CN108275937B - Anti-abrasion concrete material and preparation method and application thereof - Google Patents

Anti-abrasion concrete material and preparation method and application thereof Download PDF

Info

Publication number
CN108275937B
CN108275937B CN201810000674.XA CN201810000674A CN108275937B CN 108275937 B CN108275937 B CN 108275937B CN 201810000674 A CN201810000674 A CN 201810000674A CN 108275937 B CN108275937 B CN 108275937B
Authority
CN
China
Prior art keywords
parts
levulinic acid
concrete material
abrasion
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810000674.XA
Other languages
Chinese (zh)
Other versions
CN108275937A (en
Inventor
杨改
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DONGYANG HUANENG NEW BUILDING MATERIALS Co.,Ltd.
Original Assignee
Dongyang Huaneng New Building Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongyang Huaneng New Building Materials Co ltd filed Critical Dongyang Huaneng New Building Materials Co ltd
Priority to CN201810000674.XA priority Critical patent/CN108275937B/en
Publication of CN108275937A publication Critical patent/CN108275937A/en
Application granted granted Critical
Publication of CN108275937B publication Critical patent/CN108275937B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00293Materials impermeable to liquids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/76Use at unusual temperatures, e.g. sub-zero
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The invention discloses an abrasion-resistant concrete material and a preparation method and application thereof, wherein the concrete material comprises the following raw materials in parts by weight: 45-55 parts of Portland cement, 20-30 parts of fine sand, 12-20 parts of vinyl acetate resin, 16-24 parts of montmorillonite, 1-5 parts of octyl tin maleate and 7-15 parts of levulinic acid. Mixing and grinding octyl tin maleate and montmorillonite, mixing with a levulinic acid solution, heating, sealing and stirring for 2.2-2.4h, centrifugally separating to obtain a precipitate, washing, drying, adding vinyl acetate resin, ball-milling, mixing with portland cement and fine sand, and uniformly stirring; pouring, vibrating and curing to obtain the product. The concrete has higher compressive strength and rupture strength, has obvious improvement on VC value, anti-permeability grade, frost resistance strength, ultimate stretching, heat insulation and temperature rise, chemical corrosion resistance and the like, effectively improves the anti-abrasion capability and the anti-cracking capability, and is particularly suitable for environments with higher requirements on the anti-erosion capability and the anti-cracking capability of concrete, such as hydraulic engineering water release buildings and the like.

Description

Anti-abrasion concrete material and preparation method and application thereof
Technical Field
The invention relates to the technical field of building materials, in particular to an abrasion-resistant concrete material and a preparation method and application thereof.
Background
Concrete is a general term for engineering composite materials in which aggregate is cemented into a whole by a cementing material. The term concrete generally refers to cement as a cementing material and sand and stone as aggregate; the cement concrete, also called as common concrete, is obtained by mixing with water (which may contain additives and admixtures) according to a certain proportion and stirring, and is widely applied to civil engineering. However, the common cement concrete has the defects of low compression and fracture resistance, low environmental corrosion resistance and durability, poor wear resistance and the like. Concrete is the most important building material in hydraulic engineering, especially large hydraulic engineering. The requirements on the material are extremely high, and the material is required to have better impermeability, heat resistance and low shrinkage; when the paint is used at a part flushed by high-speed water flow, the paint is required to have scouring resistance, wear resistance, cavitation resistance and the like; in cold regions, particularly in water level fluctuation regions, high frost resistance and corrosion resistance are required. Montmorillonite is rarely used in existing concrete materials because of its strong water absorption. The volume of the concrete expands several times to dozens of times after absorbing water, and the concrete is not applicable in concrete, so that the concrete has unstable performance and reduced wear resistance strength when being applied in the field.
Disclosure of Invention
The invention aims to provide an anti-abrasion concrete material, a preparation method and application thereof, so as to solve the problems in the background technology.
In order to achieve the purpose, the invention provides the following technical scheme:
an abrasion-resistant concrete material comprises the following raw materials in parts by weight: 45-55 parts of Portland cement, 20-30 parts of fine sand, 12-20 parts of vinyl acetate resin, 16-24 parts of montmorillonite, 1-5 parts of octyl tin maleate and 7-15 parts of levulinic acid.
As a further scheme of the invention: the anti-abrasion concrete material comprises the following raw materials in parts by weight: 48-52 parts of Portland cement, 22-28 parts of fine sand, 14-18 parts of vinyl acetate resin, 18-22 parts of montmorillonite, 2-4 parts of octyl tin maleate and 9-13 parts of levulinic acid.
As a further scheme of the invention: the anti-abrasion concrete material comprises the following raw materials in parts by weight: 50 parts of Portland cement, 25 parts of fine sand, 16 parts of vinyl acetate resin, 20 parts of montmorillonite, 3 parts of octyl tin maleate and 11 parts of levulinic acid.
A preparation method of an abrasion-resistant concrete material comprises the following steps:
1) mixing levulinic acid with water with the mass of 8-9 times of that of the levulinic acid to prepare a levulinic acid solution;
2) mixing and grinding octyl tin maleate and montmorillonite, sieving with a 100-one and 150-mesh sieve, mixing with a levulinic acid solution, heating to 70-72 ℃, sealing and stirring at the temperature for 2.2-2.4h, centrifugally separating to obtain a precipitate, washing, and drying to obtain a mixture;
3) adding vinyl acetate resin into the mixture, ball-milling for 55-60min, mixing with Portland cement and fine sand, and stirring; pouring, vibrating and curing to obtain the product.
As a further scheme of the invention: in the step 2), the stirring speed is 300 r/min.
As a further scheme of the invention: in the step 2), the centrifugation speed is 3000r/min, and the centrifugation time is 10-20 min.
As a further scheme of the invention: in the step 3), the stirring speed is 150 r/min.
As a further scheme of the invention: in the step 3), the mass ratio of ball materials is 5:1 during ball milling.
Another object of the invention is to provide the use of said concrete material for the preparation of civil engineering materials.
As a further scheme of the invention: the civil engineering includes hydraulic engineering.
Compared with the prior art, the invention has the beneficial effects that:
the concrete material prepared by adopting the raw materials and the preparation process has higher compressive strength and flexural strength, obviously improves the VC value, the anti-permeability grade, the frost resistance strength, the ultimate tensile strength, the heat insulation temperature rise, the chemical corrosion resistance and other aspects, effectively improves the anti-abrasion capability, effectively reduces the drying shrinkage deformation of the concrete, improves the crack resistance, and has excellent comprehensive performance. The preparation method disclosed by the invention is simple in preparation process, environment-friendly, pollution-free, obvious in energy-saving and environment-friendly benefits, widely applied to the civil engineering fields of harbor engineering, hydraulic dam engineering, nuclear power engineering and the like with higher requirements on concrete, and particularly suitable for environments with higher requirements on erosion resistance and crack resistance of concrete, such as hydraulic engineering drainage buildings and the like.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
Example 1
In the embodiment of the invention, the anti-abrasion concrete material comprises the following raw materials: 45kg of Portland cement, 20kg of fine sand, 12kg of vinyl acetate resin, 16kg of montmorillonite, 1kg of octyl tin maleate and 7kg of levulinic acid.
Mixing levulinic acid with water with the mass of 8 times of that of the levulinic acid to prepare a levulinic acid solution. Mixing and grinding octyl tin maleate and montmorillonite, sieving with a 100-mesh sieve, mixing with the levulinic acid solution, heating to 70 ℃, sealing and stirring at the temperature for 2.2h, wherein the stirring speed is 300 r/min. Centrifuging to obtain precipitate, washing, and drying to obtain mixture; the centrifugation speed is 3000r/min, and the centrifugation time is 10 min. Adding vinyl acetate resin into the mixture, and carrying out ball milling for 55min, wherein the mass ratio of ball materials is 5:1 during ball milling. Then mixing with Portland cement and fine sand, and stirring uniformly; the stirring speed was 150 r/min. Pouring, vibrating and curing to obtain the product.
Example 2
In the embodiment of the invention, the anti-abrasion concrete material comprises the following raw materials: 55kg of Portland cement, 30kg of fine sand, 20kg of vinyl acetate resin, 24kg of montmorillonite, 5kg of octyl tin maleate and 15kg of levulinic acid.
Levulinic acid was mixed with water 9 times the mass of the levulinic acid to prepare a levulinic acid solution. Mixing and grinding octyl tin maleate and montmorillonite, sieving with a 150-mesh sieve, mixing with the levulinic acid solution, heating to 72 ℃, sealing and stirring at the temperature for 2.4h, and stirring at the speed of 300 r/min. Centrifuging to obtain precipitate, washing, and drying to obtain mixture; the centrifugation speed is 3000r/min, and the centrifugation time is 20 min. Adding vinyl acetate resin into the mixture, and carrying out ball milling for 60min, wherein the mass ratio of ball materials is 5:1 during ball milling. Then mixing with Portland cement and fine sand, and stirring uniformly; the stirring speed was 150 r/min. Pouring, vibrating and curing to obtain the product.
Example 3
In the embodiment of the invention, the anti-abrasion concrete material comprises the following raw materials: 48kg of Portland cement, 22kg of fine sand, 14kg of vinyl acetate resin, 18kg of montmorillonite, 2kg of octyl tin maleate and 9kg of levulinic acid.
Levulinic acid was mixed with water 9 times the mass of the levulinic acid to prepare a levulinic acid solution. Mixing and grinding octyl tin maleate and montmorillonite, sieving with a 150-mesh sieve, mixing with the levulinic acid solution, heating to 71 ℃, sealing and stirring at the temperature for 2.3h, wherein the stirring speed is 300 r/min. Centrifuging to obtain precipitate, washing, and drying to obtain mixture; the centrifugation speed is 3000r/min, and the centrifugation time is 20 min. Adding vinyl acetate resin into the mixture, and carrying out ball milling for 60min, wherein the mass ratio of ball materials is 5:1 during ball milling. Then mixing with Portland cement and fine sand, and stirring uniformly; the stirring speed was 150 r/min. Pouring, vibrating and curing to obtain the product.
Example 4
In the embodiment of the invention, the anti-abrasion concrete material comprises the following raw materials: 52kg of Portland cement, 28kg of fine sand, 18kg of vinyl acetate resin, 22kg of montmorillonite, 4kg of octyl tin maleate and 13kg of levulinic acid.
Levulinic acid was mixed with water 9 times the mass of the levulinic acid to prepare a levulinic acid solution. Mixing and grinding octyl tin maleate and montmorillonite, sieving with a 150-mesh sieve, mixing with the levulinic acid solution, heating to 71 ℃, sealing and stirring at the temperature for 2.3h, wherein the stirring speed is 300 r/min. Centrifuging to obtain precipitate, washing, and drying to obtain mixture; the centrifugation speed is 3000r/min, and the centrifugation time is 20 min. Adding vinyl acetate resin into the mixture, and carrying out ball milling for 60min, wherein the mass ratio of ball materials is 5:1 during ball milling. Then mixing with Portland cement and fine sand, and stirring uniformly; the stirring speed was 150 r/min. Pouring, vibrating and curing to obtain the product.
Example 5
In the embodiment of the invention, the anti-abrasion concrete material comprises the following raw materials: 50kg of Portland cement, 25kg of fine sand, 16kg of vinyl acetate resin, 20kg of montmorillonite, 3kg of octyl tin maleate and 11kg of levulinic acid.
Levulinic acid was mixed with water 9 times the mass of the levulinic acid to prepare a levulinic acid solution. Mixing and grinding octyl tin maleate and montmorillonite, sieving with a 150-mesh sieve, mixing with the levulinic acid solution, heating to 71 ℃, sealing and stirring at the temperature for 2.3h, wherein the stirring speed is 300 r/min. Centrifuging to obtain precipitate, washing, and drying to obtain mixture; the centrifugation speed is 3000r/min, and the centrifugation time is 20 min. Adding vinyl acetate resin into the mixture, and carrying out ball milling for 60min, wherein the mass ratio of ball materials is 5:1 during ball milling. Then mixing with Portland cement and fine sand, and stirring uniformly; the stirring speed was 150 r/min. Pouring, vibrating and curing to obtain the product.
Comparative example 1
The formulation and preparation were identical to those of example 5, except that no levulinic acid was included.
Comparative example 2
The formulation and preparation were identical to those of example 5, except that octyl tin maleate was not present.
Comparative example 3
Directly mixing the raw materials, adding the other raw materials added in the embodiment 5, and uniformly stirring; pouring, vibrating and curing to obtain the product. The raw material amounts are the same as in example 5.
Example 6
The concrete material of the invention has excellent performance in civil engineering such as water conservancy engineering, and the performance test is as follows.
The concrete materials produced in examples 1-5 of the present invention and comparative examples 1-3 were tested using industry test standards known in the art. The results are shown in tables 1 and 2 and compared with commercially available concrete.
TABLE 1 determination of the compressive and flexural Strength of the concrete materials according to the invention
Figure BDA0001536842650000051
As can be seen from Table 1, the concrete materials prepared in examples 1 to 5 of the present invention have significantly better compressive strength and flexural strength than the concrete materials corresponding to comparative examples 1 to 3 and the existing commercially available concrete, which indicates that the concrete materials of the present invention have the above significant effects by using the above raw materials and preparation process.
TABLE 2 test results of the Properties of the concrete materials of the present invention
Figure BDA0001536842650000061
The concrete materials prepared in the embodiments 1 to 5 of the invention are obviously superior to the concrete materials corresponding to the comparative examples 1 to 3 and the existing commercial concrete in the aspects of VC value, impermeability grade, frost resistance, ultimate tensile strength, adiabatic temperature rise and the like. The concrete material of the invention adopts the raw materials and the preparation process to have the obvious effect.
The abrasion resistance strength test was also carried out by the annular ring method and the underwater steel ball method in DL/T5150-2001 "test procedure for Hydraulic concrete", as shown in Table 3.
TABLE 3
Figure BDA0001536842650000062
Figure BDA0001536842650000071
The concrete materials prepared in the embodiments 1 to 5 of the invention are obviously superior to the concrete materials corresponding to the comparative examples 1 to 3 and the existing commercial concrete in the aspect of impact and abrasion resistance. The concrete material of the invention adopts the raw materials and the preparation process to have the obvious effect.
It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrative embodiments, and that the present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Furthermore, it should be understood that although the present description refers to embodiments, not every embodiment may contain only a single embodiment, and such description is for clarity only, and those skilled in the art should integrate the description, and the embodiments may be combined as appropriate to form other embodiments understood by those skilled in the art.

Claims (10)

1. The anti-abrasion concrete material is characterized by comprising the following raw materials in parts by weight: 45-55 parts of Portland cement, 20-30 parts of fine sand, 12-20 parts of vinyl acetate resin, 16-24 parts of montmorillonite, 1-5 parts of octyl tin maleate, 7-15 parts of levulinic acid and 8-9 times of water by mass of the levulinic acid.
2. The abrasion-resistant concrete material according to claim 1, which is characterized by comprising the following raw materials in parts by weight: 48-52 parts of Portland cement, 22-28 parts of fine sand, 14-18 parts of vinyl acetate resin, 18-22 parts of montmorillonite, 2-4 parts of octyl tin maleate and 9-13 parts of levulinic acid.
3. The abrasion-resistant concrete material according to claim 1, which is characterized by comprising the following raw materials in parts by weight: 50 parts of Portland cement, 25 parts of fine sand, 16 parts of vinyl acetate resin, 20 parts of montmorillonite, 3 parts of octyl tin maleate and 11 parts of levulinic acid.
4. A method of preparing an abrasion resistant concrete material as claimed in any one of claims 1 to 3, comprising the steps of:
1) mixing levulinic acid with water with the mass of 8-9 times of that of the levulinic acid to prepare a levulinic acid solution;
2) mixing and grinding octyl tin maleate and montmorillonite, sieving with a 100-one and 150-mesh sieve, mixing with a levulinic acid solution, heating to 70-72 ℃, sealing and stirring at the temperature for 2.2-2.4h, centrifugally separating to obtain a precipitate, washing, and drying to obtain a mixture;
3) adding vinyl acetate resin into the mixture, ball-milling for 55-60min, mixing with Portland cement and fine sand, and stirring; pouring, vibrating and curing to obtain the product.
5. The method for preparing the abrasion-resistant concrete material according to claim 4, wherein in the step 2), the stirring speed is 300 r/min.
6. The method for preparing the abrasion-resistant concrete material according to claim 4, wherein in the step 2), the centrifugal speed is 3000r/min, and the centrifugal time is 10-20 min.
7. The method for preparing the abrasion-resistant concrete material according to claim 4, wherein in the step 3), the stirring speed is 150 r/min.
8. The method for preparing the abrasion-resistant concrete material according to claim 4, wherein in the step 3), the mass ratio of the balls to the materials during ball milling is 5: 1.
9. Use of the concrete material as claimed in any one of claims 1 to 3 for the preparation of civil engineering materials.
10. Use of a concrete material according to claim 9 in the preparation of civil engineering materials, characterised in that the civil engineering comprises hydraulic engineering.
CN201810000674.XA 2018-01-02 2018-01-02 Anti-abrasion concrete material and preparation method and application thereof Active CN108275937B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810000674.XA CN108275937B (en) 2018-01-02 2018-01-02 Anti-abrasion concrete material and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810000674.XA CN108275937B (en) 2018-01-02 2018-01-02 Anti-abrasion concrete material and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN108275937A CN108275937A (en) 2018-07-13
CN108275937B true CN108275937B (en) 2020-05-12

Family

ID=62802851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810000674.XA Active CN108275937B (en) 2018-01-02 2018-01-02 Anti-abrasion concrete material and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN108275937B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584143A (en) * 2012-02-13 2012-07-18 周旭荣 Anti-degradation complexing material for concrete structures of salinized soil regions
CN105330207A (en) * 2015-10-24 2016-02-17 江南水利水电工程公司 Anti-impact wear-resistant concrete
KR101631601B1 (en) * 2015-05-08 2016-06-17 주식회사 이에스피소재 Cement mortar composition for reinforcing concrete structure and reinforce method concrete structure therewith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584143A (en) * 2012-02-13 2012-07-18 周旭荣 Anti-degradation complexing material for concrete structures of salinized soil regions
KR101631601B1 (en) * 2015-05-08 2016-06-17 주식회사 이에스피소재 Cement mortar composition for reinforcing concrete structure and reinforce method concrete structure therewith
CN105330207A (en) * 2015-10-24 2016-02-17 江南水利水电工程公司 Anti-impact wear-resistant concrete

Also Published As

Publication number Publication date
CN108275937A (en) 2018-07-13

Similar Documents

Publication Publication Date Title
CN111393125B (en) Gypsum-based self-leveling repair mortar and preparation method thereof
CN105367026A (en) High strength concrete and preparation method thereof
CN107572941B (en) Grouting material special for micro-expansion assembly type construction steel bar connecting sleeve and preparation method thereof
CN111606612B (en) Alkali-activated cementitious materials and methods of use thereof
CN109987906B (en) Cement-based high-early-strength non-shrinkage grouting material
CN109970371B (en) High belite sulphoaluminate special cementing material for cement-based high-early-strength non-shrinkage grouting material
CN112960958B (en) Sealing slurry for winter assembly type construction and preparation method thereof
CN104446245A (en) Super early-strength mortar
CN112979237A (en) High-strength color concrete and preparation method thereof
CN106242420A (en) A kind of anti-cracking waterproof leak stopping mortar and preparation method thereof
CN104961418A (en) Post-tensioning prestress hole channel slurry pressing material suitable for low temperature environment and preparing method thereof
CN114315291A (en) Fair-faced concrete surface defect repairing material and preparation method thereof
CN112048035A (en) Concrete segregation repairing agent and preparation method thereof
CN114751694A (en) Cement grouting material suitable for marine environment and preparation method thereof
CN108129107B (en) High-wear-resistance building material and preparation method and application thereof
CN107973555A (en) A kind of glass fibre self-compacting concrete
CN108275937B (en) Anti-abrasion concrete material and preparation method and application thereof
CN109608148B (en) Rigid-elastic nano powder synergistic reinforced and toughened grouting material and preparation method and application thereof
CN107986717B (en) High-wear-resistance concrete material and preparation method and application thereof
CN114426422B (en) Waterproof and anti-seepage medium-high-strength resin concrete for underground space and preparation process thereof
CN105000847A (en) Anticorrosion and rust resistant type post-tensioned prestressed duct grouting material and preparation method thereof
CN109265114A (en) A kind of high-strength bricks for road surface and preparation method thereof
CN108249862B (en) High-hardness building material and preparation method thereof
CN108640596B (en) High-strength impervious concrete and preparation method thereof
CN104402290A (en) Composite water-reducing agent improving concrete construction performances, and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200415

Address after: 322104 Zhejiang city of Jinhua province Dongyang city six stone street new village Yan Zhen

Applicant after: DONGYANG HUANENG NEW BUILDING MATERIALS Co.,Ltd.

Address before: Yuelu District City, Hunan province 410000 Changsha bachelor street in Yuelu science and Technology Industrial Park Road No. 8 Changsha Bachelor Hanpu comprehensive service building science and Technology Industrial Park Development and Construction Co. Ltd. room 3009

Applicant before: HUNAN WANGLONG ENTERPRISE MANAGEMENT CONSULTATION Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant