CN108238763A - 一种碳纳米管改性不锈钢微丝导电水泥 - Google Patents

一种碳纳米管改性不锈钢微丝导电水泥 Download PDF

Info

Publication number
CN108238763A
CN108238763A CN201611217869.7A CN201611217869A CN108238763A CN 108238763 A CN108238763 A CN 108238763A CN 201611217869 A CN201611217869 A CN 201611217869A CN 108238763 A CN108238763 A CN 108238763A
Authority
CN
China
Prior art keywords
parts
stainless steel
steel wire
carbon nano
black solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611217869.7A
Other languages
English (en)
Inventor
谢丽媛
赵岩
张志伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201611217869.7A priority Critical patent/CN108238763A/zh
Publication of CN108238763A publication Critical patent/CN108238763A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • C04B14/026Carbon of particular shape, e.g. nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • C04B2111/94Electrically conducting materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明公开了一种碳纳米管改性不锈钢微丝导电水泥,按照重量份数由以下组分组成,硅酸盐水泥70~80份、粉煤灰6~7份、不锈钢微丝5~8份、碳纳米管2~8份;水性分散剂2~8份;减水剂0.02~1.00份;碳纳米管制备方法为按照重量份数取硝酸铜1份、二茂铁2~4份和聚丙烯6~8份混合物、高岭土2~3份于210~220℃熔融混炼后出料,将混料置于马弗炉中,在800~1000℃加热后取出得到黑色固体;将黑色固体物加入到10~15wt%的盐酸中浸泡4~5小时,离心分离,得到黑色固体;将黑色固体真空干燥,得到碳纳米管。本发明水泥具有良好的导电性、压敏性和耐久性,同时与混凝土结构具有良好的相容性。

Description

一种碳纳米管改性不锈钢微丝导电水泥
技术领域
本发明涉及一种碳纳米管改性不锈钢微丝导电水泥。
背景技术
混凝土是现代应用最广泛的建筑材料,其具有原料丰富、价格低廉、工艺简单、强度高、耐久性好等优点。预拌混凝土是混凝土的一种,是指由水泥、集料、水以及根据需要掺入的外加剂、矿物掺合料等组分按一定比例在搅拌站经计量、拌制后出售的、并采用运输车在规定时间内运至使用地点的混凝土拌合物。因为现场施工对环境影响较大,所以预拌混凝土受到越来越多的关注。由于外部荷载和腐蚀,材料老化和疲劳等环境条件的作用,桥梁和房屋建筑等混凝土结构在服役过程中容易失效,从而威胁到人们的生命财产安全。结构健康监测技术可以通过对钢筋锈蚀速率、含水量、pH值、加速度、应力、应变和裂缝的实时监测实现对结构性能的评估。目前应用于混凝土结构健康监测的传感器主要包括电阻应变片、光纤传感器、压电陶瓷和形状记忆合金等。然而这些传感器存在耐久性差、灵敏度低、成本高及与混凝土结构相容性不好等缺点。
发明内容
本发明提供了一种碳纳米管改性不锈钢微丝导电水泥,本发明水泥具有良好的导电性、压敏性和耐久性,同时与混凝土结构具有良好的相容性。为达到上述技术效果,本发明具体通过以下技术方案实现:
一种碳纳米管改性不锈钢微丝导电水泥,按照重量份数由以下组分组成,硅酸盐水泥70~80份、粉煤灰6~7份、不锈钢微丝5~8份、碳纳米管2~8份;水性分散剂2~8份;减水剂0.02~1.00份;
所述碳纳米管制备方法为按照重量份数取硝酸铜1份、二茂铁2~4份和聚丙烯6~8份混合物、高岭土2~3份于210~220℃熔融混炼后出料,然后将混料置于马弗炉中,在800~1000℃下加热1~2分钟后取出得到黑色固体;将黑色固体物加入到浓度为10~15wt%的盐酸中浸泡4~5小时,然后离心分离,得到黑色固体;将黑色固体真空干燥,得到碳纳米管。
进一步地,在上述技术方案中,所述硅酸盐水泥强度等级为C35或C40。
进一步地,在上述技术方案中,所述粉煤灰的比表面为520~760m2/kg。
进一步地,在上述技术方案中,所述不锈钢微丝的直径为7~9μm,长度为5~8mm,延伸率>3%,抗拉强度为1000~1100MPa。
进一步地,在上述技术方案中,所述碳纳米管的直径为30~45nm。
发明有益效果
本发明中水泥原料中含有碳纳米管纤维,形成了网状交织结构,不仅可提高水泥基体的力学强度,而且由于纤维与水泥基体共同作用能发挥着良好的拔出和桥联搭接效应,本发明混凝土中含有不锈钢微丝,在使用过程中不受锈蚀的影响;微丝直径小,可在低掺量下形成有效的增强网络,提高活性粉末混凝土基体的强度及韧性;微丝柔软度高,可扩展活性粉末混凝土的应用范围。本发明水泥具有良好的导电性、压敏性和耐久性,同时与混凝土结构具有良好的相容性。在路面静电屏蔽、交通探测、钢筋锈蚀监测、应力/应变监测、裂缝和损伤监测等方面具有广阔的研究和应用前景。
具体实施方式
下面结合实施例对本发明作进一步说明。
实施例1
一种碳纳米管改性不锈钢微丝导电水泥,按照重量份数由以下组分组成,硅酸盐水泥70份、粉煤灰6份、不锈钢微丝5份、碳纳米管2份;水性分散剂2份;减水剂0.02份;所述硅酸盐水泥强度等级为C35。所述粉煤灰的比表面为520~760m2/kg。所述不锈钢微丝的直径为7~9μm,长度为5~8mm,延伸率>3%,抗拉强度为1000~1100MPa。
所述碳纳米管制备方法为按照重量份数取硝酸铜1份、二茂铁2份和聚丙烯6份混合物、高岭土2份于210~220℃熔融混炼后出料,然后将混料置于马弗炉中,在800~1000℃下加热1~2分钟后取出得到黑色固体;将黑色固体物加入到浓度为10wt%的盐酸中浸泡4小时,然后离心分离,得到黑色固体;将黑色固体真空干燥,得到碳纳米管。所述碳纳米管的直径为30~45nm。
实施例2
一种碳纳米管改性不锈钢微丝导电水泥,按照重量份数由以下组分组成,硅酸盐水泥70份、粉煤灰6份、不锈钢微丝8份、碳纳米管8份;水性分散剂8份;减水剂1.00份;所述硅酸盐水泥强度等级为C40。所述粉煤灰的比表面为520~760m2/kg。所述不锈钢微丝的直径为7~9μm,长度为5~8mm,延伸率>3%,抗拉强度为1000~1100MPa。
所述碳纳米管制备方法为按照重量份数取硝酸铜1份、二茂铁4份和聚丙烯8份混合物、高岭土3份于210~220℃熔融混炼后出料,然后将混料置于马弗炉中,在900℃下加热1~2分钟后取出得到黑色固体;将黑色固体物加入到浓度为10~15wt%的盐酸中浸泡4~5小时,然后离心分离,得到黑色固体;将黑色固体真空干燥,得到碳纳米管。所述碳纳米管的直径为30~45nm。
实施例3
一种碳纳米管改性不锈钢微丝导电水泥,按照重量份数由以下组分组成,硅酸盐水泥75份、粉煤灰6份、不锈钢微丝6份、碳纳米管5份;水性分散剂5份;减水剂0.05份;所述硅酸盐水泥强度等级为C35。所述粉煤灰的比表面为520~760m2/kg。所述不锈钢微丝的直径为7~9μm,长度为5~8mm,延伸率>3%,抗拉强度为1000~1100MPa。
所述碳纳米管制备方法为按照重量份数取硝酸铜1份、二茂铁3份和聚丙烯7份混合物、高岭土2份于210~220℃熔融混炼后出料,然后将混料置于马弗炉中,在950℃下加热1~2分钟后取出得到黑色固体;将黑色固体物加入到浓度为15wt%的盐酸中浸泡4~5小时,然后离心分离,得到黑色固体;将黑色固体真空干燥,得到碳纳米管。所述碳纳米管的直径为30~45nm。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分钟析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围。

Claims (5)

1.一种碳纳米管改性不锈钢微丝导电水泥,其特征在于:按照重量份数由以下组分组成,硅酸盐水泥70~80份、粉煤灰6~7份、不锈钢微丝5~8份、碳纳米管2~8份;水性分散剂2~8份;减水剂0.02~1.00份;
所述碳纳米管制备方法为按照重量份数取硝酸铜1份、二茂铁2~4份和聚丙烯6~8份混合物、高岭土2~3份于210~220℃熔融混炼后出料,然后将混料置于马弗炉中,在800~1000℃下加热1~2分钟后取出得到黑色固体;将黑色固体物加入到浓度为10~15wt%的盐酸中浸泡4~5小时,然后离心分离,得到黑色固体;将黑色固体真空干燥,得到碳纳米管。
2.根据权利要求1所述碳纳米管改性不锈钢微丝导电水泥,其特征在于:所述硅酸盐水泥强度等级为C35或C40。
3.根据权利要求1所述碳纳米管改性不锈钢微丝导电水泥,其特征在于:所述粉煤灰的比表面为520~760m2/kg。
4.根据权利要求1所述碳纳米管改性不锈钢微丝导电水泥,其特征在于:所述不锈钢微丝的直径为7~9μm,长度为5~8mm,延伸率>3%,抗拉强度为1000~1100MPa。
5.根据权利要求1所述碳纳米管改性不锈钢微丝导电水泥,其特征在于:所述碳纳米管的直径为30~45nm。
CN201611217869.7A 2016-12-26 2016-12-26 一种碳纳米管改性不锈钢微丝导电水泥 Pending CN108238763A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611217869.7A CN108238763A (zh) 2016-12-26 2016-12-26 一种碳纳米管改性不锈钢微丝导电水泥

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611217869.7A CN108238763A (zh) 2016-12-26 2016-12-26 一种碳纳米管改性不锈钢微丝导电水泥

Publications (1)

Publication Number Publication Date
CN108238763A true CN108238763A (zh) 2018-07-03

Family

ID=62701319

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611217869.7A Pending CN108238763A (zh) 2016-12-26 2016-12-26 一种碳纳米管改性不锈钢微丝导电水泥

Country Status (1)

Country Link
CN (1) CN108238763A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110118376A (zh) * 2019-04-03 2019-08-13 浙江固邦新材料有限公司 一种发热导热一体的碳纳米管水泥精细砂浆地热地板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110118376A (zh) * 2019-04-03 2019-08-13 浙江固邦新材料有限公司 一种发热导热一体的碳纳米管水泥精细砂浆地热地板

Similar Documents

Publication Publication Date Title
CN107805019B (zh) 一种碳纳米管增强超细水泥复合灌浆料及其制备方法
CN106278026B (zh) 一种水泥基复合材料及其制备方法
CN104045266B (zh) 混凝土外加剂
CN105198304B (zh) 复掺碳纤维和纳米二氧化硅的复合砂浆及其制备工艺和应用
CN107285714A (zh) 一种高延性聚乙烯醇纤维混凝土及其制备方法
CN104058674B (zh) 混凝土
CN104129951A (zh) 一种自清洁高韧性水泥基复合材料及其制备方法
CN104120909B (zh) 一种高强度高压线电杆
CN108238757A (zh) 一种纳米炭黑改性导电水泥的制备方法
CN104446227A (zh) 一种高耐火性混凝土
CN107162493A (zh) 一种改性沥青混凝土及其制备方法、施工方法
CN108238761A (zh) 一种碳纳米管改性不锈钢微丝导电水泥的制备方法
CN108238763A (zh) 一种碳纳米管改性不锈钢微丝导电水泥
CN103979854B (zh) 一种耐高温混凝土及其制作方法
Döndüren et al. A review of the effect and optimization of use of nano-TiO2 in cementitious composites
CN103979905B (zh) 一种掺钛白粉的混凝土及其制作方法
Christina Mary et al. Experimental investigation on strength and durability characteristics of high performance concrete using ggbs and msand
Vlachakis et al. Investigation of the compressive self-sensing response of filler-free metakaolin geopolymer binders and coatings
CN103232204B (zh) 一种传感材料的制备方法、传感材料及其应用
CN107311571A (zh) 纳米增强trc复合材料的制备方法
CN104129949B (zh) 一种用于gfrp筋混凝土裂缝控制的基体及其制作方法
CN103979853A (zh) 一种蒙脱石/石墨复合混凝土及其制作方法
Kohail et al. The efficiency of chloride extraction using un-galvanized steel anode
Sun et al. Preparation of carbon fiber reinforced cement-based composites using self-made carbon fiber mat
CN108238756A (zh) 一种纳米炭黑改性导电水泥

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180703