

Publication number Publication date
CN108287404B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
Davydov et al. Kinematics of autowave structures in excitable media
CN103412491B (zh) 一种挠性航天器特征轴姿态机动指数时变滑模控制方法
TWI327260B (en) Motor control device
CN104182575B (zh) 一种机载红外稳瞄系统全链路全过程仿真系统及方法
CN109070744A (zh) 控制自动驾驶车辆重新进入自动驾驶模式的方法和系统
CN108287404A (zh) 一种快速反射镜带宽计算方法及仿真计算模型
CN105652880B (zh) 用于飞行器大空域飞行的非线性抗饱和高度指令生成方法
CN103808323B (zh) 一种卫星姿态跟踪机动的余弦过渡角加速度路径方法
CN102393865A (zh) 三维全介质非谐振超材料结构器件的一体化设计与制造工艺
CN104467612A (zh) 一种音圈电机控制方法及镜头对焦系统
CN103112517A (zh) 一种调节四足机器人身体姿态的方法和装置
CN109823572B (zh) 敏捷卫星姿态往复快速摆动的执行机构配置及控制方法
CN102968532A (zh) 65m口径大型反射面天线结构机电集成设计方法
Zhang et al. An integrated control and structural design approach for mesh reflector deployable space antennas
CN103862465A (zh) 多关节机械臂坐标校正方法和系统
He et al. An acceleration feed-forward control method based on fusion of model output and sensor data
Wang Automatic control of mobile robot based on autonomous navigation algorithm
Xu et al. An electromagnetic torsion active vibration absorber based on the FxLMS algorithm
CN106299722A (zh) 面向抛物面的大型赋形面天线主动面板调整量的快速确定方法
Jiang et al. Active disturbance rejection control based on adaptive differential evolution for two-wheeled self-balancing robot
Aubrun et al. Performance analysis of the segment alignment control system for the ten-meter telescope
CN109239919B (zh) 一种传输无形变旋转光束设计方法
Yoon Optimal shape control of adaptive structures for performance maximization
Ghazinouri et al. A position sensing method for 2D scanning mirrors
CN109814384A (zh) 一种用于浮空器的嵌套饱和控制方法及定点跟踪控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant