CN108280540B - Method and device for predicting short-time passenger flow state of rail transit station - Google Patents
Method and device for predicting short-time passenger flow state of rail transit station Download PDFInfo
- Publication number
- CN108280540B CN108280540B CN201810024755.3A CN201810024755A CN108280540B CN 108280540 B CN108280540 B CN 108280540B CN 201810024755 A CN201810024755 A CN 201810024755A CN 108280540 B CN108280540 B CN 108280540B
- Authority
- CN
- China
- Prior art keywords
- passenger flow
- speed
- time series
- error correction
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000012937 correction Methods 0.000 claims abstract description 55
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 22
- 238000012360 testing method Methods 0.000 claims description 8
- 238000010998 test method Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- YHXISWVBGDMDLQ-UHFFFAOYSA-N moclobemide Chemical compound C1=CC(Cl)=CC=C1C(=O)NCCN1CCOCC1 YHXISWVBGDMDLQ-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013277 forecasting method Methods 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 238000013488 ordinary least square regression Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/40—Business processes related to the transportation industry
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Theoretical Computer Science (AREA)
- Tourism & Hospitality (AREA)
- General Physics & Mathematics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Development Economics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一种轨道交通站点短时客流状态预测方法及装置,方法包括:根据获取的轨道交通目标站点及目标站点上游和下游相邻站点的客流量和客流速度,生成客流和速度时间序列;对客流和速度时间序列进行一阶差分运算,得到平稳时间序列;采用平稳时间序列的历史样本数据构建向量自回归模型;根据相同时段的原始客流量、客流和速度时间序列的历史样本数据,得到误差修正项;建立目标站点客流量和客流速度的向量误差修正模型;计算时间间隔t内目标站点客流量和客流速度的预测值。本发明提供的轨道交通站点短时客流状态预测方法及装置使用相关站点客流和速度参数数据,建立向量误差修正模型以进行目标站点客流量和客流速度的预测,提高了客流短时预测的准确性和可靠性。
A method and device for predicting short-term passenger flow state of a rail transit station, the method comprising: generating passenger flow and speed time series according to the acquired passenger flow and passenger flow speed of a rail transit target station and upstream and downstream adjacent stations of the target station; The first-order difference operation is performed on the speed time series to obtain the stationary time series; the vector autoregression model is constructed by using the historical sample data of the stationary time series; the error correction term is obtained according to the historical sample data of the original passenger flow, passenger flow and speed time series in the same period ; Establish a vector error correction model for the passenger flow and passenger flow speed of the target site; calculate the predicted value of the passenger flow and passenger flow speed of the target site within the time interval t. The method and device for predicting the short-term passenger flow state of a rail transit station provided by the present invention use the passenger flow and speed parameter data of the relevant stations to establish a vector error correction model to predict the passenger flow and passenger flow speed of the target station, thereby improving the accuracy of the short-term passenger flow prediction. and reliability.
Description
技术领域technical field
本发明涉及一种城市轨道交通管理技术领域,具体地涉及一种轨道交通站点短时客流状态预测方法及装置。The invention relates to the technical field of urban rail transit management, in particular to a method and device for predicting the short-term passenger flow state of rail transit stations.
背景技术Background technique
城市轨道交通以其快速、舒适、整洁等优点,吸引了越来越多的居民选择轨道交通出行,引起了客流时空分布的巨大变化,进而对运营管理提出了更高的要求。轨道交通客流状态预测是轨道交通运营、管理和控制的关键技术之一,准确、可靠的预测不仅能够反映客流实时变化规律、提供运能分析和运量匹配的数据支撑,也是服务水平、系统运行状态评价的重要决策指标,对其进行深入研究具有重要意义。Due to its advantages of speed, comfort and cleanliness, urban rail transit has attracted more and more residents to choose rail transit, which has caused great changes in the spatial and temporal distribution of passenger flow, and put forward higher requirements for operation management. Prediction of rail transit passenger flow status is one of the key technologies for rail transit operation, management and control. Accurate and reliable prediction can not only reflect the real-time changes in passenger flow, provide data support for capacity analysis and capacity matching, but also provide service level and system operation. It is an important decision-making index for state evaluation, and it is of great significance to conduct in-depth research on it.
目前,轨道交通短时客流预测也开展了一些研究,如神经网络模型、时间序列模型等预测方法,由于站点客流具有时间序列特性,时间序列模型已经成为短时客流预测的经典模型之一。但现有的轨道交通站点客流状态预测大多是依据本站点历史客流,采用单输入单输出的预测模型为主,忽视了参数之间的内在联系,以及网络化运营下站点之间时空相关性等有效信息,难以准确预测客流状态。因此,深入挖掘轨道交通客流参数之间的时空相关性,并在此基础上构建轨道交通站点客流状态多变量时间序列模型,能够进一步提高客流状态预测的准确性。At present, some researches have also been carried out on the short-term passenger flow prediction of rail transit, such as neural network model and time series model. However, most of the existing rail transit station passenger flow state predictions are based on the historical passenger flow of the station, and the single-input single-output prediction model is mainly used, ignoring the intrinsic relationship between parameters and the spatiotemporal correlation between stations under networked operation. It is difficult to accurately predict the state of passenger flow without effective information. Therefore, it is possible to further improve the accuracy of passenger flow state prediction by in-depth exploration of the spatiotemporal correlation between the passenger flow parameters of rail transit, and on this basis to construct a multivariable time series model of passenger flow state of rail transit stations.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提出一种轨道交通站点短时客流状态预测方法及装置,以提高客流短时预测的准确性和可靠性。The purpose of the present invention is to propose a method and device for predicting the state of short-term passenger flow at rail transit stations, so as to improve the accuracy and reliability of short-term passenger flow prediction.
为达此目的,本发明采用以下技术方案:For this purpose, the present invention adopts the following technical solutions:
一种轨道交通站点短时客流状态预测方法,所述方法包括:A method for predicting a short-term passenger flow state of a rail transit station, the method comprising:
根据获取的轨道交通目标站点及所述目标站点上游和下游相邻站点的客流量和客流速度,生成客流和速度时间序列{Sit,i=1,2,3},其中,Sit=(qit,vit)T,i=1、2、3,分别表示所述目标站点上游相邻站点、所述目标站点和所述目标站点的下游相邻站点,qit为客流量,vit为客流速度:According to the obtained passenger flow and passenger flow speed of the target station of rail transit and the adjacent stations upstream and downstream of the target station, generate the passenger flow and speed time series {S it , i=1, 2, 3}, where S it =( q it , v it ) T , i=1, 2, 3, respectively represent the upstream adjacent site of the target site, the target site and the downstream adjacent site of the target site, q it is the passenger flow, v it For passenger flow speed:
对所述客流和速度时间序列进行一阶差分运算,得到平稳时间序列s′it=(q′it,v′it)T,其中,s′it为第i个站点在时间间隔t内的一阶差分值;The first-order difference operation is performed on the passenger flow and speed time series to obtain a stationary time series s' it = (q' it , v' it ) T , where s' it is the ith station within the time interval t. order difference value;
采用所述平稳时间序列的历史样本数据构建向量自回归模型;Use the historical sample data of the stationary time series to construct a vector autoregressive model;
根据相同时段的原始客流量、所述客流和速度时间序列的历史样本数据,检验所述客流和速度时间序列{Sit,i=1,2,3}之间的协整关系,得到误差修正项λecmt-1;According to the original passenger flow in the same period, the historical sample data of the passenger flow and the speed time series, check the cointegration relationship between the passenger flow and the speed time series {S it , i=1, 2, 3}, and get the error correction term λecm t-1 ;
根据所述向量自回归模型以及所述误差修正项,建立目标站点客流量和客流速度的向量误差修正模型;According to the vector autoregressive model and the error correction term, a vector error correction model of the passenger flow and passenger flow speed of the target site is established;
根据所述向量误差修正模型和视频数据计算时间间隔t内目标站点客流量和客流速度的预测值。According to the vector error correction model and the video data, the predicted value of the passenger flow and the passenger flow speed of the target site within the time interval t is calculated.
上述方案中,所述向量自回归模型为:In the above scheme, the vector autoregressive model is:
其中,p,q为向量自回归过程的滞后阶数,Δq2t为目标站点客流量在时间间隔t内的一阶差分值,Δv2t为目标站点客流速度在时间间隔t内的一阶差分值,Δq1(t-m)、Δq3(t-m)为上游和下游相邻站点客流量在时间间隔(t-m)内一阶差分值,Δv1(t-m)、Δv3(t-m)为上游和下游相邻站点客流速度在时间间隔(t-m)内一阶差分值;αxm、βxm、γxm、δxm、εxm、∈xm、αym、βym、γym、δym、εym、∈ym、cx、cy为所述向量自回归模型的待估参数;∈xt、∈yt为所述向量自回归模型的误差项。Among them, p, q is the lag order of the vector autoregressive process, Δq 2t is the first-order difference value of the passenger flow of the target site within the time interval t, and Δv 2t is the first-order difference value of the passenger flow speed of the target site within the time interval t , Δq 1(tm) and Δq 3(tm ) are the first-order difference values of the passenger flow between the upstream and downstream adjacent stations within the time interval (tm), and Δv 1(tm) and Δv 3(tm) are the upstream and downstream adjacent stations The first-order difference value of the station passenger flow speed in the time interval ( tm ) ; , c x , cy are parameters to be estimated of the vector autoregressive model; ∈ xt , ∈ yt are the error terms of the vector autoregressive model.
上述方案中,所述向量误差修正模型为:In the above scheme, the vector error correction model is:
其中,λ1、λ2位对应的误差修正系数,λ1ecmt-1、λ2ecmt-1为误差修正项。Among them, the error correction coefficients corresponding to λ 1 and λ 2 bits, λ 1 ecm t-1 and λ 2 ecm t-1 are error correction terms.
上述方案中,根据所述向量误差修正模型和视频数据计算时间间隔t内目标站点客流量和客流速度的预测值,包括:In the above scheme, according to the vector error correction model and the video data, the predicted value of the passenger flow and passenger flow speed of the target site in the time interval t is calculated, including:
从视频获取在时间间隔(t-1),(t-2),(t-3)……(t-p+1)的实际观测值;Obtain actual observations at time intervals (t-1), (t-2), (t-3)...(t-p+1) from the video;
根据所述实际观测值及所述向量误差修正模型计算在时间间隔t内目标站点客流量和客流速度一阶差分时间序列的预测值Δq2t、Δv2t;Calculate the predicted values Δq 2t and Δv 2t of the first-order difference time series of passenger flow and passenger flow velocity at the target site within the time interval t according to the actual observed value and the vector error correction model;
根据所述站点客流量和客流速度一阶差分时间序列的预测值Δq2t、Δv2t,计算时间间隔t内目标站点客流量和客流速度的预测值。According to the predicted values Δq 2t and Δv 2t of the first-order difference time series of the passenger flow and passenger flow speed of the site, the predicted value of the passenger flow and passenger flow speed of the target site within the time interval t is calculated.
上述方案中,所述生成客流和速度时间序列之前,所述方法还包括:根据所述轨道交通车站通道内的视频检测器采集到的视频数据,获取所述客流量和所述客流速度。In the above solution, before generating the passenger flow and speed time series, the method further includes: acquiring the passenger flow and the passenger flow speed according to video data collected by a video detector in the passage of the rail transit station.
上述方案中,所述向量自回归模型中的滞后阶数p、q通过贝叶斯准则确定。In the above solution, the lag orders p and q in the vector autoregressive model are determined by Bayesian criterion.
上述方案中,所述原始客流量和所述客流和速度时间序列{Sit,i=1,2,3}之间的协整关系通过Johansen协整检验方法进行检验。In the above solution, the cointegration relationship between the original passenger flow and the passenger flow and speed time series {S it , i=1, 2, 3} is tested by the Johansen cointegration test method.
上述方案中,所述待估参数:αxm、βxm、γxm、δxm、εxm、∈xm、αym、βym、γym、δym、εym、∈ym、cx、cy,以及所述误差修正系数λ1、λ2均采用最小二乘法估计得到。In the above solution, the parameters to be estimated: α xm , β xm , γ xm , δ xm , ε xm , ∈ xm , α ym , β ym , γ ym , δ ym , ε ym , ∈ ym , c x , c y , and the error correction coefficients λ 1 and λ 2 are all estimated by the least squares method.
一种轨道交通站点短时客流状态预测装置,所述装置包括:A device for predicting the state of short-term passenger flow at a rail transit station, the device comprising:
客流和速度时间序列生成单元,用于根据获取的轨道交通目标站点及所述目标站点上游和下游相邻站点的客流量和客流速度,生成客流和速度时间序列{Sit,i=1,2,3},其中,Sit=(qit,vit)T,i=1、2、3,分别表示目标站点上游相邻站点、所述目标站点和所述目标站点的下游相邻站点,qit为客流量,vit为客流速度;The passenger flow and speed time series generation unit is used to generate passenger flow and speed time series {S it , i=1, 2 according to the obtained passenger flow and passenger flow speed of the target station of rail transit and the upstream and downstream adjacent stations of the target station , 3}, wherein, S it =(q it , v it ) T , i=1, 2, 3, respectively represent the upstream adjacent site of the target site, the target site and the downstream adjacent site of the target site, q it is the passenger flow, v it is the passenger flow speed;
差分运算单元,用于对所述客流和速度时间序列进行一阶差分运算,得到平稳时间序列S′it=(q′it,v′it)T,其中,S′it为第i个站点在时间间隔t内的一阶差分值;The difference operation unit is used to perform a first-order difference operation on the passenger flow and speed time series to obtain a stationary time series S′ it =(q′ it , v′ it ) T , where S′ it is the ith station in The first-order difference value within the time interval t;
第一建模单元,用于采用包括所述平稳时间序列的历史样本数据构建向量自回归模型;a first modeling unit, configured to construct a vector autoregressive model using historical sample data including the stationary time series;
协整关系检验单元,用于根据相同时段的原始客流量、所述客流和速度时间序列的历史样本数据,检验所述客流和速度时间序列{Sit,i=1,2,3}之间的协整关系,得到误差修正项λecmt-1;A cointegration relationship testing unit, configured to check the relationship between the passenger flow and the speed time series {S it , i=1, 2, 3} according to the original passenger flow in the same period, the historical sample data of the passenger flow and the speed time series The cointegration relationship of , the error correction term λecm t-1 is obtained;
第二建模单元,用于根据所述向量自回归模型以及所述误差修正项,建立目标站点客流量和客流速度的向量误差修正模型;The second modeling unit is configured to establish a vector error correction model of the passenger flow and passenger flow speed of the target site according to the vector autoregressive model and the error correction term;
预测值计算单元,用于根据所述向量误差修正模型和视频数据计算时间间隔t内目标站点客流量和客流速度的预测值。The predicted value calculation unit is configured to calculate the predicted value of the passenger flow and the passenger flow speed of the target site within the time interval t according to the vector error correction model and the video data.
上述方案中,所述装置还包括客流信息获取单元,用于根据所述轨道交通车站通道内的视频检测器采集到的视频数据,获取所述客流量和所述客流速度。In the above solution, the device further includes a passenger flow information acquisition unit, configured to acquire the passenger flow and the passenger flow speed according to video data collected by a video detector in the passage of the rail transit station.
本发明提供的轨道交通站点短时客流状态预测方法及装置,使用相关站点客流和速度参数数据,建立向量误差修正模型以进行目标站点客流量和客流速度的预测,提高了客流短时预测的准确性和可靠性。The method and device for predicting the short-term passenger flow state of a rail transit station provided by the invention use the passenger flow and speed parameter data of the relevant stations to establish a vector error correction model to predict the passenger flow and passenger flow speed of the target station, thereby improving the accuracy of the short-term passenger flow prediction. sturdiness and reliability.
附图说明Description of drawings
图1是本发明实施例轨道交通站点短时客流状态预测方法的实现流程图;Fig. 1 is the realization flow chart of the short-term passenger flow state prediction method of rail transit station according to the embodiment of the present invention;
图2是本发明实施例中车站早高峰客流量短时预测值与实际观测值拟合效果图;Fig. 2 is the fitting effect diagram of the short-term predicted value and the actual observed value of the station's morning peak passenger flow in the embodiment of the present invention;
图3为本发明实施例中车站早高峰客流速度短时预测值与实际观测值拟合效果图;Fig. 3 is a fitting effect diagram of the short-term predicted value and the actual observed value of the passenger flow speed in the morning peak of the station in the embodiment of the present invention;
图4是本发明实施例轨道交通站点短时客流状态预测装置的组成结构示意图。FIG. 4 is a schematic diagram of the composition and structure of an apparatus for predicting the state of short-term passenger flow at a rail transit station according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, it should be noted that, for the convenience of description, the drawings only show some but not all structures related to the present invention.
实施例一Example 1
如图1所示,本发明实施例提供的轨道交通站点短时客流状态预测方法包括:As shown in FIG. 1 , the method for predicting the short-term passenger flow state of a rail transit station provided by an embodiment of the present invention includes:
步骤110,根据获取的轨道交通目标站点及目标站点上游和下游相邻站点的客流量和客流速度,生成客流和速度时间序列{Sit,i=1,2,3},其中,Sit=(qit,vit)T,i=1、2、3,分别表示目标站点上游相邻站点、目标站点和目标站点的下游相邻站点,qit为客流量,vit为客流速度。
步骤120,对客流和速度时间序列进行一阶差分运算,得到平稳时间序列S′it=(q′it,v′it)T,其中,S'it为第i个站点在时间间隔t内的一阶差分值。Step 120: Perform a first-order difference operation on the passenger flow and speed time series to obtain a stationary time series S' it = (q' it , v' it ) T , where S' it is the ith station in the time interval t. first-order difference value.
步骤130,采用平稳时间序列的历史样本数据构建向量自回归模型。In
步骤140,根据相同时段的原始客流量、客流和速度时间序列的历史样本数据,检验客流和速度时间序列{Sit,i=1,2,3}之间的协整关系,得到误差修正项λecmt-1。Step 140: Check the cointegration relationship between the passenger flow and the speed time series {S it , i=1, 2, 3} according to the historical sample data of the original passenger flow, passenger flow and speed time series in the same period, and obtain an error correction term λecm t-1 .
步骤150,根据向量自回归模型以及误差修正项,建立目标站点客流量和客流速度的向量误差修正模型。
步骤160,根据向量误差修正模型和视频数据计算时间间隔t内目标站点客流量和客流速度的预测值。Step 160: Calculate the predicted value of the passenger flow and the passenger flow speed of the target site within the time interval t according to the vector error correction model and the video data.
本发明实施例提供的技术方案考虑到站点客流量和速度参数之间存在协整关系,采用客流和速度参数作为预测的输入,弥补了单变量预测对参数间的均衡关系的忽视;同时考虑了站点之间客流的空间相关性,引入具有相关性站点的客流数据,建立向量误差修正模型,进一步提高了客流短时预测的准确性和可靠性。The technical solution provided by the embodiment of the present invention takes into account the cointegration relationship between the site passenger flow and speed parameters, and adopts the passenger flow and speed parameters as the input of the prediction, which makes up for the neglect of the equilibrium relationship between parameters in the single-variable prediction; The spatial correlation of passenger flow between stations, the passenger flow data of relevant stations is introduced, and a vector error correction model is established, which further improves the accuracy and reliability of short-term passenger flow prediction.
