CN108248392A - 快速公交储能系统能量控制方法 - Google Patents

快速公交储能系统能量控制方法 Download PDF

Info

Publication number
CN108248392A
CN108248392A CN201611247085.9A CN201611247085A CN108248392A CN 108248392 A CN108248392 A CN 108248392A CN 201611247085 A CN201611247085 A CN 201611247085A CN 108248392 A CN108248392 A CN 108248392A
Authority
CN
China
Prior art keywords
energy
super capacitor
storage system
threshold
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611247085.9A
Other languages
English (en)
Inventor
张皖俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze River Delta Research Institute Of Beijing Jiaotong University
Original Assignee
Yangtze River Delta Research Institute Of Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze River Delta Research Institute Of Beijing Jiaotong University filed Critical Yangtze River Delta Research Institute Of Beijing Jiaotong University
Priority to CN201611247085.9A priority Critical patent/CN108248392A/zh
Publication of CN108248392A publication Critical patent/CN108248392A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及城轨快速公交储能系统能量控制方法,包括如下步骤:在每一个控制周期内,分别采集直流供电网电压U dc 和超级电容模组端电压U sc ,采集超级电容模组的输出支路电流I sc ,在每一个控制周期内,基于超级电容模组端电压U sc ,由充放电阈值计算模块实时输出充电阈值U char 和放电阈值U dis ;根据充电阈值、放电阈值和直流供电网电压U dc 之间的大小关系,决定城轨超级电容储能系统的当前控制周期应处于充电状态、放电状态或是待机状态。本发明所述的能量控制方法,使多套城轨超级电容储能系统协调工作,使城轨超级电容储能系统充分有效地吸收列车的制动能量,提高城轨供电系统的能量利用效率,并且抑制供电系统直流侧电压的波动。

