CN108267182A - 一种同步测量呼吸气体流量和含量的肺功能仪及方法 - Google Patents

一种同步测量呼吸气体流量和含量的肺功能仪及方法 Download PDF

Info

Publication number
CN108267182A
CN108267182A CN201710003925.5A CN201710003925A CN108267182A CN 108267182 A CN108267182 A CN 108267182A CN 201710003925 A CN201710003925 A CN 201710003925A CN 108267182 A CN108267182 A CN 108267182A
Authority
CN
China
Prior art keywords
unit
signal
breathing gas
processing unit
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710003925.5A
Other languages
English (en)
Inventor
黄勇
张玉谦
傅佳萍
边宏亮
龙峰
舒文秀
马绍嘉
简越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENYANG SIASUN MEDICAL TECHNOLOGY Co Ltd
Original Assignee
SHENYANG SIASUN MEDICAL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENYANG SIASUN MEDICAL TECHNOLOGY Co Ltd filed Critical SHENYANG SIASUN MEDICAL TECHNOLOGY Co Ltd
Priority to CN201710003925.5A priority Critical patent/CN108267182A/zh
Publication of CN108267182A publication Critical patent/CN108267182A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明涉及一种同步测量呼吸气体流量和含量的肺功能仪及方法,装置包括:双功能传感器单元、内部信号传输单元、数据处理单元和软件单元、数据存储单元、用户界面单元、打印单元、外部信号传输单元、电源单元。方法包括:运用双功能传感器单元测量顺流传播时间Tf、逆流传播时间Tb、以及实时红外辐射强度信号;利用数据处理单元和软件单元计算呼吸气体的流量、实时二氧化碳的含量C,以图形实时显示在用户界面上、以及输出测试报告。本发明方法在同一个集成传感器中实施同步地测量肺功能的通气功能和换气功能,极大提高诊断效率,通过无线数据传输实现在远程医疗中的应用。

Description

一种同步测量呼吸气体流量和含量的肺功能仪及方法
技术领域
本发明涉及呼吸气体流量及成份测量领域,具体的说是一种同步测量呼吸气体流量和含量的肺功能仪及方法。
背景技术
肺功能检查包括通气功能、换气功能、呼吸调节功能及肺循环功能等。呼吸流量测量被广泛应用在肺功能检查领域。基本肺功能检查是一种物理检查方法,通过简单呼吸流量测量可以得到一些基本肺功能参数如:容量指标,通气指标,气道阻力等通气功能指标。可以筛查常见慢性肺部疾病如:肺气肿,哮喘、慢性阻塞性肺疾病。这种测量只能检查通气功能。
大部分肺功能仪流量测量是采用涡轮,热线或压差传感器进行测量,精度,可靠性,稳定和重复性,安全性,使用成本都不能满足临床对肺功能检查仪器性能的要求。超声气体流量测量技术则可克服如上缺点:(1)精度高;(2)无移动部件,可靠长寿;(3)流量测量结果受环境参数如气体组分,压力,温度,湿度影响小,重复性好;(4)稳定性好,免去经常校对的麻烦;(5)容易消毒避免交叉感染。
对换气功能检查所需测量的弥散功能指标则必须使用复杂昂贵的具有弥散测试功能的专用仪器。这就限制了换气功能检查的广泛应用。市场急需一种可供先进的更多组合功能的肺功能仪使用的传感技术:能方便,可靠和低成本的可同时测量流量和主要气体成分的传感器。借助于这种传感技术所建立的肺功能仪使在一次检查中同时得到通气功能、换气功能数据成为可能,极大提高筛查和诊断效率,降低医患成本。
中红外吸收测量呼末二氧化碳(ETCO2)目前已广泛应用于急症领域如:(1)麻醉机和呼吸机的安全应用;(2)各类呼吸功能不全;(3)心肺复苏;(4)严重休克;(5)心力衰竭和肺梗死;(6)确定全麻气管内插管的位置。除此之外ETCO2的实时检测性能和取得的非常有价值的参数可实现快速,准确,安全,无创的换气功能的检查,结合通气功能检查,对于门诊诊断提供了更先进,准确和快速的工具。但目前尚无此类门诊仪器和应用。
鉴于超声呼吸流量测量和ETCO2都属于非侵入形式实时精确测量手段并分别提供最有诊断参考价值的通气功能、换气功能的信息,二者有机结合则可开辟全新的诊断研究领域和实用方法。
由于呼吸通气和换气是在呼吸循环中同步和相继发生的,两者时间关联性极强,信息丰富。深入研究带有时间相关的信息可预期推断出比单独使用任何一种方法更多和可靠的诊断信息。同时这对于传感器提出了更高的要求:(1)两种传感器必须在同一装置内;(2)测量数据采样必须时间高分辨;(3)测量数据采样必须同时发生,互不干扰;(4)采集到的数据必须实时处理;(5)处理后的两组实时数据必须以固定和最小的时间差以最简单方式向中心处理部分传输给肺功能仪。肺功能仪必须具备这种同步信号的处理,显示和数据判断,辅助诊断能力。
目前尚无个人,机构或公司有能同时满足以上要求的技术或产品出现。本发明提供了有效的解决方案和方法。
发明内容
针对现有技术中存在的上述不足之处,本发明主要是解决现有的仅使用单功能传感器的肺功能仪所存在的无法在同一次检查中进行呼吸通气和换气功能的测试的技术障碍:提供了一个通过集成的双功能传感器,实时同步信息采集与处理、传输,来实现完成此项功能的解决方案和方法。
本发明为实现上述目的所采用的技术方案是:一种同步测量呼吸气体流量和含量的肺功能仪及方法。
一种同步测量呼吸气体流量和含量的肺功能仪,包括:
双功能传感器单元,连接内部信号传输单元;内部包括超声流量传感器子单元、中红外呼吸末二氧化碳传感器子单元;用于测量顺流传播时间Tf、逆流传播时间Tb、实时采集呼吸末二氧化碳红外辐射强度信号,并输出给内部信号传输单元;
内部信号传输单元,连接数据处理单元和软件单元,用于转发其接收的信号和数据给数据处理单元和软件单元;
数据处理单元和软件单元,连接双功能传感器单元,用于驱动和控制双功能传感器单元工作、接收双功能传感器单元输出的信号和数据;还用于运用接收的顺流传播时间Tf和逆流传播时间Tb计算呼吸气体的容量、以及根据接收的红外辐射强度信号计算实时二氧化碳的含量C;再将呼吸气体的容量、以及实时二氧化碳的含量C输出给数据存储单元进行保存;
数据存储单元,连接数据处理单元和软件单元,用于保存应用程序、数据库形式的患者及诊断数据、测试报告;
用户界面单元,为触摸屏,连接数据处理单元和软件单元;用于显示曲线、数值、表格信息、以及通过相应的触摸屏操作实现用户信息录入、用户信息查询、启动肺功能检查、存储检查数据功能;
打印单元,连接数据处理单元和软件单元,用于输出纸质报告;
外部信号传输单元,连接数据处理单元和软件单元,采用时间区交错编码打包方法,将数据存储单元保存的呼吸气体的流量、以及实时二氧化碳的含量C给肺功能仪主机或因特网数据中心;
电源单元,连接上述单元,用于为上述单元提供工作电源。
所述超声流量传感器子单元,包括:
被测气体测量通道,用于引导被测呼吸气体;
两个超声传感器,斜向置于测量气流通道的两端,之间距离为Lu,且超声传感器的轴线与被测气体测量通道的轴线夹角为θ,用于发射超声波信号、接收超声波回波信号;所述两个超声传感器交替发射和接收超声波信号;
功率驱动单元,连接数据处理单元和软件单元、两个超声传感器、计时单元;用于在数据处理单元和软件单元的控制下,交替控制两个超声传感器发射或者接收超生波信号,同时输出脉冲信号驱动计时单元工作;
信号初步调理单元,连接两个超声传感器;对超声传感器输出的超声信号进行滤波、整形和平均处理,然后输出给电平甄别单元;
电平甄别单元,连接信号调理单元;对信号调理单元输出的信号进行域值检测,当信号达到预设阈值时触发计时模块停止计时;
计时单元,连接电平甄别单元;用于记录超声脉冲顺流传播时间Tf和逆流传播时间Tb,并输出给接口单元;
接口单元,连接数据处理单元和软件单元、计时单元;用于输出顺流传播时间Tf和逆流传播时间Tb给数据处理单元和软件单元。
所述中红外呼吸末二氧化碳传感器子单元,包括:
中红外发射器,开孔安装固定于被测气体测量通道外壁,且其发射窗口面暴露在呼吸气体中;用于向被测气体发射脉冲调制的红外辐射信号;
红外探测器,开孔安装固定于被测气体测量通道外壁,且其接收窗口面暴露在呼吸气体中,并与中红外发射器相对放置;用于实时采集被测气体中的红外辐射强度信号;
功率驱动单元,连接数据处理单元和软件单元、中红外发射器、锁相放大模块;用于在数据处理单元和软件单元的控制下,发射脉冲信号驱动中红外发射器工作,同时输出同步控制信号给锁相放大单元;
锁相放大单元,连接红外探测器;用于对接收的红外辐射强度信号进行放大处理;
信号初步调理单元,连接锁相放大单元;用于对红外辐射强度放大信号进行积分和平均处理,然后输出给电平甄别单元;
电平甄别单元,连接信号初步调理单元;用于对接收的信号进行电平检测,然后定时输出实时红外辐射强度信号给接口单元;
接口单元,连接数据处理单元和软件单元;用于转发实时红外辐射强度信号给数据处理单元和软件单元。
所述双功能传感器单元中还包括环境条件测试单元;所述环境条件测试单元包括:温度传感器,压力传感器,湿度传感器;所述每个传感器内部都有驱动与信号调理单元;用于采集、调理温度信号、压力信号、湿度信号并送往数据处理单元和软件单元中的中心处理单元,所述调理包括放大、滤波、零点稳定。
所述数据处理单元和软件单元包括:
超声流量传感器驱动单元,用于向是超声传感器提供脉冲驱动信号;
中红外呼吸末二氧化碳传感器驱动单元,用于向中红外发射器提供脉冲驱动信号;
超声流量传感器接口单元,用于转发顺流传播时间Tf和逆流传播时间Tb给中心处理单元;
中红外呼吸末二氧化碳传感器接口单元,对接收的实时红外辐射强度信号进行模拟预处理,再输出给中心处理单元;所述模拟预处理包括放大、滤波、零点稳定,用于实现模数转换;
时钟单元,向整个装置提供同步操作信号;
中心处理单元,为带有数字与模拟接口的微处理器,用于对接收的顺流传播时间Tf和逆流传播时间Tb计算呼吸气体的容量、以及根据接收的实时红外辐射强度信号计算实时二氧化碳的含量C;
通讯接口单元,连接外部信号传输单元;用于输出呼吸气体的流量和实时二氧化碳的含量C给外部信号传输单元;
用户界面接口单元,用于转发中心处理单元输出的控制信号给显示屏;
打印接口单元,用于转发中心处理单元输出的控制信号给打印单元;
数据存储接口单元,用于转发中心处理单元输出的数据给数据存储单元;
电源接口单元,用于为上述单元提供工作电源,以及对电源单元进行用电管理。
所述外部信号传输单元包括:
有线信号传输单元,用于实现与肺功能仪主机的有线数据传输和索取电源供给;
无线信号传输单元,用于实现与肺功能仪主机或因特网的无线数据交换和无线控制。
所述电源单元包括:
本地供电单元,为可充电池及其充电电路;
外来有线供电单元,包括外电侦测、调理和保护电路;用于连接外部电源;
电源管理单元,用于对本地供电单元和外来有线供电单元进行管理。
一种同步测量呼吸气体流量和含量的方法,包括以下步骤:
通过双功能传感器单元中的超声流量传感器子单元测量超声波顺流传播时间Tf和逆流传播时间Tb,并输出给数据处理单元和软件单元用于计算呼吸气体的容量;
通过双功能传感器单元中的中红外呼吸末二氧化碳传感器子单元测量红外辐射强度信号,并输出给数据处理单元和软件单元用于计算实时二氧化碳的含量C。
所述数据处理单元和软件单元计算呼吸气体的流量,包括以下步骤:
S1:将超声波信号在呼吸气体中传播时的顺流传播时间Tf,逆流传播时间Tb代入公式(1)计算呼吸气体声速Sr:
S2:根据超声波在呼吸气体中传输的时间差、声速,按照公式(2)可得呼吸气体流速u:
S3:根据呼吸气体流速u和测量管路截面积A,按照公式(3)可得呼吸气体流量Q:
Q=u×A (3)
S4:对呼吸气体瞬间流量积分可得呼吸气体的容量V;
V=∫Qdt (4)
其中,顺流传播时间Tf为超声波信号传播方向与气流方向一致时超声波在两个超生传感器之间传播的时间,逆流传播时间Tb为超声波信号传播方向与气流方向相反时超声波在两个超生传感器之间传播的时间;超声波测量距离即两个超声传感器之间距离Lu为定值,超声波传感器轴线与被测气体测量通道轴线夹角为θ。
所述数据处理单元和软件单元计算实时二氧化碳的含量C包括以下步骤:
根据红外光谱理论,以及郎伯-比尔定律:
I=I0exp(-KCLR) (5)
其中,I红外光通过测试通道后的光强,I0为红外光进入测试通道前的光强,C为呼吸气体中二氧化碳的含量,LR为透射光路的长度,K为气体吸收系数,且K与温度、压力、湿度信号相关。
本发明具有以下有益效果及优点:
在同一个肺功能仪中使用集成传感器实施同步的测量两个肺功能的主要功能参数类别即通气功能和换气功能,极大提高诊断效率,降低医疗成本并且能实现无线数据传输进行移动或远程医疗。
附图说明
图1为本发明的装置结构示意图;
图2为本发明装置中的集成的双功能传感器单元探测部分机构原理示意图;
图3为本发明装置中的超声流量传感器子单元结构示意图;
图4为本发明装置中的中红外呼吸末二氧化碳传感器子单元结构示意图;
图5为本发明装置中的数据处理单元和软件单元结构示意图;
图6为本发明装置中的外部信号传输单元结构示意图;
图7为本发明装置中的外部信号传输单元采用的数据编码传输结构示意图;
图8为数据矩阵存储结构示意图;
图9为本发明装置中的电源单元结构示意图;
图10为常见肺容积及其组成图;
图11为测试数据图形同步显示方式示意图;
图12为常见可用于ICU监护的呼末二氧化碳测试数据图形示意图。
具体实施方式
下面结合附图及实施例对本发明做进一步的详细说明。
如图1所示,一种同步测量呼吸气体流量和含量的肺功能仪,系统包括:双功能传感器单元、内部信号传输单元、数据处理单元和软件单元、数据存储单元、用户界面单元、打印单元、外部信号传输单元、电源单元。
双功能传感器单元,用于测量顺流传播时间Tf、逆流传播时间Tb、采集实时红外辐射强度信号;内部信号传输单元,用于转发双功能传感器单元输出的信号和数据;数据处理单元和软件单元,用于运用接收的顺流传播时间Tf和逆流传播时间Tb计算呼吸气体的容量、以及根据接收的红外辐射强度信号计算实时二氧化碳的含量C;数据存储单元,用于保存相关应用程序、数据库形式的患者及诊断数据、医护人员编辑产生的测试报告;用户界面单元为触摸屏,用于显示曲线、数值、表格信息、以及通过相应的触摸屏操作实现用户信息录入、用户信息查询、启动肺功能检查、存储检查数据等)功能;打印单元,用于输出纸质报告;外部信号传输单元,采用时间区交错编码打包方法,将数据存储单元保存的呼吸气体的流量、以及实时二氧化碳的含量C给肺功能仪主机或因特网数据中心;电源单元用于为上述单元提供工作电源。
如图2所示,为本发明系统中的集成的双功能传感器单元探测部分机构原理示意图。
如图3所示,数据处理单元和软件单元通过内部信号传输单元与超声流量传感器子单元相连,控制其中的驱动单元交替控制超声波传感器1和超声波传感器2发射超声波信号,超声传感器1发射超生波信号时超声传感器2接收超声传感器1的发射信号,超声传感器2发射超生波信号时超声传感器1接收超声传感器2的发射信号,在驱动单元控制超声波传感器发射超声波信号的同时开启计时单元,电平甄别单元将经过信号调理单元改善后的信号进行域值检测,信号达到预设值时触发计时单元停止计时,产生中断信号经接口单元送往数据处理单元和软件单元中的中心处理单元进行数据处理。通过测量超声波信号顺流与逆流的传播时间差来测得呼吸气体的流速,从而计算出流量、容量。
超声波信号传播方向与气流方向一致为顺流传输,如图3所示,超声传感器2发射超生波信号时超声传感器1接收信号为顺流传输。
超声波信号传播方向与气流方向相反为逆流传输,如图3所示,超声传感器1发射超生波信号时超声传感器2接收信号为逆流传输。
流量的测量方法包括以下步骤:
测量所测呼吸气体的声速和流速:
设超声波信号在呼吸气体传播时顺流方向传播时间为Tf,逆流方向传播时间为Tb,呼吸气体的声速为Sr,流速为u,超声波测量距离Lu为定值,超声波传感器轴线与管道轴线夹角为θ,则:
顺流方向传播时间:Tf=Lucosθ/(Sr+u)
逆流方向传播时间:Tb=Lucosθ/(Sr-u)
进行简单运算可得:
超声波信号在呼吸气体传播的时间和为:Tf+Tb=2Lucosθ/(Sr-u)
超声波信号在呼吸气体传播的时间差为:Tb-Tf=2Lucosθ/(Sr-u)
忽略掉远小于声速的呼吸气体流速,(Sr-u)近似等于呼吸气体声速Sr
根据超声波在呼吸气体中传输的时间和公式可得呼吸气体声速
根据超声波在呼吸气体中传输的时间差公式可得呼吸气体流速
根据呼吸气体流速u和测量管路截面积A可得呼吸气体流量Q
Q=u×A
对呼吸气体瞬间流量积分可得呼吸气体的容量V
V=∫Qdt
因为声速测量值正比于测量气道长度Lu,测量灵敏度也与之成正比关系。本发明采用了大于通常同类传感器的测量管道宽度,较小的θ角以提高等效测量气道长度Lu。测量管道截面为矩型宽度大于60毫米。同时为了减小涡流对于测量精度的影响,进气口采用圆滑过渡的截面形状并尽量采用大截面较低低流速区域进行测量。
如图4所示,数据处理单元和软件单元通过内部信号传输单元与中红外呼吸末二氧化碳传感器子单元相连,控制其中的驱动单元以脉冲形式驱动中红外发射器,在驱动单元控制中红外发射器发射信号的同时也向锁相放大单元提供同步信号,信号调理单元将放大后的信号进行积分和平均处理,电平甄别单元将经过信号调理单元改善后的信号进行电平检测,定时产生中断信号经接口单元送往数据处理单元和软件单元中的信号处理单元进行数据处理。通过测量红外信号得到呼出二氧化碳的强度差,来测得呼吸气体的特征峰吸收率,从而计算出呼出二氧化碳含量随时间变化的谱图。
如图5所示,本发明中的数据处理单元和软件单元通过外部信号传输单元分时、交错的发出超声和中红外驱动控制信号;分时、交错的接收和处理超声流量传感器子单元和中红外呼吸末二氧化碳传感器子单元的信号;处理后的各单元信号以数字编码,时间区载荷分配方式打包,加密后经信号传输单元传给上位机或因特网。为实现这种同步的时间分辨率和测量的数值分辨率,超声流量传感器子单元和中红外呼吸末二氧化碳传感器子单元的信号刷新频率需要在1千赫兹以上。超声流量传感器子单元中的计时器精度需要优于50nS。
中红外发射器即中红外发光二极管发射4.3微米波长脉冲调制的辐射,当呼吸气体经过测量气道时红外线光源的光束透过气体样本,并由高速红外探测器测定红外线的光束量,因CO2能吸收特殊波长的红外线(4.3μm),光束量衰减程度与CO2浓度呈正比。最后经过微电脑处理获得PETCO2或呼气末二氧化碳浓度(CETCO2),以数字(mmHg或kPa及%)和CO2图形显示。根据红外光谱理论,不同分子对其特定波长的红外光有明显吸收作用。
根据郎伯-比尔定律:
I=I0exp(-KCLR)
其中I0红外光通过测试通道后的光强,I红外光进入测试通道前的光强,K为气体吸收系数,C为待测气体浓度,LR为透射光路的长度;以上公式指出,透射光路的长度和气体吸收系数确定时,可以通过I/I0比值来计算被测气体的浓度。实际应用中,由于红外测量结果会受多种因素影响如温度,气压,湿度等而降低精度。环境条件测试单元含有温度传感器,压力传感器,湿度传感器,所测动态信息可用来通过多点标定的方法对环境条件变化影响进行计算补偿来恢复测试结果精度。补偿计算方法为公知信息。
如图6所示,外部信号传输单元负责把数据处理单元和软件单元经本地接口单元进行编码,打包,加密处理后经有线或无线接口单元传给上位机或因特网结点。为保证超声流量与红外呼末二氧化碳实时采样的数据在传输过程中保持最小同步时间差和信息时间分辨率,流量数据和二氧化碳浓度数据采用16位格式编码,交替分时,连续小数据包定时一毫秒间隔传送,如图7所示。接收端收到后再进行数据间隔时间恢复。无线接口单元可以是WIFI,蓝牙或其他近距离无线通讯手段。
如图8所示,为本发明系统中的数据存储单元的数据矩阵存储结构示意图。在启动肺功能检查后,流量数据、二氧化碳含量数据,诊断数据按照图8所示格式存储。
如图9所示,电源采用有线或无线供电方式。在有交流电源的场合,本传感器可通过与通讯线合并的电缆例如USB等在电源控制单元管控下供电并可向电池单元提供充电能量,充电单元进行充电控制和管理。在需要无线操作时,由内配电池单元供电,电源控制单元进行放电管理。电源控制单元同时也通过外电源接口单元和稳压单元肩负着外电源调理,系统保护作用。
如图11所示,为测试数据图形同步显示方式示意图。数据处理单元和软件把测量到的超声流量与红外呼末二氧化碳实时采样的数据在用户界面单元以彩色形式同步的显示出来供医护人员判别。呼末二氧化碳曲线也可以上移与流量曲线重合以利更方便判断。对同一曲线的各个相位段可以选择不同颜色加以精确区分。
数据处理单元和软件把测量到的常规潮气量测试的超声流量与红外呼末二氧化碳实时采样的数据还可以进行多周期平均来提高数据的精度和重复性。同时提供平均后的单一周期的时间百分比坐标,以进行精确的时间参数比较。数据处理单元和软件把测量到的常规潮气量测试的超声流量与红外呼末二氧化碳实时采样的数据与诊断数据库的参考数据进行数值分析和二维图形比较,给医护人员提供参考,作为辅助诊断功能。目前其它呼末二氧化碳测试仪器都做为重症监护用,进行常规潮气量下的呼末二氧化碳测试。如图10和图12所示,不能用于门诊和大动态范围的补吸气和补呼气的流量和呼末二氧化碳实时的数数采样。
实践证明,本发明的系统除了支持常规潮气量测试,系统还支持大动态范围的补吸气和补呼气的流量和呼末二氧化碳实时的数采样和处理显示。因此开辟了一个新的医学研究课题。这些数据隐含大量有价值的诊断信息可供进一步研究,发掘,提高诊断深度,水平,效率和精确度。

Claims (10)

1.一种同步测量呼吸气体流量和含量的肺功能仪,其特征在于,包括:
双功能传感器单元,连接内部信号传输单元;内部包括超声流量传感器子单元、中红外呼吸末二氧化碳传感器子单元;用于测量顺流传播时间Tf、逆流传播时间Tb、实时采集呼吸末二氧化碳红外辐射强度信号,并输出给内部信号传输单元;
内部信号传输单元,连接数据处理单元和软件单元,用于转发其接收的信号和数据给数据处理单元和软件单元;
数据处理单元和软件单元,连接双功能传感器单元,用于驱动和控制双功能传感器单元工作、接收双功能传感器单元输出的信号和数据;还用于运用接收的顺流传播时间Tf和逆流传播时间Tb计算呼吸气体的容量、以及根据接收的红外辐射强度信号计算实时二氧化碳的含量C;再将呼吸气体的容量、以及实时二氧化碳的含量C输出给数据存储单元进行保存;
数据存储单元,连接数据处理单元和软件单元,用于保存应用程序、数据库形式的患者及诊断数据、测试报告;
用户界面单元,为触摸屏,连接数据处理单元和软件单元;用于显示曲线、数值、表格信息、以及通过相应的触摸屏操作实现用户信息录入、用户信息查询、启动肺功能检查、存储检查数据功能;
打印单元,连接数据处理单元和软件单元,用于输出纸质报告;
外部信号传输单元,连接数据处理单元和软件单元,采用时间区交错编码打包方法,将数据存储单元保存的呼吸气体的流量、以及实时二氧化碳的含量C给肺功能仪主机或因特网数据中心;
电源单元,连接上述单元,用于为上述单元提供工作电源。
2.根据权利要求1所述的一种同步测量呼吸气体流量和含量的肺功能仪,其特征在于,所述超声流量传感器子单元,包括:
被测气体测量通道,用于引导被测呼吸气体;
两个超声传感器,斜向置于测量气流通道的两端,之间距离为Lu,且超声传感器的轴线与被测气体测量通道的轴线夹角为θ,用于发射超声波信号、接收超声波回波信号;所述两个超声传感器交替发射和接收超声波信号;
功率驱动单元,连接数据处理单元和软件单元、两个超声传感器、计时单元;用于在数据处理单元和软件单元的控制下,交替控制两个超声传感器发射或者接收超生波信号,同时输出脉冲信号驱动计时单元工作;
信号初步调理单元,连接两个超声传感器;对超声传感器输出的超声信号进行滤波、整形和平均处理,然后输出给电平甄别单元;
电平甄别单元,连接信号调理单元;对信号调理单元输出的信号进行域值检测,当信号达到预设阈值时触发计时模块停止计时;
计时单元,连接电平甄别单元;用于记录超声脉冲顺流传播时间Tf和逆流传播时间Tb,并输出给接口单元;
接口单元,连接数据处理单元和软件单元、计时单元;用于输出顺流传播时间Tf和逆流传播时间Tb给数据处理单元和软件单元。
3.根据权利要求1所述的一种同步测量呼吸气体流量和含量的肺功能仪,其特征在于,所述中红外呼吸末二氧化碳传感器子单元,包括:
中红外发射器,开孔安装固定于被测气体测量通道外壁,且其发射窗口面暴露在呼吸气体中;用于向被测气体发射脉冲调制的红外辐射信号;
红外探测器,开孔安装固定于被测气体测量通道外壁,且其接收窗口面暴露在呼吸气体中,并与中红外发射器相对放置;用于实时采集被测气体中的红外辐射强度信号;
功率驱动单元,连接数据处理单元和软件单元、中红外发射器、锁相放大模块;用于在数据处理单元和软件单元的控制下,发射脉冲信号驱动中红外发射器工作,同时输出同步控制信号给锁相放大单元;
锁相放大单元,连接红外探测器;用于对接收的红外辐射强度信号进行放大处理;
信号初步调理单元,连接锁相放大单元;用于对红外辐射强度放大信号进行积分和平均处理,然后输出给电平甄别单元;
电平甄别单元,连接信号初步调理单元;用于对接收的信号进行电平检测,然后定时输出实时红外辐射强度信号给接口单元;
接口单元,连接数据处理单元和软件单元;用于转发实时红外辐射强度信号给数据处理单元和软件单元。
4.根据权利要求1所述的一种同步测量呼吸气体流量和含量的肺功能仪,其特征在于,所述双功能传感器单元中还包括环境条件测试单元;所述环境条件测试单元包括:温度传感器,压力传感器,湿度传感器;所述每个传感器内部都有驱动与信号调理单元;用于采集、调理温度信号、压力信号、湿度信号并送往数据处理单元和软件单元中的中心处理单元,所述调理包括放大、滤波、零点稳定。
5.根据权利要求1所述的一种同步测量呼吸气体流量和含量的肺功能仪,其特征在于,所述数据处理单元和软件单元包括:
超声流量传感器驱动单元,用于向是超声传感器提供脉冲驱动信号;
中红外呼吸末二氧化碳传感器驱动单元,用于向中红外发射器提供脉冲驱动信号;
超声流量传感器接口单元,用于转发顺流传播时间Tf和逆流传播时间Tb给中心处理单元;
中红外呼吸末二氧化碳传感器接口单元,对接收的实时红外辐射强度信号进行模拟预处理,再输出给中心处理单元;所述模拟预处理包括放大、滤波、零点稳定,用于实现模数转换;
时钟单元,向整个装置提供同步操作信号;
中心处理单元,为带有数字与模拟接口的微处理器,用于对接收的顺流传播时间Tf和逆流传播时间Tb计算呼吸气体的容量、以及根据接收的实时红外辐射强度信号计算实时二氧化碳的含量C;
通讯接口单元,连接外部信号传输单元;用于输出呼吸气体的流量和实时二氧化碳的含量C给外部信号传输单元;
用户界面接口单元,用于转发中心处理单元输出的控制信号给显示屏;
打印接口单元,用于转发中心处理单元输出的控制信号给打印单元;
数据存储接口单元,用于转发中心处理单元输出的数据给数据存储单元;
电源接口单元,用于为上述单元提供工作电源,以及对电源单元进行用电管理。
6.根据权利要求1所述的一种同步测量呼吸气体流量和含量的肺功能仪,其特征在于,所述外部信号传输单元包括:
有线信号传输单元,用于实现与肺功能仪主机的有线数据传输和索取电源供给;
无线信号传输单元,用于实现与肺功能仪主机或因特网的无线数据交换和无线控制。
7.根据权利要求1所述的一种同步测量呼吸气体流量和含量的肺功能仪,其特征在于,所述电源单元包括:
本地供电单元,为可充电池及其充电电路;
外来有线供电单元,包括外电侦测、调理和保护电路;用于连接外部电源;
电源管理单元,用于对本地供电单元和外来有线供电单元进行管理。
8.一种同步测量呼吸气体流量和含量的方法,其特征在于,包括以下步骤:
通过双功能传感器单元中的超声流量传感器子单元测量超声波顺流传播时间Tf和逆流传播时间Tb,并输出给数据处理单元和软件单元用于计算呼吸气体的容量;
通过双功能传感器单元中的中红外呼吸末二氧化碳传感器子单元测量红外辐射强度信号,并输出给数据处理单元和软件单元用于计算实时二氧化碳的含量C。
9.根据权利要求8所述的一种同步测量呼吸气体流量和含量的方法,其特征在于,所述数据处理单元和软件单元计算呼吸气体的流量,包括以下步骤:
S1:将超声波信号在呼吸气体中传播时的顺流传播时间Tf,逆流传播时间Tb代入公式(1)计算呼吸气体声速Sr:
S2:根据超声波在呼吸气体中传输的时间差、声速,按照公式(2)可得呼吸气体流速u:
S3:根据呼吸气体流速u和测量管路截面积A,按照公式(3)可得呼吸气体流量Q:
Q=u×A (3)
S4:对呼吸气体瞬间流量积分可得呼吸气体的容量V;
V=∫Qdt (4)
其中,顺流传播时间Tf为超声波信号传播方向与气流方向一致时超声波在两个超生传感器之间传播的时间,逆流传播时间Tb为超声波信号传播方向与气流方向相反时超声波在两个超生传感器之间传播的时间;超声波测量距离即两个超声传感器之间距离Lu为定值,超声波传感器轴线与被测气体测量通道轴线夹角为θ。
10.根据权利要求8所述的一种同步测量呼吸气体流量和含量的方法,其特征在于,所述数据处理单元和软件单元计算实时二氧化碳的含量C包括以下步骤:
根据红外光谱理论,以及郎伯-比尔定律:
I=I0exp(-KCLR) (5)
其中,I红外光通过测试通道后的光强,I0为红外光进入测试通道前的光强,C为呼吸气体中二氧化碳的含量,LR为透射光路的长度,K为气体吸收系数,且K与温度、压力、湿度信号相关。
CN201710003925.5A 2017-01-04 2017-01-04 一种同步测量呼吸气体流量和含量的肺功能仪及方法 Pending CN108267182A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710003925.5A CN108267182A (zh) 2017-01-04 2017-01-04 一种同步测量呼吸气体流量和含量的肺功能仪及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710003925.5A CN108267182A (zh) 2017-01-04 2017-01-04 一种同步测量呼吸气体流量和含量的肺功能仪及方法

Publications (1)

Publication Number Publication Date
CN108267182A true CN108267182A (zh) 2018-07-10

Family

ID=62771613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710003925.5A Pending CN108267182A (zh) 2017-01-04 2017-01-04 一种同步测量呼吸气体流量和含量的肺功能仪及方法

Country Status (1)

Country Link
CN (1) CN108267182A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547716A (zh) * 2005-11-16 2009-09-30 心肺技术公司 旁流型呼吸气体监测系统和方法
CN101600391A (zh) * 2007-02-01 2009-12-09 Ric投资有限责任公司 包括多功能导气管适配器的新陈代谢测量系统
CN101636109A (zh) * 2007-03-15 2010-01-27 Ric投资有限责任公司 呼气末气体估计系统和方法
CN103251410A (zh) * 2012-02-17 2013-08-21 通用电气公司 用于分析呼吸气体的设备、配置和方法
CN103315730A (zh) * 2012-03-21 2013-09-25 马奎特紧急护理公司 用于连续和无创地确定有效肺容量和心输出量的方法
CN103705243A (zh) * 2013-12-16 2014-04-09 天津大学 主流式呼吸二氧化碳浓度和呼吸流量同步监测方法
CN103705244A (zh) * 2013-12-16 2014-04-09 天津大学 主流式呼吸气压和呼吸二氧化碳浓度同步监测方法
CN103948401A (zh) * 2014-05-20 2014-07-30 夏云 一种便携式肺功能仪器及肺功能检测方法
CN105167777A (zh) * 2015-09-15 2015-12-23 天津大学 主流式多种呼吸气体浓度和呼吸气压同步监测装置及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547716A (zh) * 2005-11-16 2009-09-30 心肺技术公司 旁流型呼吸气体监测系统和方法
CN101600391A (zh) * 2007-02-01 2009-12-09 Ric投资有限责任公司 包括多功能导气管适配器的新陈代谢测量系统
CN101636109A (zh) * 2007-03-15 2010-01-27 Ric投资有限责任公司 呼气末气体估计系统和方法
CN103251410A (zh) * 2012-02-17 2013-08-21 通用电气公司 用于分析呼吸气体的设备、配置和方法
CN103315730A (zh) * 2012-03-21 2013-09-25 马奎特紧急护理公司 用于连续和无创地确定有效肺容量和心输出量的方法
CN103705243A (zh) * 2013-12-16 2014-04-09 天津大学 主流式呼吸二氧化碳浓度和呼吸流量同步监测方法
CN103705244A (zh) * 2013-12-16 2014-04-09 天津大学 主流式呼吸气压和呼吸二氧化碳浓度同步监测方法
CN103948401A (zh) * 2014-05-20 2014-07-30 夏云 一种便携式肺功能仪器及肺功能检测方法
CN105167777A (zh) * 2015-09-15 2015-12-23 天津大学 主流式多种呼吸气体浓度和呼吸气压同步监测装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
俞俊棠: "《生物工艺学 下册》", 30 June 1992, 华东化工学院出版社 *
王仲生: "《智能检测与控制技术》", 30 September 2002, 西北工业大学出版 *

Similar Documents

Publication Publication Date Title
RU2476148C2 (ru) Метаболическая измерительная система с многофункциональным адаптером для дыхательных путей
CN101636109B (zh) 呼气末气体估计系统和方法
US8485984B2 (en) Portable breath collection system for use in breath tests
JP2019516442A (ja) 息分析デバイス
ITRM970314A1 (it) Sistema portatile per la misura respiro per respiro dei parametri metabolici di un soggetto, con trasmissione dei dati in telemetria e
JP2009028551A5 (zh)
US20130253336A1 (en) Sensor, gas analyzer and method for measuring concentration of at least one respiratory gas component
CN106061381B (zh) 检测ards的方法以及用于检测ards的系统
US11129546B1 (en) Portable unit for metabolic analysis
Schlegelmilch et al. Pulmonary function testing
CN104458603A (zh) 一种新型幽门螺杆菌检测方法、装置及其应用
CN209574697U (zh) 一种便携式多功能肺功能仪
CN104391107A (zh) 一种不需要控制呼气流量的呼出气一氧化氮测量方法
CN108267480A (zh) 一种呼氢肠胃功能与疾病检测系统及检测方法
CN108267182A (zh) 一种同步测量呼吸气体流量和含量的肺功能仪及方法
CN111239092A (zh) 一种光纤式co2、o2浓度快速采集探头
EP2303119B1 (en) Ventilation analysis and monitoring
CN212853458U (zh) 一种鼻管式睡眠时co2、o2浓度快速综合采集器
CN108267183A (zh) 一种同步测量呼吸气体流量和成分的装置及方法
CN205941349U (zh) 红外气体疾病检测辅助仪器
CN104586395A (zh) 一种无创检测人体血液中二氧化碳水平的检测装置及方法
CN108937938A (zh) 旁流式呼末二氧化碳检测装置
CN209661625U (zh) 手持呼末二氧化碳血氧监测仪
CN105912880A (zh) 一种智能家用呼吸健康管理系统
CN207306669U (zh) 一种呼氢肠胃功能与疾病检测系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180710