在步骤110之前,根据轨道交通车站通道内的视频检测器采集到的视频数据,获取客流量和客流速度。Before
之后,在步骤110中,根据客流量和客流速度生成的客流和速度时间序列是以5分钟为时间间隔的连续时间序列数据。After that, in
在步骤120中,一阶差分运算公式为:In
S′it=Si(t+1)-Sit S' it =S i(t+1) -S it
式中:S'it为第i个站点在时间间隔t内的一阶差分值,Sit为第i个站点在时间间隔t内的时间序列。In the formula: S'it is the first-order difference value of the i-th station in the time interval t, and S it is the time series of the i-th station in the time interval t.
在步骤130中,向量自回归模型为:In
其中,p,q为向量自回归过程的滞后阶数,Δq2t为目标站点客流量在时间间隔t内的一阶差分值,Δv2t为目标站点客流速度在时间间隔t内的一阶差分值,Δq1(t-m)、Δq3(t-m)为上游和下游相邻站点客流量在时间间隔(t-m)内一阶差分值,Δv1(t-m)、Δv3(t-m)为上游和下游相邻站点客流速度在时间间隔(t-m)内一阶差分值;αxm、βxm、γxm、δxm、εxm、∈xm、αym、βym、γym、δym、εym、∈ym、cx、cy为向量自回归模型的待估参数;∈xt、∈yt为向量自回归模型的误差项。Among them, p, q is the lag order of the vector autoregressive process, Δq 2t is the first-order difference value of the passenger flow of the target site within the time interval t, and Δv 2t is the first-order difference value of the passenger flow speed of the target site within the time interval t , Δq 1(tm) and Δq 3(tm ) are the first-order difference values of the passenger flow between the upstream and downstream adjacent stations within the time interval (tm), and Δv 1(tm) and Δv 3(tm) are the upstream and downstream adjacent stations The first-order difference value of the station passenger flow speed in the time interval ( tm ) ; , c x , cy are the parameters to be estimated in the vector autoregressive model; ∈ xt , ∈ yt are the error terms of the vector autoregressive model.
其中待估参数:αxm、βxm、γxm、δxm、εxm、∈xm、αym、βym、γym、δym、εym、∈ym、cx、cy采用最小二乘法估计得到。The parameters to be estimated: α xm , β xm , γ xm , δ xm , ε xm , ∈ xm , α ym , β ym , γ ym , δ ym , ε ym , ∈ ym , c x , c y adopt the least squares method estimated.
其中,向量自回归模型中的滞后阶数p、q通过贝叶斯准则确定。Among them, the lag order p and q in the vector autoregressive model are determined by Bayesian criterion.
在步骤140中,原始客流量和客流和速度时间序列{Sit,i=1,2,3}之间的协整关系通过Johansen协整检验方法进行检验。In
在步骤150中,向量误差修正模型为:In
其中,λ1、λ2位对应的误差修正系数,λ1ecmt-1、λ2ecmt-1为误差修正项。其中,误差修正系数λ1、λ2采用最小二乘法估计得到。Among them, the error correction coefficients corresponding to λ 1 and λ 2 bits, λ 1 ecm t-1 and λ 2 ecm t-1 are error correction terms. Among them, the error correction coefficients λ 1 and λ 2 are estimated by the least square method.
在步骤160中,从视频获取在时间间隔(t-1),(t-2),(t-3)……(t-p+1)的实际观测值;In
根据实际及向量误差修正模型计算在时间间隔t内目标站点客流量和客流速度一阶差分时间序列的预测值Δq2t、Δv2t;Calculate the predicted values Δq 2t and Δv 2t of the first-order difference time series of the passenger flow and passenger flow speed of the target site within the time interval t according to the actual and vector error correction model;
根据站点客流量和客流速度一阶差分时间序列的预测值Δq2t、Δv2t,计算时间间隔t内目标站点客流量和客流速度的预测值。According to the predicted values Δq 2t and Δv 2t of the first-order difference time series of the station's passenger flow and passenger flow speed, the predicted value of the target station's passenger flow and passenger flow speed within the time interval t is calculated.
其中, in,
在本发明实施例的一个例子中,选取某城市轨道交通第一车站为目标站点,其相邻车站第二车站和第三车站分别为第一车站上游车站和下游车站,由于短时客流具有明显的早晚高峰特性,本发明实施例只对目标站点即第一车站早晚高峰客流状态进行预测。In an example of the embodiment of the present invention, the first station of an urban rail transit is selected as the target station, and the second station and the third station of its adjacent stations are the upstream station and downstream station of the first station, respectively. According to the morning and evening peak characteristics, the embodiment of the present invention only predicts the passenger flow state of the target station, that is, the first station in the morning and evening peaks.
首先,根据2016年8月1日到8月26日四周内工作日早高峰视频监控拍到的画面,用方向梯度直方图特征描述器结合支持向量机分类器识别地铁监控视频中的行人目标,采用连续自适应的均值漂移算法(Continuously daptive Mean-SHIFT,简称Camshift)算法对目标窗口进行跟踪,实现客流量和速度参数的统计。以5分钟为时间间隔,前三周工作日早高峰的数据作为样本数据,用于模型参数的标定,后一周的数据用于模型预测性能的评估。First, according to the images captured by video surveillance during the morning rush hour during the weekdays from August 1 to August 26, 2016, the directional gradient histogram feature descriptor combined with the support vector machine classifier was used to identify pedestrian targets in the subway surveillance video. Continuously adaptive mean shift algorithm (Continuously daptive Mean-SHIFT, referred to as Camshift) algorithm is used to track the target window to realize the statistics of passenger flow and speed parameters. With a time interval of 5 minutes, the data of the morning peak of the first three weeks of working days is used as the sample data for the calibration of the model parameters, and the data of the next week is used for the evaluation of the prediction performance of the model.
之后,根据获取的客流量和客流速度需要获取原始序列,并进行一阶差分运算,以转化为平稳时间序列。After that, according to the obtained passenger flow and passenger flow speed, the original sequence needs to be obtained, and a first-order difference operation is performed to convert it into a stationary time series.
之后,对平稳时间序列建立向量自回归模型,表达式如下:After that, a vector autoregressive model is established for the stationary time series, and the expression is as follows:
通过贝叶斯信息准则,可以确定目标站点向量自回归模型的滞后阶数p,q,结果在表1中给出。Through the Bayesian information criterion, the lag order p, q of the vector autoregressive model of the target site can be determined, and the results are given in Table 1.
表1鼓楼车站向量自回归模型滞后阶数Table 1 The lag order of the vector autoregressive model of Gulou station
在滞后阶数确定的基础上,采用基于回归系数的Johansen协整检验法对目标站点及相邻车站的参数原始序列进行协整关系检验。本实施例提供第一车站点及其相邻车站上下游站点的协整关系检验结果如表2所示。On the basis of determining the lag order, the Johansen cointegration test method based on regression coefficient is used to test the cointegration relationship between the original series of parameters of the target station and adjacent stations. This embodiment provides the cointegration relationship test results of the upstream and downstream stations of the first train station and its adjacent stations, as shown in Table 2.
表2目标站点及相邻站点协整关系检验结果Table 2 Cointegration test results of target site and adjacent sites
Johansen协整检验的原理是用极大似然估计法来判断变量之间的协整关系,其中特征根统计量和临界值均为95%置信水平下的统计值,当特征根统计量大于临界值,拒绝原假设,反之接受。由结果可以看出,目标站点与上下游站点参数序列之间存在协整关系,可以建立向量误差修正(Vector Error Correction,简称VEC)模型。The principle of the Johansen cointegration test is to use the maximum likelihood estimation method to judge the cointegration relationship between variables. The characteristic root statistic and the critical value are both statistical values at the 95% confidence level. When the characteristic root statistic is greater than the critical value value, reject the null hypothesis, otherwise accept it. It can be seen from the results that there is a co-integration relationship between the target site and the upstream and downstream site parameter sequences, and a Vector Error Correction (VEC) model can be established.
之后,构建向量误差修正模型,结合向量自回归模型以及协整关系,建立客流变量滞后阶数为3,速度变量滞后阶数为2的向量误差修正模型如下:After that, a vector error correction model is constructed, combined with the vector autoregression model and the co-integration relationship, a vector error correction model with a lag order of 3 for the passenger flow variable and a lag order of 2 for the speed variable is established as follows:
用样本数据对所有待估参数采用普通最小二乘法进行估计,结果见表3,由于系统cx、cy的估计结果在统计上不显著,因此在第一车站点的VEC模型中,cx、cy均为0。All parameters to be estimated are estimated by the ordinary least squares method with sample data. The results are shown in Table 3. Since the estimation results of the systems c x and cy are not statistically significant, in the VEC model of the first vehicle station, c x , cy are all 0.
表3VEC模型参数估计结果Table 3 Estimation results of VEC model parameters
最后,计算第一车站点客流量和客流和速度时间序列的一阶差分时间序列预测值Δq2t、Δv2t,并进一步推算时间间隔t内水平序列的预测值为q2t=q2(t-1)+Δq2t,v2t=v2(t-1)+Δv2t,客流量和客流速度预测值与实际观测值的拟合效果如图2和图3。其中,如图2所示,曲线201为客流量观测值,曲线202为客流量预测值。如图3所示,曲线301为客流速度观测值,曲线302为客流速度预测值。Finally, calculate the first-order difference time series predicted values Δq 2t and Δv 2t of the passenger flow, passenger flow and speed time series of the first station, and further calculate the predicted value of the horizontal series in the time interval t q 2t =q 2(t- 1) +Δq 2t , v 2t =v 2(t-1) +Δv 2t , the fitting effect between the predicted value of passenger flow and passenger flow speed and the actual observed value is shown in Figure 2 and Figure 3. Among them, as shown in FIG. 2 , the
本实施例采用均方根误差(RMSE)、平均绝对误差(MAE)以及平均绝对百分比误差(MAPE)对目标站点客流和速度的预测性能进行评估。为与传统预测方法比较,采用同样的样本数据构建单变量时间序列模型ARIMA(0,1,1),该模型未考虑时空相关性、参数之间的均衡关系,针对两种模型预测的结果对比如表4。This embodiment uses root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) to evaluate the prediction performance of the target site's passenger flow and speed. In order to compare with traditional forecasting methods, the univariate time series model ARIMA(0, 1, 1) is constructed using the same sample data. This model does not consider the spatial-temporal correlation and the equilibrium relationship between parameters. For example, Table 4.
表4VEC与ARIMA模型预测性能对比Table 4. Comparison of prediction performance between VEC and ARIMA models
从表4给出的结果可以看出,VEC模型在客流量和速度的预测都要明显优于ARIMA模型,本发明所构建的VEC模型具有较好的预测性能。From the results given in Table 4, it can be seen that the VEC model is significantly better than the ARIMA model in the prediction of passenger flow and speed, and the VEC model constructed by the present invention has better prediction performance.
本发明提供的轨道交通站点短时客流状态预测方法,使用相关站点客流和速度参数数据,建立向量误差修正模型以进行目标站点客流量和客流速度的预测,提高了客流短时预测的准确性和可靠性。The method for predicting the short-term passenger flow state of a rail transit station provided by the present invention uses the passenger flow and speed parameter data of the relevant stations to establish a vector error correction model to predict the passenger flow and passenger flow speed of the target station, thereby improving the accuracy of the short-term passenger flow prediction and improving the speed of the passenger flow. reliability.
实施例二
本发明实施例提供一种轨道交通站点短时客流状态预测装置,该装置包括:An embodiment of the present invention provides a short-term passenger flow state prediction device at a rail transit station, the device comprising:
客流和速度时间序列生成单元410,用于根据获取的轨道交通目标站点及目标站点上游和下游相邻站点的客流量和客流速度,生成客流和速度时间序列{Sit,i=1,2,3},其中,Sit=(qit,vit )T,i=1、2、3,分别表示目标站点上游相邻站点、目标站点和目标站点的下游相邻站点,qit为客流量,vit为客流速度。The passenger flow and speed time
差分运算单元420,用于对客流和速度时间序列进行一阶差分运算,得到平稳时间序列S'it=(q′it,v′it)T,其中,S′it为第i个站点在时间间隔t内的一阶差分值。The
第一建模单元430,用于采用包括平稳时间序列的历史样本数据构建向量自回归模型。The
协整关系检验单元440,用于根据相同时段的原始客流量、客流和速度时间序列的历史样本数据,检验客流和速度时间序列{Sit,i=1,2,3}之间的协整关系,得到误差修正项λecmt-1。The cointegration
第二建模单元450,用于根据向量自回归模型以及误差修正项,建立目标站点客流量和客流速度的向量误差修正模型。The
预测值计算单元460,用于根据向量误差修正模型和视频数据计算时间间隔t内目标站点客流量和客流速度的预测值。The predicted
本发明实施例提供的技术方案考虑到站点客流量和速度参数之间存在协整关系,采用客流和速度参数作为预测的输入,弥补了单变量预测对参数间的均衡关系的忽视;同时考虑了站点之间客流的空间相关性,引入具有相关性站点的客流数据,建立向量误差修正模型,进一步提高了客流短时预测的准确性和可靠性。The technical solution provided by the embodiment of the present invention takes into account the cointegration relationship between the site passenger flow and speed parameters, and adopts the passenger flow and speed parameters as the input of the prediction, which makes up for the neglect of the equilibrium relationship between parameters in the single-variable prediction; The spatial correlation of passenger flow between stations, the passenger flow data of relevant stations is introduced, and a vector error correction model is established, which further improves the accuracy and reliability of short-term passenger flow prediction.
本发明提供的轨道交通站点短时客流状态预测装置还包括客流信息获取单元,用于根据轨道交通车站通道内的视频检测器采集到的视频数据,获取客流量和客流速度。The short-term passenger flow state prediction device of a rail transit station provided by the present invention further includes a passenger flow information acquisition unit for acquiring passenger flow and passenger flow speed according to video data collected by a video detector in the passage of the rail transit station.
本发明提供的轨道交通站点短时客流状态预测装置,使用相关站点客流和速度参数数据,建立向量误差修正模型以进行目标站点客流量和客流速度的预测,提高了客流短时预测的准确性和可靠性。The device for predicting the short-term passenger flow state of rail transit stations provided by the present invention uses the passenger flow and speed parameter data of the relevant stations to establish a vector error correction model to predict the passenger flow and passenger flow speed of the target station, thereby improving the accuracy of short-term passenger flow prediction and improving the speed of passenger flow. reliability.