Description

快速公交储能系统能量控制方法
技术领域
本发明涉及城轨交通储能、节能技术领域,具体说是快速公交储能系统能量控制方法。
背景技术
城轨交通具有以下特点:站间距短,城轨列车(简称为列车)启动、制动频繁,而再生制动是一种可以将列车的动能再生成为电能,并且产生可控制动力的制动方式。它有效地减轻了机械制动装置的负担和磨损,从而成为列车制动的主要方式。再生制动可以回馈20%~60%的电能,成为节约列车运行能耗的主要手段,列车采用再生制动的方式将再生制动能量回馈到接触网。
由于典型的牵引变电所采用的是二极管整流方式,多余的再生制动能量不能通过牵引变电所返送至上级中压网络。当列车进行再生制动时,如果临近没有其他列车来吸收再生制动能量,再生制动能量将导致列车受电弓处的电压急剧上升,当电压超过规定上限值时,将导致列车切除再生制动,转化为空气制动。
因此,如何将列车的再生制动能量充分有效的回收利用,是当前亟待解决的问题。
城轨超级电容储能系统已被我们成功开发并应用在北京地铁变电所,可以有效吸收列车再生制动能量,并抑制电压波动。但如何有效地管理控制安装在不同牵引变电所的多个城轨超级电容储能系统,还值得进一步研究。
如图1所示,本发明所述城轨超级电容储能系统包括:电压传感器V、电流传感器I、双向DC/DC变换器、超级电容模组及滤波电感L1和直流稳压电容C1
双向DC/DC变换器的低压侧与超级电容模组连接,双向DC/DC变换器的高压侧与直流稳压电容C1和滤波电感L1相连,再与城轨直流供电网连接,电压传感器V共两个,分别连接在城轨直流供电网正负极和超级电容模组两端上,电流传感器I连接在超级电容模组的输出支路上。
城轨超级电容储能系统的作用如下:
节能作用:列车进站制动时,列车进行再生电制动,列车的再生制动装置将列车的动能转变为电能反馈给牵引网,并使牵引网电压升高,超过城轨超级电容储能系统设定的电压限值时,城轨超级电容储能系统快速存储再生制动电能;当列车出站起动或加速时,牵引网电压下降,当低于城轨超级电容储能系统设定的电压值时,城轨超级电容储能系统快速释放存储的能量,提供给需要能量的列车。在保证列车运行的情况下,降低牵引供电系统的能量消耗。
稳压作用:由于城轨超级电容储能系统能够当牵引网电压低于某一限定值时,向牵引网提供能源,抑制牵引网电压的进一步跌落;当牵引网电压高于理论空载电压时,城轨超级电容储能系统吸收能量并储存,抑制牵引网电压的抬升,使牵引网电压维持在所要求的范围内。因此城轨超级电容储能系统对稳定牵引网电压具有一定作用。
如图2所示,现有的快速公交储能系统能量控制方法,其充电阈值和放电阈值基本设定为不变或者变化范围较小。现有的快速公交储能系统能量控制方法的控制方式基本为分别独立控制每个牵引变电所的超级电容储能系统,使每套超级电容储能系统独自的节能效果或其它评估目标最优(例如下文给出的参考文献),而不是通过协调多套超级电容储能系统的能量流动,使所有超级电容储能系统的节能效果或其它评估目标在整体上达到最优。
在每一个控制周期内,实时检测直流供电网的直流侧电压(简称为直流供电网电压),当其高于充电阈值时,基于直流供电网电压与充电阈值差值控制双向DC/DC变换器,使超级电容储能系统处于充电状态,并且将直流侧电压稳定为充电阈值;
在每一个控制周期内,实时检测直流供电网的直流侧电压(简称为直流供电网电压),当其低于放电阈值时,基于直流供电网电压与放电阈值差值控制双向DC/DC变换器,使超级电容储能系统处于放电状态,并且将直流侧电压稳定为放电阈值;
在每一个控制周期内,实时检测直流供电网的直流侧电压(简称为直流供电网电压),若其处于充电阈值和放电阈值之间,关闭双向DC/DC变换器所有开关管,使超级电容储能系统处于待机状态。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供快速公交储能系统能量控制方法,使多套城轨超级电容储能系统协调工作,使城轨超级电容储能系统充分有效地吸收列车的制动能量,提高城轨供电系统的能量利用效率,并且抑制供电系统直流侧电压的波动。
为达到以上目的,本发明采取的技术方案是:
快速公交储能系统能量控制方法,其特征在于,包括如下步骤:
在每一个控制周期内,分别采集直流供电网电压U dc 和超级电容模组端电压U sc ,采集超级电容模组的输出支路电流I sc
在每一个控制周期内,基于超级电容模组端电压U sc ,由充放电阈值计算模块实时输出充电阈值U char 和放电阈值U dis
根据充电阈值、放电阈值和直流供电网电压U dc 之间的大小关系,决定城轨超级电容储能系统的当前控制周期应处于充电状态、放电状态或是待机状态。
在上述技术方案的基础上,通过两个电压传感器,分别采集直流供电网电压U dc 和超级电容模组端电压U sc
通过电流传感器,采集超级电容模组的输出支路电流I sc
在上述技术方案的基础上,若城轨超级电容储能系统在当前周期处于充电状态,则超级电容模组输出支路电流指令值Isc*,Isc*由直流供电网电压U dc 与充电阈值U char 的差值经过PID控制器得到;
若城轨超级电容储能系统在当前周期处于放电状态,则超级电容模组输出支路电流指令值Isc*,Isc*由直流供电网电压U dc 与放电阈值U dis 的差值经过PID控制器得到;
若城轨超级电容储能系统在当前周期处于待机状态,则超级电容模组输出支路电流指令值Isc*为0;
基于采集的超级电容模组的输出支路电流I sc ,与上述计算得到的超级电容模组输出支路电流指令值Isc*的差值,经过PID控制器得到当前控制周期的控制脉冲占空比对双向DC/DC变换器开关管进行控制。
在上述技术方案的基础上,充放电阈值计算模块实时输出的充电阈值应大于直流供电网空载电压,放电阈值应低于直流供电网空载电压。
在上述技术方案的基础上,所述充放电阈值计算模块的工作过程如下:
充放电阈值计算模块获取四个恒定控制参数k 1 k 2 U ref1 U ref2 ,其中:
k 1 为输出的充电阈值U char 和输入的超级电容模组端电压U sc 的变化关系的斜率,
k 2 为输出的放电阈值U dis 和输入的超级电容模组端电压U sc 的变化关系的斜率,
U ref1 为充电阈值U char 设定的下限值,
U ref2 为放电阈值U dis 设定的上限值;
所述充放电阈值计算模块获取超级电容模组端电压设定的下限值U sc_min
所述充放电阈值计算模块获取超级电容模组端电压设定的上限值U sc_max
充放电阈值计算模块计算充电阈值和放电阈值的公式如下:
式(1)。
在上述技术方案的基础上,U ref1 取值范围为[U dc_noload U dc_noload +50],
U ref2 取值范围为[U dc_noload U dc_noload -50],
k 1 k 2 取值范围都为[0,1]。
在上述技术方案的基础上,当安装在不同牵引变电所的城轨超级电容储能系统容量较小,或者站间距较远,k 1 k 2 需取较小值;当安装在不同牵引变电所的城轨超级电容储能系统容量较大,或者站间距较远,k 1 k 2 需取较大值。
在上述技术方案的基础上,在每一个控制周期内,当直流供电网电压U dc 高于充电阈值U char 时,基于直流供电网电压与充电阈值差值控制双向DC/DC变换器,使超级电容储能系统处于充电状态,并且将直流侧电压稳定为充电阈值;
在每一个控制周期内,当直流供电网电压U dc 低于放电阈值U dis 时,基于直流供电网电压与放电阈值差值控制双向DC/DC变换器,使超级电容储能系统处于放电状态,并且将直流侧电压稳定为放电阈值;
在每一个控制周期内,若直流供电网电压U dc 处于充电阈值U char 和放电阈值U dis 之间,关闭双向DC/DC变换器所有开关管,超级电容储能系统处于待机状态。
附图说明
本发明有如下附图:
图1城轨超级电容储能系统的组成示意图;
图2现有的快速公交储能系统能量控制方法示意图;
图3本发明的快速公交储能系统能量控制方法示意图;
图4充放电阈值计算模块示意图;
图5充放电阈值计算模块输出充电阈值的原理示意图;
图6充放电阈值计算模块输出放电阈值的原理示意图;
图7两套城轨超级电容储能系统安装于城轨交通供电系统示意图;
图8现有的能量控制方法和本发明的能量控制方法的控制效果对比示意图(城轨超级电容储能系统充电状态);
图9现有的能量控制方法和本发明的能量控制方法的控制效果对比示意图(城轨超级电容储能系统放电状态)。
具体实施方式
以下结合附图对本发明作进一步详细说明。
如图1、3所示,本发明的快速公交储能系统能量控制方法,包括如下步骤:
在每一个控制周期内,分别采集直流供电网电压U dc 和超级电容模组端电压U sc ,采集超级电容模组的输出支路电流I sc
在每一个控制周期内,基于超级电容模组端电压U sc ,由充放电阈值计算模块实时输出充电阈值U char 和放电阈值U dis
根据充电阈值、放电阈值和直流供电网电压(亦称为直流侧电压)U dc 之间的大小关系,决定城轨超级电容储能系统的当前控制周期应处于充电状态、放电状态或是待机状态。
例如:通过两个电压传感器,分别采集直流供电网电压U dc 和超级电容模组端电压U sc
通过电流传感器,采集超级电容模组的输出支路电流I sc
充电状态、放电状态、待机状态下,本方案的具体工作细节按现有技术实施即可。例如:
若城轨超级电容储能系统在当前周期处于充电状态,则超级电容模组输出支路电流指令值Isc*,Isc*由直流供电网电压U dc 与充电阈值U char 的差值经过PID控制器得到;
若城轨超级电容储能系统在当前周期处于放电状态,则超级电容模组输出支路电流指令值Isc*,Isc*由直流供电网电压U dc 与放电阈值U dis 的差值经过PID控制器得到;
若城轨超级电容储能系统在当前周期处于待机状态,则超级电容模组输出支路电流指令值Isc*为0;
基于采集的超级电容模组的输出支路电流I sc ,与上述计算得到的超级电容模组输出支路电流指令值Isc*的差值,经过PID控制器得到当前控制周期的控制脉冲占空比对双向DC/DC变换器开关管进行控制。
在上述技术方案的基础上,充放电阈值计算模块实时输出的充电阈值应大于直流供电网空载电压,放电阈值应低于直流供电网空载电压。
在上述技术方案的基础上,如图4所示,所述充放电阈值计算模块的工作过程如下:
充放电阈值计算模块获取四个恒定控制参数k 1 k 2 U ref1 U ref2 ,其中:
k 1 为输出的充电阈值U char 和输入的超级电容模组端电压U sc 的变化关系的斜率,如图5所示,
k 2 为输出的放电阈值U dis 和输入的超级电容模组端电压U sc 的变化关系的斜率,如图6所示,
U ref1 为充电阈值U char 设定的下限值,
U ref2 为放电阈值U dis 设定的上限值;
所述充放电阈值计算模块获取超级电容模组端电压设定的下限值U sc_min
所述充放电阈值计算模块获取超级电容模组端电压设定的上限值U sc_max
图5、6中,U dc_noload 是直流供电网的空载电压,不同城轨供电系统直流供电网的空载电压存在差异,可以实测得到;
充放电阈值计算模块计算充电阈值和放电阈值的公式如下:
式(1)。
式(1)中:
U ref1 取值范围为[U dc_noload U dc_noload +50],在取值范围内,U ref1 取值越小,本方案实现的有益效果将越明显;
U ref2 取值范围为[U dc_noload U dc_noload -50],在取值范围内,U ref2 取值越大,本方案实现的有益效果将越明显;
k 1 k 2 取值范围都为[0,1],当安装在不同牵引变电所的城轨超级电容储能系统容量较小,或者站间距较远,k 1 k 2 需取较小值;当安装在不同牵引变电所的城轨超级电容储能系统容量较大,或者站间距较远,k 1 k 2 需取较大值。
在上述技术方案的基础上,在每一个控制周期内,当直流供电网电压U dc 高于充电阈值U char 时,基于直流供电网电压与充电阈值差值控制双向DC/DC变换器,使超级电容储能系统处于充电状态,并且将直流侧电压稳定为充电阈值;
在每一个控制周期内,当直流供电网电压U dc 低于放电阈值U dis 时,基于直流供电网电压与放电阈值差值控制双向DC/DC变换器,使超级电容储能系统处于放电状态,并且将直流侧电压稳定为放电阈值;
在每一个控制周期内,若直流供电网电压U dc 处于充电阈值U char 和放电阈值U dis 之间,关闭双向DC/DC变换器所有开关管,超级电容储能系统处于待机状态。
以下通过一实例进行更详细的解释。
图7所示实施例中,两套城轨超级电容储能系统安装于城轨交通供电系统。
本发明中,安装于不同牵引变电站的城轨超级电容储能系统都采取本发明的控制方法,其中:
每一套城轨超级电容储能系统控制方法中的k 1 k 2 U ref1 U ref2 U sc_min U sc_max 取相同的值。
安装于不同牵引变电站的城轨超级电容储能系统分别采集各自本地的超级电容模组端电压和直流网电压。
例如:城轨超级电容储能系统ESS1采集它的超级电容模组端电压为U sc1 ,采集它安装的牵引变电站A处的直流网电压为U dc1 ;城轨超级电容储能系统ESS2采集它的超级电容模组端电压为U sc2 ,采集它安装的牵引变电站B处的直流网电压为U dc2 U sc1 U sc2 一般情况下不相等;U dc1 U dc2 一般情况下不相等。
由于牵引变电站A处的直流网电压U dc1 和牵引变电站B处直流网电压U dc2 存在耦合关系。所以本发明的多套城轨超级电容储能系统只需采集各自的超级电容模组端电压U sc 和直流网电压为U dc ,并采用本方案的能量控制方法,就可实现多套城轨超级电容储能系统的协调工作。
每一套城轨超级电容储能系统基于各自的超级电容模组端电压U sc ,由充放电阈值计算模块计算出适宜的充电阈值和放电阈值,可以调整制动列车的制动能量流向不同城轨超级电容储能系统的情况,也可以调整不同牵引变电站和不同城轨超级电容储能系统供给牵引列车的能量和功率比例。具体原理及实现效果用下述实例说明:
图7所示实施例,当城轨直流供电网存在制动列车时,由于直流供电网电压上升,城轨超级电容储能系统处于充电状态,现有的能量控制方法和本发明的能量控制方法的控制效果对比示意图,参见图8。
从图8可以看出,在现有的能量控制方法下,超级电容储能系统的充电功率主要由其与制动列车的距离决定。因为与制动列车最近的牵引变电所端电压上升快于其它牵引变电所电压,会先上升至U char ,使安装于此牵引变电所的超级电容储能系统ESS1最先开始充电,充电功率也最大。与制动列车最近的超级电容储能系统ESS1会吸收制动列车的大部分剩余再生制动功率(制动列车的所有再生制动功率部分会被相邻的牵引列车吸收,剩余的部分称为剩余再生制动功率),使此牵引变电所的直流网电压维持在U char 。当制动列车最近的超级电容储能系统ESS1充电至U sc_max 时(实例中U sc_max 中为750V),该储能系统充电截止,此时相邻牵引变电所的直流网电压开始上升至U char ,并使安装于相邻牵引变电所的超级电容储能系统ESS2开始吸收制动列车大部分剩余再生制动功率。两套城轨超级电容储能系统之间为交替大功率充电方式。两套城轨超级电容储能系统充电过程的能量和功率变化不均衡,电流有效值大,线路损耗大。
从图8可以看出,在本发明的能量管理方法下,超级电容储能系统的充电阈值与超级电容模组端电压存在函数关系。超级电容模组端电压越低,其充电阈值越低,充电功率越大。即超级电容储能系统的充电功率同时由其与制动列车的距离和其本身超级电容模组端电压决定。在整个充电过程中,超级电容模组端电压较小的储能系统会被分配到较大的制动功率和能量,所有的储能系统超级电容模组端电压会趋向于相对均衡。而且所有储能系统的充电电流变化相对平缓,有效值低,线路损耗也相对较低,可以提高城轨超级电容储能系统节能效率。两套城轨超级电容储能系统的充电电流和能量得到了协调管理和控制。
图7所示实施例,当城轨直流供电网存在牵引列车时,由于直流供电网电压下降,城轨超级电容储能系统处于放电状态,现有的能量控制方法和本发明的能量控制方法的控制效果对比示意图,参见图9。
从图9可以看出,在现有的能量控制方法下,超级电容储能系统的放电功率主要由其与制动列车的距离决定。因为与牵引列车最近的牵引变电所端电压下降快于其它牵引变电所电压,会先下降至U dis ,使安装于此牵引变电所的超级电容储能系统ESS1相对于其它牵引变电所的超级电容储能系统最先开始放电,使其安装的牵引变电所的直流网电压维持在U dis 。当超级电容储能系统ESS1放电至U sc_min 时(实例中U sc_max 中为375V),该储能系统放电截止,此时其它的超级电容储能系统ESS2开始增大其放电功率。两套城轨超级电容储能系统之间为交替大功率放电方式。两套城轨超级电容储能系统放电过程的能量和功率变化不均衡,电流有效值大,线路损耗大。
从图9可以看出,在本发明的能量管理方法下,超级电容储能系统的放电阈值与超级电容模组端电压存在函数关系。超级电容模组端电压越高,其充电阈值越高,放电功率越大。即超级电容储能系统的放电功率同时由其与制动列车的距离和其本身超级电容模组端电压决定。在整个放电过程中,超级电容模组端电压较大的储能系统会输出较大的放电功率和能量,所有的储能系统超级电容模组端电压会趋向于相对均衡。而且所有储能系统的放电电流变化相对平缓,有效值低,线路损耗也相对较低,可以提高城轨超级电容储能系统节能效率。两套城轨超级电容储能系统的放电电流和能量得到了协调管理和控制。

Claims (8)

1.快速公交储能系统能量控制方法,其特征在于,包括如下步骤:
在每一个控制周期内,分别采集直流供电网电压U dc 和超级电容模组端电压U sc ,采集超级电容模组的输出支路电流I sc
在每一个控制周期内,基于超级电容模组端电压U sc ,由充放电阈值计算模块实时输出充电阈值U char 和放电阈值U dis
根据充电阈值、放电阈值和直流供电网电压U dc 之间的大小关系,决定城轨超级电容储能系统的当前控制周期应处于充电状态、放电状态或是待机状态。
2.如权利要求1所述的快速公交储能系统能量控制方法,其特征在于:通过两个电压传感器,分别采集直流供电网电压U dc 和超级电容模组端电压U sc
通过电流传感器,采集超级电容模组的输出支路电流I sc
3.如权利要求1所述的快速公交储能系统能量控制方法,其特征在于:若城轨超级电容储能系统在当前周期处于充电状态,则超级电容模组输出支路电流指令值Isc*,Isc*由直流供电网电压U dc 与充电阈值U char 的差值经过PID控制器得到;
若城轨超级电容储能系统在当前周期处于放电状态,则超级电容模组输出支路电流指令值Isc*,Isc*由直流供电网电压U dc 与放电阈值U dis 的差值经过PID控制器得到;
若城轨超级电容储能系统在当前周期处于待机状态,则超级电容模组输出支路电流指令值Isc*为0;
基于采集的超级电容模组的输出支路电流I sc ,与上述计算得到的超级电容模组输出支路电流指令值Isc*的差值,经过PID控制器得到当前控制周期的控制脉冲占空比对双向DC/DC变换器开关管进行控制。
4.如权利要求1所述的快速公交储能系统能量控制方法,其特征在于:充放电阈值计算模块实时输出的充电阈值应大于直流供电网空载电压,放电阈值应低于直流供电网空载电压。
5.如权利要求1所述的快速公交储能系统能量控制方法,其特征在于:所述充放电阈值计算模块的工作过程如下:
充放电阈值计算模块获取四个恒定控制参数k 1 k 2 U ref1 U ref2 ,其中:
k 1 为输出的充电阈值U char 和输入的超级电容模组端电压U sc 的变化关系的斜率,
k 2 为输出的放电阈值U dis 和输入的超级电容模组端电压U sc 的变化关系的斜率,
U ref1 为充电阈值U char 设定的下限值,
U ref2 为放电阈值U dis 设定的上限值;
所述充放电阈值计算模块获取超级电容模组端电压设定的下限值U sc_min
所述充放电阈值计算模块获取超级电容模组端电压设定的上限值U sc_max
充放电阈值计算模块计算充电阈值和放电阈值的公式如下:
式(1)。
6. 如权利要求5所述的快速公交储能系统能量控制方法,其特征在于:U ref1 取值范围为[U dc_noload U dc_noload +50],
U ref2 取值范围为[U dc_noload U dc_noload -50],
k 1 k 2 取值范围都为[0,1]。
7.如权利要求6所述的快速公交储能系统能量控制方法,其特征在于:当安装在不同牵引变电所的城轨超级电容储能系统容量较小,或者站间距较远,k 1 k 2 需取较小值;当安装在不同牵引变电所的城轨超级电容储能系统容量较大,或者站间距较远,k 1 k 2 需取较大值。
8.如权利要求1所述的快速公交储能系统能量控制方法,其特征在于:在每一个控制周期内,当直流供电网电压U dc 高于充电阈值U char 时,基于直流供电网电压与充电阈值差值控制双向DC/DC变换器,使超级电容储能系统处于充电状态,并且将直流侧电压稳定为充电阈值;
在每一个控制周期内,当直流供电网电压U dc 低于放电阈值U dis 时,基于直流供电网电压与放电阈值差值控制双向DC/DC变换器,使超级电容储能系统处于放电状态,并且将直流侧电压稳定为放电阈值;
在每一个控制周期内,若直流供电网电压U dc 处于充电阈值U char 和放电阈值U dis 之间,关闭双向DC/DC变换器所有开关管,超级电容储能系统处于待机状态。
CN201611247085.9A 2016-12-29 2016-12-29 快速公交储能系统能量控制方法 Pending CN108248392A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611247085.9A CN108248392A (zh) 2016-12-29 2016-12-29 快速公交储能系统能量控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611247085.9A CN108248392A (zh) 2016-12-29 2016-12-29 快速公交储能系统能量控制方法

Publications (1)

Publication Number Publication Date
CN108248392A true CN108248392A (zh) 2018-07-06

Family

ID=62720124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611247085.9A Pending CN108248392A (zh) 2016-12-29 2016-12-29 快速公交储能系统能量控制方法

Country Status (1)

Country Link
CN (1) CN108248392A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224387A (zh) * 2019-06-26 2019-09-10 西安许继电力电子技术有限公司 一种城轨超级电容储能装置充放电控制策略
CN113640598A (zh) * 2021-07-20 2021-11-12 许继集团有限公司 一种超级电容储能装置环流测试系统及测试方法
CN113644644A (zh) * 2021-08-02 2021-11-12 许继集团有限公司 一种超级电容轨道交通能馈装置的能量管理系统及方法
CN114336584A (zh) * 2021-12-23 2022-04-12 核工业理化工程研究院 一种用于地铁再生能量吸收利用的控制系统及其控制方法
CN115675191A (zh) * 2023-01-04 2023-02-03 新誉轨道交通科技有限公司 一种车地联控能量管理方法、系统、设备及存储介质

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224387A (zh) * 2019-06-26 2019-09-10 西安许继电力电子技术有限公司 一种城轨超级电容储能装置充放电控制策略
CN113640598A (zh) * 2021-07-20 2021-11-12 许继集团有限公司 一种超级电容储能装置环流测试系统及测试方法
CN113640598B (zh) * 2021-07-20 2024-03-15 许继集团有限公司 一种超级电容储能装置环流测试系统及测试方法
CN113644644A (zh) * 2021-08-02 2021-11-12 许继集团有限公司 一种超级电容轨道交通能馈装置的能量管理系统及方法
CN113644644B (zh) * 2021-08-02 2023-12-01 许继集团有限公司 一种超级电容轨道交通能馈装置的能量管理系统及方法
CN114336584A (zh) * 2021-12-23 2022-04-12 核工业理化工程研究院 一种用于地铁再生能量吸收利用的控制系统及其控制方法
CN115675191A (zh) * 2023-01-04 2023-02-03 新誉轨道交通科技有限公司 一种车地联控能量管理方法、系统、设备及存储介质
CN115675191B (zh) * 2023-01-04 2023-03-21 新誉轨道交通科技有限公司 一种车地联控能量管理方法、系统、设备及存储介质

Similar Documents

Publication Publication Date Title
CN105226790B (zh) 城轨超级电容储能系统能量控制方法
CN108248392A (zh) 快速公交储能系统能量控制方法
CN103311950B (zh) 城市轨道列车再生制动能量吸收利用系统及方法
WO2015135330A1 (zh) 有轨电车动力系统及控制方法
CN101376344B (zh) 地铁供电系统的多目标综合控制节能方法
CN103496327B (zh) 一种动力包和储能装置混合供电的动车组牵引系统
CN104901579B (zh) 一种四象限变流型再生能量逆变回馈装置
CN107565826A (zh) 共整流变压器中压型再生制动能量回馈装置及其控制方法
CN205632170U (zh) 一种含储能的低压逆变回馈式牵引供电系统
CN206317824U (zh) 轨道交通再生制动能量综合回收利用装置
CN108110877A (zh) 一种地铁用混合储能系统
WO2018054007A1 (zh) 列车的制动回收系统和方法及列车
CN203372078U (zh) 接触网、动力包和储能装置混合供电的动车组牵引系统
CN109980669B (zh) 基于动态设定和协调优化的城轨超级电容储能系统控制方法
CN107732930A (zh) 一种适用于地铁牵引供电系统的多功能变流器系统
CN107499190A (zh) 高速动车组动力牵引和再生制动的能量储放电系统
CN103419670A (zh) 一种储能装置供电的动车组牵引系统
WO2020057279A1 (zh) 一种干线混合动力机车组控制系统及方法
CN104821610B (zh) 基于双超级电容器模组的三级式高可靠性再生能量控制方法及装置
CN108539772B (zh) 城市轨道交通再生制动能量控制分配系统及方法
CN108448602A (zh) 城市轨道交通再生制动能量节能系统
CN106877479A (zh) 一种车载超级电容储能系统控制方法
CN112009272B (zh) 一种双流制机车储能系统的控制方法及系统
CN109768721A (zh) 一种智能化能量双向流动的三电平变流器控制方法
CN111864774A (zh) 一种电气化铁路同相混合储能供电构造削峰填谷控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180706