CN108258568A - 一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源 - Google Patents

一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源 Download PDF

Info

Publication number
CN108258568A
CN108258568A CN201810032440.3A CN201810032440A CN108258568A CN 108258568 A CN108258568 A CN 108258568A CN 201810032440 A CN201810032440 A CN 201810032440A CN 108258568 A CN108258568 A CN 108258568A
Authority
CN
China
Prior art keywords
phase
change material
film
thin film
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810032440.3A
Other languages
English (en)
Other versions
CN108258568B (zh
Inventor
刘富荣
韩钊
韩伟娜
樊婷
李文强
张永志
郭继承
黄引
韩子豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201810032440.3A priority Critical patent/CN108258568B/zh
Publication of CN108258568A publication Critical patent/CN108258568A/zh
Application granted granted Critical
Publication of CN108258568B publication Critical patent/CN108258568B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/02Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源,属于通信调制技术领域。至少包括磁致伸缩薄膜、相变材料薄膜、隔热层和防氧化层;磁致伸缩薄膜与相变材料薄膜叠加,且在两薄膜之间夹有隔热层,最上层磁致伸缩薄膜上还有防氧化层。使用简便,结构简单,能耗小,制作成本低廉。

Description

一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源
技术领域
本发明涉及一种电磁波辐射源,具体为一种靠相变材料的体积效应和磁致伸缩材料的磁致伸缩逆效应辐射出太赫兹光波,属于通信调制技术领域。
背景技术
太赫兹波(又称太赫兹辐射、THz波等)是频率0.3THz-30THz(波长约为10μm-1mm,光子能量约为1.2meV-120meV)的电磁波,它处于红外波与毫米波之间,是电磁波谱中一个很重要的波段。与传统光源相比,太赫兹波辐射源具有相干、低能、穿透力强等独特优异的性质,所以它在物理、化学、天文学、生命科学和医药科学等基础研究领域,以及有机分子检测、无损成像、分子电子学、新材料研究和雷达通讯方面有重要的应用前景。然而通常产生THz波的光子学和电子学方法都存在频率不可调、或工作温度低、或体积大、或价格昂贵的严重缺点,至今还没有一个较成熟的室温工作的微型固态廉价发射源。这一空白的填补将大幅推动THz技术的发展和应用。
相变材料是一种可以在晶态和非晶态之间来回变换的材料,通常用于存储器件。相变材料的物理性质在晶态时和非晶态时的差异巨大。例如常用相变材料GaSbTe-225(简称GST)的晶态时的密度是其非晶态时密度的1.06倍,产生所谓的体积效应。相变材料需要受外界激发进行相变。常用激发手段为激光辐射、通电流和退火炉退火。相变材料的相变速度超快,一般为10-9~10-12s。
磁致伸缩材料是一种磁致伸缩效应非常强的材料。将铁磁材料置于外磁场中时,铁磁材料会产生和磁场方向一致的形变。这种由外磁场导致的形变叫做磁致伸缩效应。常用磁致伸缩材料有Fe7Ga2B1(简称FGB)合金、Fe-Co合金等。磁致伸缩材料也适用于磁致伸缩逆效应,即当铁磁材料发生形变时,其磁导率将发生改变。
发明内容
为实现可调频率廉价小型固态发射源,本发明的技术方案为:
一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源,其特征在于,至少包括磁致伸缩薄膜、相变材料薄膜、隔热层和防氧化层;磁致伸缩薄膜与相变材料薄膜叠加,且在两薄膜之间夹有隔热层,最上层磁致伸缩薄膜上还有防氧化层。
进一步地,前述一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源,所述相变材料为能够使用激光激发或电激发,在晶态和非晶态之间来回变换的材料,进一步且体积效应明显。如相变材料GaSbTe-225(简称GST)。
更进一步地,前述一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源,其中通过调节所述相变材料的相变频率达到太赫兹级别来辐射出太赫兹光波。
更进一步地优选,前述一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源,其中通过调节所述磁致伸缩薄膜厚度是所要求太赫兹光半波长的整数倍。如Fe7Ga2B1(简称FGB)合金、Fe-Co合金等。优选相变材料薄膜的厚度为10nm-1微米。
进一步优选,隔热层和防氧化层均为Al2O3氧化层,厚度优选10nm-1微米。
进一步优选,还包括基底,在基底上为相变材料,相变材料上为隔热层,隔热层上为磁致伸缩薄膜,磁致伸缩薄膜上为防氧化层。
制备工艺:包括以下步骤:
(1)清洗基底,先后将基底置于丙酮、乙醇、异丙醇、甲醇等进行超声波清洗。之后用去离子水冲洗
(2)使用磁控溅射技术,在基底表面蒸镀相变薄膜层;
(3)将步骤(2)得到的相变薄膜层进行退火晶化;
(4)使用磁控溅射技术,在相变薄膜层上蒸镀中间隔热层;
(5)使用磁控溅射技术,在中间隔热层上蒸镀磁致伸缩薄膜层;
(6)使用磁控溅射技术,在磁致伸缩薄膜上蒸镀防氧化层;
(7)将该器件放入外磁场中,施加延FGB易磁化方向的磁场,使其磁化。
本发明上述技术方案投入应用后,其显著优点是:
仅通过两层薄膜即可完成光源的制作。使用简便,结构简单,能耗小,制作成本低廉。本发明使用激光或电流诱导相变薄膜不断进行相变。由于相变时的体积效应产生震荡波。之后震荡波传导至磁致伸缩薄膜,改变磁致伸缩薄膜局部磁导率从而使得其内部磁场变化,激发出太赫兹光。
附图说明
图1为本发明使用相变材料和磁致伸缩材料的薄膜太赫兹光源的结构示意图;
1为单晶硅或SiO2双面抛光基底;2为GST相变材料薄膜层;3为隔热层Al2O3层;4为FGB磁致伸缩材料薄膜层;5为防氧化层Al2O3层。
具体实施方式
下面结合实施例对本发明作进一步说明,但本发明并不限于以下实施例。
实施例1
如图1所示,这种使用相变材料和磁致伸缩材料的薄膜太赫兹光源由6部分组成。其中1为单晶硅或SiO2双面抛光基底。2为GST相变材料薄膜层。3为隔热层Al2O3层,用于隔热和保护GST。4为FGB磁致伸缩材料薄膜层。5为防氧化层Al2O3层,用于保护FGB不被氧化。
具体来看本发明的制作工艺:
1.清洗基底,先后将基底置于丙酮、乙醇、异丙醇、甲醇等进行超声波清洗。之后用去离子水冲洗
2.使用磁控溅射技术,在基底表面蒸镀GST相变薄膜层。控制蒸镀时间,使得薄膜厚度在50nm左右。
3.将基片加温到180℃,持续30分钟,实现GST退火晶化。
4.使用磁控溅射技术,在GST上蒸镀Al2O3氧化层,厚度为5nm。
5.使用磁控溅射技术,在Al2O3氧化层上蒸镀FGB磁致伸缩薄膜层。控制蒸镀时间,以控制薄膜厚度,使得FGB厚度为所需太赫兹光波波长的一半。
6.使用磁控溅射技术,在FGB等磁致伸缩薄膜上蒸镀Al2O3氧化层,厚度为5nm。
7.将该器件放入外磁场中,施加延FGB易磁化方向的磁场,使其磁化。
之后该薄膜使用激光或电流诱导相变薄膜不断进行相变,由于体积效应产生震荡波;之后震荡波传导至磁致伸缩薄膜,改变磁致伸缩薄膜局部磁导率从而产生其内部磁场变化,激发出电磁波。同时磁致伸缩也成为太赫兹波和震荡波的波导,实现太赫兹波的单模输出。

Claims (9)

1.一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源,其特征在于,至少包括磁致伸缩薄膜、相变材料薄膜、隔热层和防氧化层;磁致伸缩薄膜与相变材料薄膜叠加,且在两薄膜之间夹有隔热层,最上层磁致伸缩薄膜上还有防氧化层;
相变材料为能够使用激光激发或电激发,在晶态和非晶态之间来回变换的材料。
2.按照权利要求1所述的一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源,其特征在于,相变材料为GaSbTe-225(简称GST);磁致伸缩薄膜选自Fe7Ga2B1(简称FGB)合金、Fe-Co合金。
3.按照权利要求1所述的一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源,其特征在于,通过调节所述相变材料的相变频率达到太赫兹级别来辐射出太赫兹光波。
4.按照权利要求1所述的一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源,其特征在于,通过调节所述磁致伸缩薄膜厚度是所要求太赫兹光半波长的整数倍。
5.按照权利要求1所述的一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源,其特征在于,相变材料薄膜的厚度为10nm-1微米。
6.按照权利要求1所述的一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源,其特征在于,隔热层和防氧化层均为Al2O3氧化层。
7.按照权利要求6所述的一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源,其特征在于,隔热层和防氧化层厚度为10nm-1微米。
8.按照权利要求6所述的一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源,其特征在于,还包括基底,在基底上为相变材料,相变材料上为隔热层,隔热层上为磁致伸缩薄膜,磁致伸缩薄膜上为防氧化层。
9.制备权利要求1-8任一项所述的使用相变材料和磁致伸缩材料的薄膜太赫兹光源的方法,其特征在于,包括以下步骤:
(1)清洗基底,先后将基底置于丙酮、乙醇、异丙醇、甲醇等进行超声波清洗。之后用去离子水冲洗
(2)使用磁控溅射技术,在基底表面蒸镀相变薄膜层;
(3)将步骤(2)得到的相变薄膜层进行退火晶化;
(4)使用磁控溅射技术,在相变薄膜层上蒸镀中间隔热层;
(5)使用磁控溅射技术,在中间隔热层上蒸镀磁致伸缩薄膜层;
(6)使用磁控溅射技术,在磁致伸缩薄膜上蒸镀防氧化层;
(7)将该器件放入外磁场中,施加延FGB易磁化方向的磁场,使其磁化。
CN201810032440.3A 2018-01-12 2018-01-12 一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源 Expired - Fee Related CN108258568B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810032440.3A CN108258568B (zh) 2018-01-12 2018-01-12 一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810032440.3A CN108258568B (zh) 2018-01-12 2018-01-12 一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源

Publications (2)

Publication Number Publication Date
CN108258568A true CN108258568A (zh) 2018-07-06
CN108258568B CN108258568B (zh) 2020-04-17

Family

ID=62726999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810032440.3A Expired - Fee Related CN108258568B (zh) 2018-01-12 2018-01-12 一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源

Country Status (1)

Country Link
CN (1) CN108258568B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101943803A (zh) * 2010-07-07 2011-01-12 电子科技大学 一种用于太赫兹波调制的结构材料
CN102044626A (zh) * 2009-10-20 2011-05-04 北京有色金属研究总院 一种薄膜磁电复合材料及制备方法
CN102081274A (zh) * 2010-12-22 2011-06-01 四川大学 一种基于二氧化钒薄膜相变特性的太赫兹波调制装置及其方法
CN102393571A (zh) * 2011-11-09 2012-03-28 南开大学 高速光子晶体波导太赫兹调制器
CN103361614A (zh) * 2013-06-29 2013-10-23 天津大学 一种基于柔性基底的太赫兹调制器膜材料的制备方法
CN103882396A (zh) * 2014-02-26 2014-06-25 长沙理工大学 一种利用应力改善镁基氢化物释氢热力学的方法
CN104466617A (zh) * 2013-09-18 2015-03-25 中国科学院苏州纳米技术与纳米仿生研究所 太赫兹光源芯片、光源器件、光源组件及其制造方法
CN104678598A (zh) * 2015-03-31 2015-06-03 中国石油大学(华东) 太赫兹调制器、太赫兹调制器的制备方法和调谐方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102044626A (zh) * 2009-10-20 2011-05-04 北京有色金属研究总院 一种薄膜磁电复合材料及制备方法
CN101943803A (zh) * 2010-07-07 2011-01-12 电子科技大学 一种用于太赫兹波调制的结构材料
CN102081274A (zh) * 2010-12-22 2011-06-01 四川大学 一种基于二氧化钒薄膜相变特性的太赫兹波调制装置及其方法
CN102393571A (zh) * 2011-11-09 2012-03-28 南开大学 高速光子晶体波导太赫兹调制器
CN103361614A (zh) * 2013-06-29 2013-10-23 天津大学 一种基于柔性基底的太赫兹调制器膜材料的制备方法
CN104466617A (zh) * 2013-09-18 2015-03-25 中国科学院苏州纳米技术与纳米仿生研究所 太赫兹光源芯片、光源器件、光源组件及其制造方法
CN103882396A (zh) * 2014-02-26 2014-06-25 长沙理工大学 一种利用应力改善镁基氢化物释氢热力学的方法
CN104678598A (zh) * 2015-03-31 2015-06-03 中国石油大学(华东) 太赫兹调制器、太赫兹调制器的制备方法和调谐方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李晓东: "不同衬底温度下_Tb_Fe_Dy_省略_结构_磁性能及超磁致伸缩性能研究", 《科学通报》 *
王伟: "超磁致伸缩TbFe_FeAl多层膜的研究", 《材料热处理学报》 *

Also Published As

Publication number Publication date
CN108258568B (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
Ke et al. Vanadium dioxide: The multistimuli responsive material and its applications
Pitchappa et al. Chalcogenide phase change material for active terahertz photonics
Zhang et al. Recent progress in 2D material‐based saturable absorbers for all solid‐state pulsed bulk lasers
CN104218443A (zh) 基于二维层状材料的实用化可饱和吸收器件及其制备方法
CN102081274A (zh) 一种基于二氧化钒薄膜相变特性的太赫兹波调制装置及其方法
Liu et al. Nonvolatile reconfigurable electromagnetically induced transparency with terahertz chalcogenide metasurfaces
CN106200016A (zh) 一种太赫兹石墨烯微结构调制器
Liu et al. Active tuning of electromagnetically induced transparency from chalcogenide-only metasurface
Chen et al. A thermally switchable bifunctional metasurface for broadband polarization conversion and absorption based on phase‐change material
Lezier et al. Fully reversible magnetoelectric voltage controlled THz polarization rotation in magnetostrictive spintronic emitters on PMN-PT
CN111244755A (zh) 一种介质光学微腔嵌埋黑磷的红外激光器及其制备方法
Gage et al. Si-integrated ultrathin films of phase-pure Y3Fe5O12 (YIG) via novel two-step rapid thermal anneal
Liu et al. Passively Q-switched dual-wavelength Yb: LSO laser based on tungsten disulphide saturable absorber
Zhu et al. A Phase Transition Oxide/Graphene Interface for Incident‐Angle‐Agile, Ultrabroadband, and Deep THz Modulation
Hu et al. Electrically controlled terahertz binary coder based on hysteresis of vanadium dioxide embedded modulator
CN108879322B (zh) 基于金属微腔的半导体激光器及其制作方法
CN108258568A (zh) 一种使用相变材料和磁致伸缩材料的薄膜太赫兹光源
CN105242334A (zh) 一种宽谱超快非线性光学响应性能的多层金属陶瓷薄膜及其制备方法
Johri et al. Photonic band gap materials: Technology, applications and challenges
CN204290028U (zh) 基于二维层状材料的实用化可饱和吸收器件
Strikha Non-volatile memory and IR radiation modulators based upon graphene-on-ferroelectric substrate. A review
Hamidi et al. Cavity enhanced longitudinal magneto-optical Kerr effect in magneto-plasmonic multilayers consisting of Ce: YIG thin films incorporating gold nanoparticles
CN113540260A (zh) 一种太赫兹探测器
JP3940553B2 (ja) アップコンバージョン光素子
Pitchappa et al. Phase change-photonic framework for terahertz wave control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200417