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810024755.3A CN108280540B (en) | 2018-01-10 | 2018-01-10 | Method and device for predicting short-time passenger flow state of rail transit station |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810024755.3A CN108280540B (en) | 2018-01-10 | 2018-01-10 | Method and device for predicting short-time passenger flow state of rail transit station |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108280540A CN108280540A (en) | 2018-07-13 |
CN108280540B true CN108280540B (en) | 2021-09-28 |
Family
ID=62803389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810024755.3A Active CN108280540B (en) | 2018-01-10 | 2018-01-10 | Method and device for predicting short-time passenger flow state of rail transit station |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108280540B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108877272B (en) * | 2018-08-02 | 2020-12-22 | 哈尔滨工程大学 | A vehicle navigation system and navigation method based on destination state |
CN110119845A (en) * | 2019-05-11 | 2019-08-13 | 北京京投亿雅捷交通科技有限公司 | A kind of application method of track traffic for passenger flow prediction |
CN111401643B (en) * | 2020-03-19 | 2022-10-04 | 卡斯柯信号有限公司 | Urban rail transit passenger flow loop self-adaptive intelligent train scheduling method |
CN112418518A (en) * | 2020-11-20 | 2021-02-26 | 佳都新太科技股份有限公司 | Passenger flow prediction method and device based on time characteristic weight and network topology |
CN113159408B (en) * | 2021-04-14 | 2023-11-21 | 交控科技股份有限公司 | Rail transit station passenger flow prediction method and device |
CN113537596B (en) * | 2021-07-16 | 2024-08-06 | 南京理工大学 | Short-time passenger flow prediction method for new line station of urban rail transit |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103730006A (en) * | 2014-01-26 | 2014-04-16 | 吉林大学 | Short-time traffic flow combined forecasting method |
CN107067076A (en) * | 2017-05-27 | 2017-08-18 | 重庆大学 | A kind of passenger flow forecasting based on time lag NARX neutral nets |
-
2018
- 2018-01-10 CN CN201810024755.3A patent/CN108280540B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103730006A (en) * | 2014-01-26 | 2014-04-16 | 吉林大学 | Short-time traffic flow combined forecasting method |
CN107067076A (en) * | 2017-05-27 | 2017-08-18 | 重庆大学 | A kind of passenger flow forecasting based on time lag NARX neutral nets |
Non-Patent Citations (2)
Title |
---|
城市轨道交通客流增长滞后性与预测方法研究;陈小鸿等;《城市轨道交通研究》;20141110(第2014期);p22-27 * |
基于向量误差修正模型的短时交通参数预测;邴其春等;《吉林大学学报》;20150731;第45卷(第4期);p1076-1081 * |
Also Published As
Publication number | Publication date |
---|---|
CN108280540A (en) | 2018-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108280540B (en) | Method and device for predicting short-time passenger flow state of rail transit station | |
CN102629418B (en) | Fuzzy kalman filtering-based traffic flow parameter prediction method | |
Noursalehi et al. | Dynamic origin-destination prediction in urban rail systems: A multi-resolution spatio-temporal deep learning approach | |
Lu et al. | A combined method for short-term traffic flow prediction based on recurrent neural network | |
Zhou et al. | Evaluation of urban bus service reliability on variable time horizons using a hybrid deep learning method | |
CN107610464B (en) | A Trajectory Prediction Method Based on Gaussian Mixture Time Series Model | |
Li et al. | Trend modeling for traffic time series analysis: An integrated study | |
CN103903430A (en) | Dynamic fusion type travel time predicting method with multi-source and isomorphic data adopted | |
CN110209999A (en) | A kind of mobile unit failure trend prediction method | |
CN110717408B (en) | People flow counting method based on TOF camera | |
CN106529787A (en) | Subway energy management system based on face detection technology | |
JP2001084479A (en) | Method and device for forecasting traffic flow data | |
CN111738327B (en) | An ultra-short-term irradiance prediction method based on the irradiance difference of typical cloud cover | |
CN118378844B (en) | Intelligent park management method and system | |
Wu et al. | Multiple-clustering ARMAX-based predictor and its application to freeway traffic flow prediction | |
JP2022550785A (en) | Visual object tracking method, visual object tracking system, learning method, and learning system | |
CN110991776A (en) | Method and system for realizing water level prediction based on GRU network | |
Li et al. | Traffic prediction, data compression, abnormal data detection and missing data imputation: An integrated study based on the decomposition of traffic time series | |
CN113468720A (en) | Service life prediction method for digital-analog linked random degradation equipment | |
CN118314728A (en) | Traffic flow dynamic prediction and precision optimization method based on independent thermal coding | |
CN107688556A (en) | A kind of real-time travel time computation method based on function type principal component analysis | |
Yu et al. | A novel discussion on two long-term forecast mechanisms for hydro-meteorological signals using hybrid wavelet-NN model | |
CN103605960A (en) | Traffic state identification method based on fusion of video images with different focal lengths | |
Sassella et al. | On queue length estimation in urban traffic intersections via inductive loops | |
Lu | An adaptive system for predicting freeway travel times |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |