CN108234874A - 体感摄像头的成像精度的调节方法及调节装置 - Google Patents

体感摄像头的成像精度的调节方法及调节装置 Download PDF

Info

Publication number
CN108234874A
CN108234874A CN201810024754.9A CN201810024754A CN108234874A CN 108234874 A CN108234874 A CN 108234874A CN 201810024754 A CN201810024754 A CN 201810024754A CN 108234874 A CN108234874 A CN 108234874A
Authority
CN
China
Prior art keywords
speckle
infrared
clarity
practical
default
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810024754.9A
Other languages
English (en)
Other versions
CN108234874B (zh
Inventor
周晓军
李骊
王行
盛赞
李朔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Huajie Imi Software Technology Co Ltd
Original Assignee
Nanjing Huajie Imi Software Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Huajie Imi Software Technology Co Ltd filed Critical Nanjing Huajie Imi Software Technology Co Ltd
Priority to CN201810024754.9A priority Critical patent/CN108234874B/zh
Publication of CN108234874A publication Critical patent/CN108234874A/zh
Priority to US16/641,653 priority patent/US10986289B2/en
Priority to PCT/CN2019/070760 priority patent/WO2019137348A1/zh
Application granted granted Critical
Publication of CN108234874B publication Critical patent/CN108234874B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/145Illumination specially adapted for pattern recognition, e.g. using gratings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/761Proximity, similarity or dissimilarity measures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Studio Devices (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种体感摄像头的成像精度的调节方法及装置。所述方法包括获取目标红外场景中的红外散斑图,识别所述红外散斑图的实际清晰度、实际散斑规则度和中心区域实际亮度;分别将所述实际清晰度与预设清晰度进行比较、将所述实际散斑规则度与预设散斑规则度进行比较,以及将所述中心区域实际亮度与预设亮度进行比较,并且,根据比较结果调节成像焦距,完成成像精度的调节。因此,利用本发明的体感摄像头的成像精度的调节方法,以此可以获得符合成像精度要求的红外散斑图,从而经过红外散斑图转深度图后,提高深度图的质量,为后续的骨架识别,手势识别提供高质量的数据源。

Description

体感摄像头的成像精度的调节方法及调节装置
技术领域
本发明涉及体感技术应用领域,特别涉及一种体感摄像头的成像精度的调节方法和一种体感摄像头的成像精度的调节装置。
背景技术
目前,体感摄像头的发展提供了一种人机交互的全新方式,人体操控的新奇操控方法给日常的人机交互方式注入了新的血液。目前市场上部分的体感摄像头技术中基本都用到了红外的发射与接收的模块,并且红外图的清晰度决定了深度图质量的高低,并最终体现在了骨架的识别,手势的识别等应用领域上,可以说,红外图的精度高低,是优秀的体感操控方式的第一道坎。
而随着近几年红外CMOS技术的不断发展,红外CMOS摄像模块的制作工艺亦不断的发展改变,这也给体感的操控从另一个方面提高了可操作性,给体感技术发展带来便利的同时,也对红外图的捕捉上带来了不同程度的影响,体感设备本身的设计的差异性以及与红外CMOS摄像模块直接的结合带来了CMOS成像的红外图精度优异判别的问题。
因此,如何设计出一种根据红外散斑图调节体感摄像头的成像精度成为本领域亟需解决的技术问题。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种体感摄像头的成像精度的调节方法和一种体感摄像头的成像精度的调节装置。
为了实现上述目的,本发明的第一方面,提供了一种体感摄像头的成像精度的调节方法,所述方法包括:
S110、获取目标红外场景中的红外散斑图;
S120、基于所述红外散斑图,识别所述红外散斑图的实际清晰度、实际散斑规则度和中心区域实际亮度;
S130、将所述实际清晰度与预设清晰度进行比较,并且,当所述实际清晰度与预设清晰度一致时,转入步骤S140,当所述实际清晰度与预设清晰度不一致时,调节体感摄像头的成像焦距,并重复执行步骤S110至步骤S130;
S140、将所述实际散斑规则度与预设散斑规则度进行比较,并且,当所述实际散斑规则度与预设散斑规则度相一致时,转入步骤S150,当所述实际散斑规则度与预设散斑规则度不一致时,调节体感摄像头的成像焦距,并重复执行步骤S110至步骤S140;
S150、将所述中心区域实际亮度与预设亮度进行比较,并且,当所述中心区域实际亮度与预设亮度相一致时,完成所述体感摄像头的成像精度的调节;当所述中心区域实际亮度与预设亮度不一致时,调节体感摄像头的成像焦距,并重复执行步骤S110至步骤S150。
优选地,所述方法还包括在所述步骤S110之前进行的:
S101、设置光源单元,以向所述目标红外场景发射红外光;其中,所述光源单元包括至少一个光源。
优选地,所述光源包括结构光光源。
优选地,所述步骤S120包括:
基于所述红外散斑图,识别所述红外散斑图的边缘区域的灰度变化率,以所述灰度变化率作为所述实际清晰度;
所述步骤S130包括:
将边缘区域的灰度变化率与预设灰度变化率进行比较,当所述边缘区域的灰度变化率与预设灰度变化率一致时,判定所述实际清晰度与预设清晰度相一致。
优选地,所述步骤S120包括:
将所述红外散斑图划分为至少一个目标检测区域;
识别各所述目标检测区域内的散斑的分布和/或散斑的形状,以所述目标检测区域内的散斑的分布和/或散斑的形状作为所述实际散斑规则度;
所述步骤S140包括:
将各目标检测区域内的散斑的分布和/或散斑的形状与预设散斑的分布和/或预设散斑的形状进行比较,当各目标检测区域内的散斑的分布和/或散斑的形状与预设散斑的分布和/或预设散斑的形状相一致时,判定所述实际散斑规则度与预设散斑规则度相一致。
优选地,所述步骤S120包括:
提取中心区域内预定范围的红外散斑图;
计算所述中心区域内预定范围的红外散斑图的整体亮度平均值,以所述整体亮度平均值作为所述中心区域实际亮度;
所述步骤S150包括:
将所述整体亮度平均值与预设区域亮度阈值进行比较,当所述整体亮度平均值与预设区域亮度阈值相一致时,判定所述中心区域实际亮度与预设亮度相一致。
本发明的第二方面,提供了一种体感摄像头的成像精度的调节装置,所述体感摄像头包括红外CMOS摄像模块,所述调节装置包括识别模块、红外散斑清晰度模块、红外散斑规则度模块、红外散斑中心亮度模块和成像精度调节模块;
所述红外CMOS摄像模块用于获取目标红外场景中的红外散斑图;
所述识别模块用于基于所述红外散斑图,识别所述红外散斑图的实际清晰度、实际散斑规则度和中心区域实际亮度;
所述红外散斑清晰度模块用于将所述实际清晰度与预设清晰度进行比较,并且,当所述实际清晰度与预设清晰度一致时,向所述红外散斑规则度模块发送清晰度匹配信号,当所述实际清晰度与预设清晰度不一致时,向所述成像精度调节模块发送清晰度不匹配信号;
所述红外散斑规则度模块用于将所述实际散斑规则度与预设散斑规则度进行比较,并且,当所述实际散斑规则度与预设散斑规则度相一致时,向所述红外散斑中心亮度模块发送散斑规则度匹配信号,当所述实际散斑规则度与预设散斑规则度不一致时,向所述成像精度调节模块发送散斑规则度不匹配信号;
所述红外散斑中心亮度模块用于将所述中心区域实际亮度与预设亮度进行比较,并且,当所述中心区域实际亮度与预设亮度相一致时,完成所述红外CMOS摄像模块的成像精度的调节;当所述中心区域实际亮度与预设亮度不一致时,向所述成像精度调节模块发送亮度不匹配信号;
所述成像精度调节模块用于根据所述清晰度不匹配信号、散斑规则度不匹配信号和所述亮度不匹配信号,调节所述红外CMOS摄像模块的成像焦距。
优选地,所述体感摄像头还包括红外发射模块,所述红外发射模块包括光源单元,以向所述目标红外场景发射红外光;其中,所述光源单元包括至少一个光源。
优选地,所述识别模块用于基于所述红外散斑图,识别所述红外散斑图的边缘区域的灰度变化率,以所述灰度变化率作为所述实际清晰度;以及,
所述识别模块用于将所述红外散斑图划分为至少一个目标检测区域,识别各所述目标检测区域内的散斑的分布和/或散斑的形状,以所述目标检测区域内的散斑的分布和/或散斑的形状作为所述实际散斑规则度;以及,
所述识别模块用于提取中心区域内预定范围的红外散斑图;
计算所述中心区域内预定范围的红外散斑图的整体亮度平均值,以所述整体亮度平均值作为所述中心区域实际亮度。
优选地,所述红外散斑清晰度模块用于将边缘区域的灰度变化率与预设灰度变化率进行比较,当所述边缘区域的灰度变化率与预设灰度变化率一致时,判定所述实际清晰度与预设清晰度相一致;
所述红外散斑规则度模块用于将各目标检测区域内的散斑的分布和/或散斑的形状与预设散斑的分布和/或预设散斑的形状进行比较,当各目标检测区域内的散斑的分布和/或散斑的形状与预设散斑的分布和/或预设散斑的形状相一致时,判定所述实际散斑规则度与预设散斑规则度相一致;
所述红外散斑中心亮度模块用于将所述整体亮度平均值与预设区域亮度阈值进行比较,当所述整体亮度平均值与预设区域亮度阈值相一致时,判定所述中心区域实际亮度与预设亮度相一致。
本发明的体感摄像头的成像精度的调节方法,通过对获取到的目标红外场景中的红外散斑图的实际清晰度、实际散斑规则度和中心区域实际亮度,并根据实际清晰度、实际散斑规则度和中心区域实际亮度对体感摄像头的成像焦距进行调节,以此获得符合成像精度要求的红外散斑图,从而经过红外散斑图转深度图后,提高深度图的质量,为后续的骨架识别,手势识别提供高质量的数据源。
本发明的体感摄像头的成像精度的调节装置,通过对获取到的目标红外场景中的红外散斑图的实际清晰度、实际散斑规则度和中心区域实际亮度,并根据实际清晰度、实际散斑规则度和中心区域实际亮度对体感摄像头的成像焦距进行调节,以此获得符合成像精度要求的红外散斑图,从而经过红外散斑图转深度图后,提高深度图的质量,为后续的骨架识别,手势识别提供高质量的数据源。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为本发明第一实施例中体感摄像头的成像精度的调节方法的流程图;
图2为本发明第二实施例中体感摄像头的成像精度的调节装置的结构示意图。
附图标记说明
200:体感摄像头的成像精度的调节装置;
210:识别模块;
220:红外散斑清晰度模块;
230:红外散斑规则度模块;
240:红外散斑中心亮度模块;
250:成像精度调节模块;
100:体感摄像头;
110:红外CMOS摄像模块;
120:红外发射模块。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
参考图1,本发明的第一方面,涉及一种体感摄像头的成像精度的调节方法S100,所述方法S100包括:
S110、获取目标红外场景中的红外散斑图。
S120、基于所述红外散斑图,识别所述红外散斑图的实际清晰度、实际散斑规则度和中心区域实际亮度。
S130、将所述实际清晰度与预设清晰度进行比较,并且,当所述实际清晰度与预设清晰度一致时,转入步骤S140,当所述实际清晰度与预设清晰度不一致时,调节体感摄像头的成像焦距(例如,调节下述红外CMOS模组的成像焦距),并重复执行步骤S110至步骤S130。
S140、将所述实际散斑规则度与预设散斑规则度进行比较,并且,当所述实际散斑规则度与预设散斑规则度相一致时,转入步骤S150,当所述实际散斑规则度与预设散斑规则度不一致时,调节体感摄像头的成像焦距,并重复执行步骤S110至步骤S140。
S150、将所述中心区域实际亮度与预设亮度进行比较,并且,当所述中心区域实际亮度与预设亮度相一致时,完成所述体感摄像头的成像精度的调节;当所述中心区域实际亮度与预设亮度不一致时,调节体感摄像头的成像焦距,并重复执行步骤S110至步骤S150。
本实施例的体感摄像头的成像精度的调节方法S100,通过对获取到的目标红外场景中的红外散斑图的实际清晰度、实际散斑规则度和中心区域实际亮度,并根据实际清晰度、实际散斑规则度和中心区域实际亮度对体感摄像头的成像焦距进行调节,以此获得符合成像精度要求的红外散斑图,从而经过红外散斑图转深度图后,提高深度图的质量,为后续的骨架识别,手势识别提供高质量的数据源。
优选地,所述方法S100还包括在所述步骤S110之前进行的:
S101、设置光源单元,以向所述目标红外场景发射红外光;其中,所述光源单元包括至少一个光源。为了提高体感摄像头的红外散斑图的成像精度调节,优选地,所述光源包括结构光光源。
优选地,所述步骤S120包括:
基于所述红外散斑图,识别所述红外散斑图的边缘区域的灰度变化率,以所述灰度变化率作为所述实际清晰度。
相应地,所述步骤S130包括:
将边缘区域的灰度变化率与预设灰度变化率进行比较,当所述边缘区域的灰度变化率与预设灰度变化率一致时,判定所述实际清晰度与预设清晰度相一致。
以调节体感摄像头中的红外CMOS摄像模块的成像焦距为例进行说明:
对当前捕获的红外散斑图进行对比,模糊的散斑图其边缘的灰度过度非常大,而清晰的红外散斑图在边缘上过度比较圆滑,这一步可以直接判别出因镜头焦距差别太大情况产生的不符合要求镜头。因此,可以进一步获得符合成像精度要求的红外散斑图,从而经过红外散斑图转深度图后,提高深度图的质量,为后续的骨架识别,手势识别提供高质量的数据源。
优选地,所述步骤S120包括:
将所述红外散斑图划分为至少一个目标检测区域。
识别各所述目标检测区域内的散斑的分布和/或散斑的形状,以所述目标检测区域内的散斑的分布和/或散斑的形状作为所述实际散斑规则度。
相应地,所述步骤S140包括:
将各目标检测区域内的散斑的分布和/或散斑的形状与预设散斑的分布和/或预设散斑的形状进行比较,当各目标检测区域内的散斑的分布和/或散斑的形状与预设散斑的分布和/或预设散斑的形状相一致时,判定所述实际散斑规则度与预设散斑规则度相一致。
具体地,本实施例的体感摄像头的成像精度的调节方法S100中,红外CMOS摄像模块中的红外散斑规则度检查,则是对当前拍摄的红外散斑图进行更近一步的判别,如果目标检测区域内的散斑的规则程度较大,那么在满足清晰度要求下的镜头焦距将需要微调,因为散斑的规则度用来检查近景区域的散斑图形(大于1m)左右的检测,太近的散斑图会因为散斑太过集中,而无法有效判别。
需要说明的是,上述目标检测区域的本身可以自由设定,但用来检查的散斑规则度场景中尽量应提供丰富的场景元素,不建议采用空旷的场景作为目标检测区域,观察区域中的散斑的分布以及散斑的形状,若散斑的分布均匀,且亮度分布较为合理,那么可以认定红外的镜头焦距符合合理的设定值。这样,可以进一步获得符合成像精度要求的红外散斑图,从而经过红外散斑图转深度图后,提高深度图的质量,为后续的骨架识别,手势识别提供高质量的数据源。
优选地,所述步骤S120包括:
提取中心区域内预定范围的红外散斑图。
计算所述中心区域内预定范围的红外散斑图的整体亮度平均值,以所述整体亮度平均值作为所述中心区域实际亮度。
所述步骤S150包括:
将所述整体亮度平均值与预设区域亮度阈值进行比较,当所述整体亮度平均值与预设区域亮度阈值相一致时,判定所述中心区域实际亮度与预设亮度相一致。
具体地,在本实施例的体感摄像头的成像精度的调节方法S100中,红外CMOS摄像模块中的红外中心区域亮度判别,则是对当前图像中心区域的散斑图进行检测,因中心区域的散斑图在较理想的状态下时,产生的比较均匀亮度的图案,而镜头焦距不理想的情况,比如,太远或者太近的镜头焦距,会产生中心亮斑非常大或者中心亮斑非常的模块情况,这两者皆不满足红外散斑的高质量要求。因此,根据红外散斑图的中心区域的亮度调节红外CMOS摄像模块的成像焦距,可以获得更清晰的红外散斑图,这样,可以进一步获得符合成像精度要求的红外散斑图,从而经过红外散斑图转深度图后,提高深度图的质量,为后续的骨架识别,手势识别提供高质量的数据源。
更具体地,上述预定范围,例如,可以是红外散斑图的中心区域的固定大小,比如150x150个像素点大小,进行中心区域的亮度统计,同时设立一个合理的阈值,当计算区域值满足一个要求的值便不在返回调节红外CMOS摄像模块的焦距,否则不断的调整焦距,直至满足设定的预定区域亮度阈值。
至于预定区域亮度阈值的设定的方法,一般可取同场景,同环境的红外散斑图中的同位置区域的红外散斑图,计算该区域的平均亮度值作为该张红外散斑图的亮度值,一般去中心区域,因中心区域在焦距偏差较大是,中心区域亮度会变得非常的亮,而较为理想的红外散斑图中心区域的亮度较周围亮度衰减梯度不会突增,更不会在中心区域的出现非常大的亮斑,一般建议合理的阈值为场景阈值的10%左右。
因此,本发明的体感摄像头的成像精度的调节方法S100,成像精度的调节方法更加简单,且更有效果。本发明采用基于清晰度判别,散斑规则度判别,以及中心区域亮度判别统计,能非常直观的用来表示红外CMOS摄像模块是否达到了一个非常理想的状态,其镜头的焦距是否满足场景的需要的设定,给后续的深度计算提供了更加精确的数据源。本发明提出清晰度判别步骤,计算图像中每一行连续下降间隔像素点最多的边缘灰度变化率代表了这一行的灰度变化率,并最终计算出整张图的灰度变化率。本发明提出散斑规则度判别,选取整张红外散斑中心区域的一定面积进行散斑规则统计,因此,利用本发明的成像精度调节方法,在经过红外散斑图转深度图后,可以提高深度图的质量,为后续的骨架识别,手势识别提供高质量的数据源。
本发明的第二方面,如图2所示,提供了一种体感摄像头的成像精度的调节装置200,所述体感摄像头100包括红外CMOS摄像模块110,所述调节装置包括识别模块210、红外散斑清晰度模块220、红外散斑规则度模块230、红外散斑中心亮度模块240和成像精度调节模块250。
所述红外CMOS摄像模块110用于获取目标红外场景中的红外散斑图;
所述识别模块210用于基于所述红外散斑图,识别所述红外散斑图的实际清晰度、实际散斑规则度和中心区域实际亮度;
所述红外散斑清晰度模块220用于将所述实际清晰度与预设清晰度进行比较,并且,当所述实际清晰度与预设清晰度一致时,向所述红外散斑规则度模块230发送清晰度匹配信号,当所述实际清晰度与预设清晰度不一致时,向所述成像精度调节模块250发送清晰度不匹配信号;
所述红外散斑规则度模块230用于将所述实际散斑规则度与预设散斑规则度进行比较,并且,当所述实际散斑规则度与预设散斑规则度相一致时,向所述红外散斑中心亮度模块240发送散斑规则度匹配信号,当所述实际散斑规则度与预设散斑规则度不一致时,向所述成像精度调节模块250发送散斑规则度不匹配信号;
所述红外散斑中心亮度模块240用于将所述中心区域实际亮度与预设亮度进行比较,并且,当所述中心区域实际亮度与预设亮度相一致时,完成所述红外CMOS摄像模块110的成像精度的调节;当所述中心区域实际亮度与预设亮度不一致时,向所述成像精度调节模块250发送亮度不匹配信号;
所述成像精度调节模块250用于根据所述清晰度不匹配信号、散斑规则度不匹配信号和所述亮度不匹配信号,调节所述红外CMOS摄像模块110的成像焦距。
本实施例的体感摄像头的成像精度的调节装置100,通过对获取到的目标红外场景中的红外散斑图的实际清晰度、实际散斑规则度和中心区域实际亮度,并根据实际清晰度、实际散斑规则度和中心区域实际亮度对体感摄像头的成像焦距进行调节,以此获得符合成像精度要求的红外散斑图,从而经过红外散斑图转深度图后,提高深度图的质量,为后续的骨架识别,手势识别提供高质量的数据源。
优选地,如图2所示,所述体感摄像头100还包括红外发射模块120,所述红外发射模块120包括光源单元(图中并未示出),以向所述目标红外场景发射红外光;其中,所述光源单元包括至少一个光源(图中并未示出)。
优选地,所述识别模块210用于基于所述红外散斑图,识别所述红外散斑图的边缘区域的灰度变化率,以所述灰度变化率作为所述实际清晰度;以及,
所述识别模块210用于将所述红外散斑图划分为至少一个目标检测区域,识别各所述目标检测区域内的散斑的分布和/或散斑的形状,以所述目标检测区域内的散斑的分布和/或散斑的形状作为所述实际散斑规则度;以及,
所述识别模块210用于提取中心区域内预定范围的红外散斑图;
计算所述中心区域内预定范围的红外散斑图的整体亮度平均值,以所述整体亮度平均值作为所述中心区域实际亮度。
优选地,所述红外散斑清晰度模块220用于将边缘区域的灰度变化率与预设灰度变化率进行比较,当所述边缘区域的灰度变化率与预设灰度变化率一致时,判定所述实际清晰度与预设清晰度相一致;
所述红外散斑规则度模块230用于将各目标检测区域内的散斑的分布和/或散斑的形状与预设散斑的分布和/或预设散斑的形状进行比较,当各目标检测区域内的散斑的分布和/或散斑的形状与预设散斑的分布和/或预设散斑的形状相一致时,判定所述实际散斑规则度与预设散斑规则度相一致;
所述红外散斑中心亮度模块240用于将所述整体亮度平均值与预设区域亮度阈值进行比较,当所述整体亮度平均值与预设区域亮度阈值相一致时,判定所述中心区域实际亮度与预设亮度相一致。
需要说明的是,上述红外发射模块120,在发射出来的红外光经过了几个不同的处理模块才发射到空间中去,如,不可见的红外光源,经过了准直镜头(WLO),其发出的红外光源经过了衍射源件(DOE),投射到了一个矩形椎体的空间视野中,而经过DOE衍射的光源,产生了随机的红外散斑,这些规则的散斑在空间中遇见不同的人与物时,会产生出不同的形状,而不同形状的散斑,其中的CMOS红外摄像模块110在拍摄到这些空间中的红外散斑,呈现在红外散斑图上时,便直观的体现了除了空间中不同地点,不同物体上不同规则的散斑,而散斑的规则程序则是衡量一个红外镜头的焦距合理的另一个佐证。
因此,本发明的体感摄像头的成像精度的调节装置100,成像精度的调节装置结构更加简单,且更有效果。本发明采用基于清晰度判别,散斑规则度判别,以及中心区域亮度判别统计,能非常直观的用来表示红外CMOS摄像模块是否达到了一个非常理想的状态,其镜头的焦距是否满足场景的需要的设定,给后续的深度计算提供了更加精确的数据源。至于具体地清晰度判别方式、散斑规则度判别方式以及中心区域亮度判别方式,可以参考前文相关记载,在此不作赘述。因此,利用本发明的成像精度调节装置,在经过红外散斑图转深度图后,可以提高深度图的质量,为后续的骨架识别,手势识别提供高质量的数据源。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (10)

1.一种体感摄像头的成像精度的调节方法,其特征在于,所述方法包括:
S110、获取目标红外场景中的红外散斑图;
S120、基于所述红外散斑图,识别所述红外散斑图的实际清晰度、实际散斑规则度和中心区域实际亮度;
S130、将所述实际清晰度与预设清晰度进行比较,并且,当所述实际清晰度与预设清晰度一致时,转入步骤S140,当所述实际清晰度与预设清晰度不一致时,调节体感摄像头的成像焦距,并重复执行步骤S110至步骤S130;
S140、将所述实际散斑规则度与预设散斑规则度进行比较,并且,当所述实际散斑规则度与预设散斑规则度相一致时,转入步骤S150,当所述实际散斑规则度与预设散斑规则度不一致时,调节体感摄像头的成像焦距,并重复执行步骤S110至步骤S140;
S150、将所述中心区域实际亮度与预设亮度进行比较,并且,当所述中心区域实际亮度与预设亮度相一致时,完成所述体感摄像头的成像精度的调节;当所述中心区域实际亮度与预设亮度不一致时,调节体感摄像头的成像焦距,并重复执行步骤S110至步骤S150。
2.根据权利要求1所述的体感摄像头的成像精度的调节方法,其特征在于,所述方法还包括在所述步骤S110之前进行的:
S101、设置光源单元,以向所述目标红外场景发射红外光;其中,所述光源单元包括至少一个光源。
3.根据权利要求2所述的体感摄像头的成像精度的调节方法,其特征在于,所述光源包括结构光光源。
4.根据权利要求1至3中任意一项所述的体感摄像头的成像精度的调节方法,其特征在于,
所述步骤S120包括:
基于所述红外散斑图,识别所述红外散斑图的边缘区域的灰度变化率,以所述灰度变化率作为所述实际清晰度;
所述步骤S130包括:
将边缘区域的灰度变化率与预设灰度变化率进行比较,当所述边缘区域的灰度变化率与预设灰度变化率一致时,判定所述实际清晰度与预设清晰度相一致。
5.根据权利要求1至3中任意一项所述的体感摄像头的成像精度的调节方法,其特征在于,
所述步骤S120包括:
将所述红外散斑图划分为至少一个目标检测区域;
识别各所述目标检测区域内的散斑的分布和/或散斑的形状,以所述目标检测区域内的散斑的分布和/或散斑的形状作为所述实际散斑规则度;
所述步骤S140包括:
将各目标检测区域内的散斑的分布和/或散斑的形状与预设散斑的分布和/或预设散斑的形状进行比较,当各目标检测区域内的散斑的分布和/或散斑的形状与预设散斑的分布和/或预设散斑的形状相一致时,判定所述实际散斑规则度与预设散斑规则度相一致。
6.根据权利要求1至3中任意一项所述的体感摄像头的成像精度的调节方法,其特征在于,
所述步骤S120包括:
提取中心区域内预定范围的红外散斑图;
计算所述中心区域内预定范围的红外散斑图的整体亮度平均值,以所述整体亮度平均值作为所述中心区域实际亮度;
所述步骤S150包括:
将所述整体亮度平均值与预设区域亮度阈值进行比较,当所述整体亮度平均值与预设区域亮度阈值相一致时,判定所述中心区域实际亮度与预设亮度相一致。
7.一种体感摄像头的成像精度的调节装置,其特征在于,所述体感摄像头包括红外CMOS摄像模块,所述调节装置包括识别模块、红外散斑清晰度模块、红外散斑规则度模块、红外散斑中心亮度模块和成像精度调节模块;
所述红外CMOS摄像模块用于获取目标红外场景中的红外散斑图;
所述识别模块用于基于所述红外散斑图,识别所述红外散斑图的实际清晰度、实际散斑规则度和中心区域实际亮度;
所述红外散斑清晰度模块用于将所述实际清晰度与预设清晰度进行比较,并且,当所述实际清晰度与预设清晰度一致时,向所述红外散斑规则度模块发送清晰度匹配信号,当所述实际清晰度与预设清晰度不一致时,向所述成像精度调节模块发送清晰度不匹配信号;
所述红外散斑规则度模块用于将所述实际散斑规则度与预设散斑规则度进行比较,并且,当所述实际散斑规则度与预设散斑规则度相一致时,向所述红外散斑中心亮度模块发送散斑规则度匹配信号,当所述实际散斑规则度与预设散斑规则度不一致时,向所述成像精度调节模块发送散斑规则度不匹配信号;
所述红外散斑中心亮度模块用于将所述中心区域实际亮度与预设亮度进行比较,并且,当所述中心区域实际亮度与预设亮度相一致时,完成所述红外CMOS摄像模块的成像精度的调节;当所述中心区域实际亮度与预设亮度不一致时,向所述成像精度调节模块发送亮度不匹配信号;
所述成像精度调节模块用于根据所述清晰度不匹配信号、散斑规则度不匹配信号和所述亮度不匹配信号,调节所述红外CMOS摄像模块的成像焦距。
8.根据权利要求7所述的体感摄像头的成像精度的调节装置,其特征在于,所述体感摄像头还包括红外发射模块,所述红外发射模块包括光源单元,以向所述目标红外场景发射红外光;其中,所述光源单元包括至少一个光源。
9.根据权利要求7或8所述的体感摄像头的成像精度的调节装置,其特征在于,
所述识别模块用于基于所述红外散斑图,识别所述红外散斑图的边缘区域的灰度变化率,以所述灰度变化率作为所述实际清晰度;以及,
所述识别模块用于将所述红外散斑图划分为至少一个目标检测区域,识别各所述目标检测区域内的散斑的分布和/或散斑的形状,以所述目标检测区域内的散斑的分布和/或散斑的形状作为所述实际散斑规则度;以及,
所述识别模块用于提取中心区域内预定范围的红外散斑图;
计算所述中心区域内预定范围的红外散斑图的整体亮度平均值,以所述整体亮度平均值作为所述中心区域实际亮度。
10.根据权利要求9所述的体感摄像头的成像精度的调节装置,其特征在于,
所述红外散斑清晰度模块用于将边缘区域的灰度变化率与预设灰度变化率进行比较,当所述边缘区域的灰度变化率与预设灰度变化率一致时,判定所述实际清晰度与预设清晰度相一致;
所述红外散斑规则度模块用于将各目标检测区域内的散斑的分布和/或散斑的形状与预设散斑的分布和/或预设散斑的形状进行比较,当各目标检测区域内的散斑的分布和/或散斑的形状与预设散斑的分布和/或预设散斑的形状相一致时,判定所述实际散斑规则度与预设散斑规则度相一致;
所述红外散斑中心亮度模块用于将所述整体亮度平均值与预设区域亮度阈值进行比较,当所述整体亮度平均值与预设区域亮度阈值相一致时,判定所述中心区域实际亮度与预设亮度相一致。
CN201810024754.9A 2018-01-10 2018-01-10 体感摄像头的成像精度的调节方法及调节装置 Active CN108234874B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810024754.9A CN108234874B (zh) 2018-01-10 2018-01-10 体感摄像头的成像精度的调节方法及调节装置
US16/641,653 US10986289B2 (en) 2018-01-10 2019-01-08 Method and device for regulating imaging accuracy of motion-sensing camera
PCT/CN2019/070760 WO2019137348A1 (zh) 2018-01-10 2019-01-08 体感摄像头的成像精度的调节方法及调节装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810024754.9A CN108234874B (zh) 2018-01-10 2018-01-10 体感摄像头的成像精度的调节方法及调节装置

Publications (2)

Publication Number Publication Date
CN108234874A true CN108234874A (zh) 2018-06-29
CN108234874B CN108234874B (zh) 2020-07-21

Family

ID=62640201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810024754.9A Active CN108234874B (zh) 2018-01-10 2018-01-10 体感摄像头的成像精度的调节方法及调节装置

Country Status (3)

Country Link
US (1) US10986289B2 (zh)
CN (1) CN108234874B (zh)
WO (1) WO2019137348A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019137348A1 (zh) * 2018-01-10 2019-07-18 南京华捷艾米软件科技有限公司 体感摄像头的成像精度的调节方法及调节装置
CN111885311A (zh) * 2020-03-27 2020-11-03 浙江水晶光电科技股份有限公司 红外摄像头曝光调节的方法、装置、电子设备及存储介质
CN113240630A (zh) * 2021-04-16 2021-08-10 深圳市安思疆科技有限公司 散斑图像质量评估方法、装置、终端设备及可读存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113762253B (zh) * 2021-08-24 2022-08-26 合肥的卢深视科技有限公司 散斑的提取方法、装置、电子设备及存储介质
CN113936315B (zh) * 2021-10-14 2022-03-25 北京的卢深视科技有限公司 Doe脱落检测方法、装置、电子设备和存储介质
CN115994904B (zh) * 2023-03-22 2023-05-30 山东万重山电子有限公司 基于计算机视觉的挂烫机面板生产质量检测方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540638A (zh) * 2012-01-05 2012-07-04 中航华东光电有限公司 一种焦点位置检测装置及其检测方法
CN102710951A (zh) * 2012-05-09 2012-10-03 天津大学 基于散斑结构光深度相机的多视点计算成像方法
WO2013185936A1 (en) * 2012-06-13 2013-12-19 Koninklijke Philips N.V. Apparatus and method for estimating a property of a surface using speckle imaging
CN103501406A (zh) * 2013-09-16 2014-01-08 北京智谷睿拓技术服务有限公司 图像采集系统及图像采集方法
CN103796004A (zh) * 2014-02-13 2014-05-14 西安交通大学 一种主动结构光的双目深度感知方法
CN204615932U (zh) * 2015-05-21 2015-09-02 广州市艾乐特电子科技有限公司 一种红外变焦一体摄像机
CN105095894A (zh) * 2015-08-06 2015-11-25 磐纹科技(上海)有限公司 非接触型图书扫描设备
CN105866132A (zh) * 2016-05-27 2016-08-17 中国铁道科学研究院 一种车载信号机外观检测系统及方法
CN106303174A (zh) * 2016-08-12 2017-01-04 中国科学院光电技术研究所 一种光场相机中微透镜阵列倾斜的数字化调整方法
CN106412433A (zh) * 2016-10-09 2017-02-15 深圳奥比中光科技有限公司 基于rgb‑ir深度相机的自动对焦方法及系统
CN106707526A (zh) * 2016-12-14 2017-05-24 深圳奥比中光科技有限公司 光源投影仪的自动调焦方法与系统
CN106767529A (zh) * 2016-12-14 2017-05-31 深圳奥比中光科技有限公司 激光光斑识别及激光投影仪的自动调焦方法与系统
US20170212240A1 (en) * 2014-08-13 2017-07-27 Sony Corporation Information processing device, information processing method, and program
CN107300722A (zh) * 2017-07-18 2017-10-27 孙天宇 一种机场跑道异物检测系统
CN107517346A (zh) * 2017-07-31 2017-12-26 广东欧珀移动通信有限公司 基于结构光的拍照方法、装置及移动设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2175396A3 (en) * 2005-12-23 2010-08-11 Ingenia Holdings (UK) Limited Optical authentication
US8224018B2 (en) * 2006-01-23 2012-07-17 Digimarc Corporation Sensing data from physical objects
WO2008079301A2 (en) * 2006-12-21 2008-07-03 Massachusetts Institute Of Technology Methods and apparatus for 3d surface imaging using active wave-front sampling
JP5830348B2 (ja) * 2011-10-26 2015-12-09 オリンパス株式会社 撮像装置
CN102622591B (zh) * 2012-01-12 2013-09-25 北京理工大学 3d人体姿态捕捉模仿系统
WO2013167864A1 (en) * 2012-05-11 2013-11-14 Milan Momcilo Popovich Apparatus for eye tracking
WO2015077455A1 (en) * 2013-11-25 2015-05-28 Digimarc Corporation Methods and systems for contextually processing imagery
US10177527B2 (en) * 2015-05-28 2019-01-08 Vixar Inc. VCSELS and VCSEL arrays designed for improved performance as illumination sources and sensors
US20170032527A1 (en) * 2015-07-31 2017-02-02 Iwk Health Centre Method and system for head digitization and co-registration of medical imaging data
US9959612B2 (en) * 2016-08-31 2018-05-01 The United States Of America, As Represented By The Secretary Of The Navy Measuring optical turbulence using cell counting algorithms
CN106502379B (zh) * 2016-09-12 2019-05-31 深圳奥比中光科技有限公司 一种交互方法及交互系统、相对深度的获取方法
CN106412426B (zh) * 2016-09-24 2019-08-20 上海大学 全聚焦摄影装置及方法
GB2561537B (en) * 2017-02-27 2022-10-12 Emteq Ltd Optical expression detection
US10152798B2 (en) * 2017-04-10 2018-12-11 Wisconsin Alumni Research Foundation Systems, methods and, media for determining object motion in three dimensions using speckle images
EP3662406B1 (en) * 2017-08-01 2023-11-22 Apple Inc. Determining sparse versus dense pattern illumination
CN108234874B (zh) * 2018-01-10 2020-07-21 南京华捷艾米软件科技有限公司 体感摄像头的成像精度的调节方法及调节装置
CN108648225B (zh) * 2018-03-31 2022-08-02 奥比中光科技集团股份有限公司 目标图像获取系统与方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540638A (zh) * 2012-01-05 2012-07-04 中航华东光电有限公司 一种焦点位置检测装置及其检测方法
CN102710951A (zh) * 2012-05-09 2012-10-03 天津大学 基于散斑结构光深度相机的多视点计算成像方法
WO2013185936A1 (en) * 2012-06-13 2013-12-19 Koninklijke Philips N.V. Apparatus and method for estimating a property of a surface using speckle imaging
CN103501406A (zh) * 2013-09-16 2014-01-08 北京智谷睿拓技术服务有限公司 图像采集系统及图像采集方法
CN103796004A (zh) * 2014-02-13 2014-05-14 西安交通大学 一种主动结构光的双目深度感知方法
US20170212240A1 (en) * 2014-08-13 2017-07-27 Sony Corporation Information processing device, information processing method, and program
CN204615932U (zh) * 2015-05-21 2015-09-02 广州市艾乐特电子科技有限公司 一种红外变焦一体摄像机
CN105095894A (zh) * 2015-08-06 2015-11-25 磐纹科技(上海)有限公司 非接触型图书扫描设备
CN105866132A (zh) * 2016-05-27 2016-08-17 中国铁道科学研究院 一种车载信号机外观检测系统及方法
CN106303174A (zh) * 2016-08-12 2017-01-04 中国科学院光电技术研究所 一种光场相机中微透镜阵列倾斜的数字化调整方法
CN106412433A (zh) * 2016-10-09 2017-02-15 深圳奥比中光科技有限公司 基于rgb‑ir深度相机的自动对焦方法及系统
CN106707526A (zh) * 2016-12-14 2017-05-24 深圳奥比中光科技有限公司 光源投影仪的自动调焦方法与系统
CN106767529A (zh) * 2016-12-14 2017-05-31 深圳奥比中光科技有限公司 激光光斑识别及激光投影仪的自动调焦方法与系统
CN107300722A (zh) * 2017-07-18 2017-10-27 孙天宇 一种机场跑道异物检测系统
CN107517346A (zh) * 2017-07-31 2017-12-26 广东欧珀移动通信有限公司 基于结构光的拍照方法、装置及移动设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李雅娜: "kinect深度相机标定算法研巧", 《中国优秀硕士学位论文全文数据库-信息科技辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019137348A1 (zh) * 2018-01-10 2019-07-18 南京华捷艾米软件科技有限公司 体感摄像头的成像精度的调节方法及调节装置
US10986289B2 (en) 2018-01-10 2021-04-20 Nanjing Huajie Imi Technology Co., Ltd Method and device for regulating imaging accuracy of motion-sensing camera
CN111885311A (zh) * 2020-03-27 2020-11-03 浙江水晶光电科技股份有限公司 红外摄像头曝光调节的方法、装置、电子设备及存储介质
CN113240630A (zh) * 2021-04-16 2021-08-10 深圳市安思疆科技有限公司 散斑图像质量评估方法、装置、终端设备及可读存储介质

Also Published As

Publication number Publication date
US20210006734A1 (en) 2021-01-07
WO2019137348A1 (zh) 2019-07-18
CN108234874B (zh) 2020-07-21
US10986289B2 (en) 2021-04-20

Similar Documents

Publication Publication Date Title
CN108234874A (zh) 体感摄像头的成像精度的调节方法及调节装置
JP6864449B2 (ja) イメージの明るさを調整する方法及び装置
CN105812778B (zh) 双目ar头戴显示设备及其信息显示方法
CN107533362B (zh) 眼睛跟踪设备和用于操作眼睛跟踪设备的方法
US6075557A (en) Image tracking system and method and observer tracking autostereoscopic display
JP5109922B2 (ja) ドライバモニタリング装置およびドライバモニタリング装置用のプログラム
CN110321773A (zh) 使用校准参数的用于三维(3d)注视预测的神经网络训练
US20120133754A1 (en) Gaze tracking system and method for controlling internet protocol tv at a distance
US20050111705A1 (en) Passive stereo sensing for 3D facial shape biometrics
CN110320999A (zh) 用于三维(3d)注视预测的深度学习
CN108200340A (zh) 能够检测眼睛视线的拍照装置及拍照方法
CN110320998A (zh) 对用于三维(3d)注视预测的神经网络的训练
IL264530B1 (en) Device for tracking eye movement and method therefor
CN111522433A (zh) 用于确定当前注视方向的方法和系统
CN109328355A (zh) 用于智能群体肖像的方法和系统
JP5601179B2 (ja) 視線検出装置及び視線検出方法
CN110537897A (zh) 视线追踪方法和装置、计算机可读存储介质、电子设备
JP6552266B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP2006268248A (ja) 撮影装置、顔の向きの判定方法
JP2005261728A (ja) 視線方向認識装置及び視線方向認識プログラム
JP2015022700A (ja) 視線方向検出装置および視線方向検出方法
US11016303B1 (en) Camera mute indication for headset user
CN108156387A (zh) 通过检测眼睛视线自动结束摄像的装置及方法
US20140240218A1 (en) Head tracking method and device
CN111142660A (zh) 一种显示装置、画面显示方法和存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant