CN1082277C - Circuit for frequency converting and modulating - Google Patents

Circuit for frequency converting and modulating Download PDF

Info

Publication number
CN1082277C
CN1082277C CN96107781A CN96107781A CN1082277C CN 1082277 C CN1082277 C CN 1082277C CN 96107781 A CN96107781 A CN 96107781A CN 96107781 A CN96107781 A CN 96107781A CN 1082277 C CN1082277 C CN 1082277C
Authority
CN
China
Prior art keywords
frequency
delay register
circuit
transmission signal
frequency conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96107781A
Other languages
Chinese (zh)
Other versions
CN1167365A (en
Inventor
猪饲和则
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to CN96107781A priority Critical patent/CN1082277C/en
Publication of CN1167365A publication Critical patent/CN1167365A/en
Application granted granted Critical
Publication of CN1082277C publication Critical patent/CN1082277C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmitters (AREA)

Abstract

在变频电路的调制电路中,具有矩形脉冲波乘以f3/4的余弦波的脉冲响应的滤波器构成为以f3/4为中心的带通型,其传送函数用级数和的形式表示,在低速采样频率f2上处理分子、在高速采样频率f3(=L×f2,L为奇数)上处理分母,由此谋求电路的无控化(adjustment-free structure)和小型化,另外,通过将分子的由低速采样频率f2进行处理的输出进行D/A转换。分母的以高速采样频率f3处理的部分借助于开关电容器来完成,这样就能降低电力消耗。

In the modulation circuit of the frequency conversion circuit, the filter with the impulse response of the rectangular pulse wave multiplied by the cosine wave of f 3 /4 is formed as a band-pass type centered on f 3 /4, and its transfer function is in the form of a series sum It means that the numerator is processed at the low-speed sampling frequency f 2 and the denominator is processed at the high-speed sampling frequency f 3 (=L×f 2 , where L is an odd number), thereby achieving an adjustment-free structure and miniaturization of the circuit , In addition, by D/A converting the output of the molecule processed by the low-speed sampling frequency f2 . The part of the denominator that is processed at the high-speed sampling frequency f3 is completed by means of switched capacitors, which can reduce power consumption.

Description

变频电路与调制电路Frequency conversion circuit and modulation circuit

本发明涉及汽车电话、便携式电话等无线电发射装置中的变频电路与调制电路。The invention relates to frequency conversion circuits and modulation circuits in radio transmitting devices such as car phones and portable phones.

图16是以往的调制装置的构成图。在图16中,1是数字基带发射信号输入端,与D/A转换器2相连接。3是低通型滤波器(以下用LPF表示),与D/A转换器2相接。4是模拟乘法器,与LPF3连接。5是时钟发射电路,与D/A转换器2连接。6是振荡器,与模拟乘法器4连接。7是模拟已调制波输出端,与模拟乘法器4连接。FIG. 16 is a configuration diagram of a conventional modulation device. In FIG. 16 , 1 is the digital baseband transmission signal input end, which is connected to the D/A converter 2 . 3 is a low-pass filter (hereinafter referred to as LPF), which is connected to the D/A converter 2 . 4 is an analog multiplier connected with LPF3. 5 is a clock transmitting circuit, which is connected with D/A converter 2. 6 is an oscillator, which is connected with the analog multiplier 4. 7 is an analog modulated wave output terminal, which is connected with the analog multiplier 4.

下面就以上所构成的调制装置的以往实例的动作进行说明。若首先从数字基带发射信号输入端输入数字基带发射信号(例如D/A转换的声音信号、调制解调器(MODEM)信号等),经D/A转换器通过来自时钟发生电路5的384KHz采样时钟变换成采样值信号,再经内插LPF3后成为模拟基带发射信号。再将该信号在模拟乘法器4中与来自振荡器6的24MHz正弦波相乘、变频为中心频率24MHz的已调波后从模拟已调波输出端7输出。Next, the operation of the conventional example of the modulator configured as above will be described. If at first input the digital baseband transmission signal (such as D/A converted sound signal, modem (MODEM) signal, etc.) The sampled value signal becomes an analog baseband transmission signal after being interpolated by LPF3. Then the signal is multiplied by the 24MHz sine wave from the oscillator 6 in the analog multiplier 4, converted into a modulated wave with a center frequency of 24MHz, and then output from the analog modulated wave output terminal 7.

如上述那样,即使根据以往的实例,也能作为调制电路工作。As mentioned above, even according to the conventional example, it can operate as a modulation circuit.

但是,在上述以往的调制电路中,D/A转换器的采样值输出需要把抑制具有较低采样频率384KHz整数倍频率的高次谐波频谱的内插LPF特性取为十分陡峭。另外,这时,由于加在电路中的运算放大器等的直流偏压使已调波产生载波泄漏等恶化现象,因而存在着难以使电路小型化和无控化(adjustment-free)的问题。However, in the above-mentioned conventional modulation circuit, the sampling value output of the D/A converter needs to have a very steep interpolation LPF characteristic that suppresses the harmonic spectrum having a frequency that is an integer multiple of the sampling frequency 384KHz. In addition, at this time, there is a problem that it is difficult to miniaturize the circuit and make it uncontrollable (adjustment-free), because the DC bias voltage applied to the operational amplifier and the like in the circuit causes deterioration phenomena such as carrier leakage of the modulated wave.

本发明旨在为解决这样的以往的问题,提供能使回路小型化和无控制化的变频电路和调频电路。In order to solve such conventional problems, the present invention aims to provide a frequency conversion circuit and a frequency modulation circuit capable of reducing the size and control of the circuit.

本发明为达到上述目的,注意到能够以不需要乘法运算的级数和形式给出延迟无畸变的矩形脉冲响应的滤波器传递函数,用级数和形式的传递函数构成滤波器,通过在内插数字发射信号的同时提取高次谐波频谱进行变频,试图使电路小型化和无控化。In order to achieve the above object, the present invention has noticed that the filter transfer function of the rectangular impulse response without delay and distortion can be given by the series and form that do not need multiplication, and the filter is formed by the transfer function of the series and form. While inserting the digital transmission signal, the high-order harmonic spectrum is extracted for frequency conversion, trying to make the circuit miniaturized and uncontrolled.

通过内插数字基带发射信号提高采样频率,使D/A转换后的内插滤波器的特征曲线变化缓慢就能使电路小型化。另外,在数字基带发射信号的内插时,通过提取采样频率整数倍的频率高次谐波频谱中的一个频率进行变频以获得带通信号后进行D/A变换,因此在以后的运算放大器等中所加的直流偏压将不会使已调波产生载漏等恶化现象,就能使电路无控化。再者,进行上述内插和变频的数字滤波器由于是以级数和的形式构成无延迟失真的矩形脉冲响应的滤波器传递函数,因此,不用乘法器而用延时器和加减法器就能实现,还因为这个传递函数的分子是以低速时钟信号工作的,与由通常积和(sum of products)运算的滤波器构造比较,有可能大幅度地减少延时器和加减法器的数量,因此,就能试图使电路更小型化、耗电更少。另外,由于不需要乘法运算以及少量的加减法器,通过只将加减法器的字长(加减法器数目)增加几个位,就能实行无运算误差的、以整数运算的滤波器运算。By interpolating the digital baseband transmission signal to increase the sampling frequency, the characteristic curve of the interpolation filter after D/A conversion can be changed slowly to make the circuit miniaturized. In addition, when interpolating the digital baseband transmission signal, one frequency in the high-order harmonic spectrum of the frequency that is an integer multiple of the sampling frequency is extracted for frequency conversion to obtain a band-pass signal and then D/A conversion is performed. Therefore, in future operational amplifiers, etc. The DC bias voltage added in will not make the modulated wave produce carrier leakage and other deterioration phenomena, and it can make the circuit uncontrolled. Furthermore, since the digital filter for the above-mentioned interpolation and frequency conversion is a filter transfer function that forms a rectangular impulse response without delay and distortion in the form of a series sum, it does not use a multiplier but a delayer and an adder-subtractor It can be realized, and because the numerator of this transfer function works with a low-speed clock signal, it is possible to greatly reduce the delay and adder and subtractor compared with the filter structure of the usual sum of products. Therefore, it is possible to try to make the circuit smaller and consume less power. In addition, since there is no need for multiplication and a small number of adders and subtracters, by only increasing the word length of the adder and subtractor (the number of adder and subtractors) by a few bits, it is possible to perform filtering using integer operations without calculation errors. device operation.

图1表示本发明实施例1中的变频电路构成的方框图。Fig. 1 is a block diagram showing the constitution of a frequency conversion circuit in Embodiment 1 of the present invention.

图2表示本发明实施例1中的工作的定时图。Fig. 2 is a timing chart showing the operation in Embodiment 1 of the present invention.

图3表示本发明实施例1中HB(Z)的脉冲响应波形的波形图。FIG. 3 is a waveform diagram showing an impulse response waveform of HB(Z) in Example 1 of the present invention.

图4a和4b是表示本发明实施例1中的HB(Z)的频率和增益之间关系的特性图。4a and 4b are characteristic diagrams showing the relationship between frequency and gain of HB(Z) in Embodiment 1 of the present invention.

图5A和5B是表示本发明实施例1中H(Z)的频率和增益之间关系的特性图。5A and 5B are characteristic diagrams showing the relationship between the frequency of H(Z) and the gain in Embodiment 1 of the present invention.

图6A、6B和6C是表示为实现本发明实施例1中的传递函数的滤波器结构的方框图。6A, 6B and 6C are block diagrams showing filter configurations for realizing transfer functions in Embodiment 1 of the present invention.

图7是表示本发明实施例2中的变频电路结构的方框图。Fig. 7 is a block diagram showing the configuration of a frequency conversion circuit in Embodiment 2 of the present invention.

图8是表示本发明实施例2的工作的定时图。Fig. 8 is a timing chart showing the operation of Embodiment 2 of the present invention.

图9是表示本发明实施例3中调制电路部分结构的方框图。Fig. 9 is a block diagram showing a partial configuration of a modulation circuit in Embodiment 3 of the present invention.

图10是表示在本发明实施例4中调制电路部分结构的方框图。Fig. 10 is a block diagram showing a partial configuration of a modulation circuit in Embodiment 4 of the present invention.

图11是表示在本发明实施例5中调制电路结构的方框图。Fig. 11 is a block diagram showing the configuration of a modulation circuit in Embodiment 5 of the present invention.

图12是表示在本发明实施例5中HL(Z)的脉冲响应波形的波形图。Fig. 12 is a waveform diagram showing an impulse response waveform of HL(Z) in Example 5 of the present invention.

图13是表示在本发明实施例5中HL(Z)的频率和增益之间关系的特性图。Fig. 13 is a characteristic diagram showing the relationship between frequency and gain of HL(Z) in Embodiment 5 of the present invention.

图14是表示在本发明实施例5中H(Z)的频率和增益之间关系的特性图。Fig. 14 is a characteristic diagram showing the relationship between the frequency of H(Z) and the gain in Embodiment 5 of the present invention.

图15是表示在本发明实施例6中变频电路结构的方框图。Fig. 15 is a block diagram showing the configuration of a frequency conversion circuit in Embodiment 6 of the present invention.

图16是表示以往变频电路结构的方框图。Fig. 16 is a block diagram showing the structure of a conventional frequency conversion circuit.

(实施例1)(Example 1)

下面将参照图1的方框图和图2的定时图来说明本发明实施例1中的变频电路。The frequency conversion circuit in Embodiment 1 of the present invention will be described below with reference to the block diagram of FIG. 1 and the timing diagram of FIG. 2 .

本实施例1的变频电路是将采样频率768KHZ,中心频率96KHZ,带宽为16KHZ的12位数字带通发射信号变频为采样频率96MHZ(=768KHZ×125)、中心频率24MHZ的数字带通发射信号后、经D/A转换,通过中心频率24MHZ的带通滤波器(BPF)得到模拟发射信号。本实施例1的数字滤波器的传递函数用(1)式表示如下:

Figure C9610778100081
HB ( Z ) = 1 + Z - 250 1 + Z - 2 = 1 - Z - 2 + Z - 4 - … + Z - 248 … … ( 1 ) The frequency conversion circuit of the present embodiment 1 is after sampling frequency 768KHZ, center frequency 96KHZ, bandwidth is 12 digital band-pass transmission signals of 16KHZ to sampling frequency 96MHZ (=768KHZ * 125), center frequency 24MHZ after digital band-pass transmission signal , After D/A conversion, the analog transmission signal is obtained through a band-pass filter (BPF) with a center frequency of 24MHZ. The transfer function of the digital filter of present embodiment 1 is expressed as follows with (1) formula:
Figure C9610778100081
HB ( Z ) = 1 + Z - 250 1 + Z - 2 = 1 - Z - 2 + Z - 4 - … + Z - 248 … … ( 1 )

此处,Z-1表示一个(96MHZ)-1的延迟。Here, Z -1 represents a delay of (96MHZ) -1 .

图3是HB(Z)的脉冲响应波形,图4A和4B表示它的频率—增益特性,图5A和5B表示H(Z)的频率—增益特性,本滤波器是具有中心频率为24MHZ的带通滤波器(BPF),由于离开(间隔)中心频率384KHZ整数倍的高次谐波频谱相当于H(Z)的陷波频率,可见这个频谱被衰减70dB以上。图6A、6B和6C是表示用来实现等式(1)表示的传递函数的结构,此处,图6A仅仅是一种级联结构,图6B是图6A的传递函数HB(Z)的直接型的结构(配置),而图6C与图6B相对应,但工作在采样频率为768KHZ的传递函数H(Z)的分子部分被重新排列成连接在它的前级,而工作在采样频率为96MHZ的传递函数H(Z)的分母部分被重新排列成连接在它的后级。在本实施例中,采用图C的结构(配置)。Fig. 3 is the impulse response waveform of HB (Z), and Fig. 4A and 4B represent its frequency-gain characteristic, Fig. 5 A and 5B represent the frequency-gain characteristic of H (Z), this filter is to have center frequency and be the band of 24MHZ Pass filter (BPF), because the high-order harmonic spectrum that is an integer multiple of 384KHZ away from (interval) the center frequency is equivalent to the notch frequency of H (Z), it can be seen that this spectrum is attenuated by more than 70dB. Fig. 6A, 6B and 6C represent the structure that is used to realize the transfer function represented by equation (1), here, Fig. 6A is only a kind of cascaded structure, Fig. 6B is the direct extension of transfer function HB (Z) of Fig. 6A type structure (configuration), and Fig. 6C corresponds to Fig. 6B, but the molecular part of the transfer function H(Z) working at a sampling frequency of 768KHZ is rearranged to be connected to its previous stage, while working at a sampling frequency of 768KHZ The denominator part of the 96MHZ transfer function H(Z) is rearranged to be connected to its subsequent stage. In this embodiment, the structure (configuration) of Fig. C is employed.

在图1中,输入端101是数字基带发射信号输入端,它与延迟寄存器102和时钟发生电路120(下面有时只用符号标记)相连接。102是12位延迟寄存器,与101、103、120连接。103是12位延迟寄存器,它与102、104、120连接。104是13位加法器,与101、103、105、107连接。105是13位延迟寄存器,与104、106、120连接。106是13位延迟寄存器,它与105、107、120连接。107是14位加法器,与104、105、106、108、110连接。108是14位延迟寄存器,它与107、109、110、120连接。109是14位延迟寄存器,它与108、110、120连接。110是15位加法器,与107、108、109、111连接。111是0信号插入开关SW,它与110、112、120连接。112是16位减法器,与111、113、114连接。113是16位延迟寄存器,与112、114、115、120连接。114是17位减法器,与113、115、116连接。115是17位延迟寄存器,与114、116、120连接。116是18位减法器,与115、117、118连接。117是18位寄存器,与116、118、120连接。118是12位D/A转换器,与116、117、119、120连接。119是模拟BFF,与118、121连接。120是时钟发生电路,与102、103、105、106、108、109、111、113、115、117、118连接。121是模拟调波输出端,与119连接。In FIG. 1, the input terminal 101 is a digital baseband transmission signal input terminal, which is connected with the delay register 102 and the clock generation circuit 120 (sometimes only marked with symbols below). 102 is a 12-bit delay register, connected to 101, 103, 120. 103 is a 12-bit delay register, which is connected with 102, 104, 120. 104 is a 13-bit adder connected to 101, 103, 105, and 107. 105 is a 13-bit delay register, connected with 104, 106, 120. 106 is a 13-bit delay register, which is connected with 105, 107, 120. 107 is a 14-bit adder connected to 104, 105, 106, 108, 110. 108 is a 14-bit delay register, which is connected with 107, 109, 110, 120. 109 is a 14-bit delay register, which is connected with 108, 110, 120. 110 is a 15-bit adder connected with 107, 108, 109, 111. 111 is 0 signal insertion switch SW, which is connected with 110, 112, 120. 112 is a 16-bit subtractor connected with 111, 113, 114. 113 is a 16-bit delay register, connected to 112, 114, 115, 120. 114 is a 17-bit subtractor connected with 113, 115, 116. 115 is a 17-bit delay register, connected with 114, 116, 120. 116 is an 18-bit subtractor connected with 115, 117, 118. 117 is an 18-bit register connected with 116, 118, 120. 118 is a 12-bit D/A converter connected to 116 , 117 , 119 , and 120 . 119 is an analog BFF connected with 118 and 121 . 120 is a clock generation circuit, which is connected to 102 , 103 , 105 , 106 , 108 , 109 , 111 , 113 , 115 , 117 , and 118 . 121 is an analog modulation output terminal, which is connected with 119.

接下来就本实施例的工作进行说明。图1中,如果首先在从时钟发生电路120中来的768KHZ时钟信号前沿输入来自数字基带发射信号输入端的1个采样(信号),则加法器104将延迟寄存器103的内容与输入信号相加,加法器107将延迟寄存器106的内容与加法器104的输出相加、加法器110将延迟寄存器109的内容与加法器107的输出相加并将相加的结果输出到SW111,在768KHZ时钟后沿将延迟寄存器108的输出传输给延迟寄存器109、加法器107的输出传输给延迟寄存器108、延迟寄存器105的输出传输给延迟寄存器106、加法器104的输出传输给延迟寄存器105、延迟寄存器102的输出传输给延迟寄存器103、来自数字基带发射信号输入端101的输入信号传输给延迟寄存器102。另外,SW111从768KHZ时钟前沿开始在96KHZ时钟信号的一个时钟时间单位内输出加法器110的输出,在其余的124个时钟时间内输出0,由此进行96MHZ采样输出。进而在来自时钟发生电路120的96MHZ时钟信号的前沿,减法器112从SW111的输出减去延迟寄存器113的内容、减法器11 4从减法器112的输出减去延迟寄存器115的内容、减法器116从减法器114的输出减去延迟寄存器117的内容后并将减得的结果输出到D/A转换器118,在96MHZ时钟信号的后沿将减法器116的输出传输给延迟寄存器117、减法器114的输出给延迟寄存器115、减法器112的输出传输给延迟寄存器113。D/A转换器118的输出经过具有中心频率24MHZ的模拟BPF119形成模拟发射信号。Next, the work of this embodiment will be described. In Fig. 1, if at first input 1 sampling (signal) from digital baseband transmission signal input terminal at the 768KHZ clock signal leading edge that comes in clock generation circuit 120, then adder 104 adds the content of delay register 103 and input signal, The adder 107 adds the content of the delay register 106 to the output of the adder 104, the adder 110 adds the content of the delay register 109 to the output of the adder 107 and outputs the result of the addition to SW111, at the rear edge of the 768KHZ clock The output of delay register 108 is transmitted to delay register 109, the output of adder 107 is transmitted to delay register 108, the output of delay register 105 is transmitted to delay register 106, the output of adder 104 is transmitted to delay register 105, the output of delay register 102 The input signal transmitted to the delay register 103 and from the digital baseband transmit signal input terminal 101 is transmitted to the delay register 102 . In addition, SW111 outputs the output of the adder 110 within one clock time unit of the 96KHZ clock signal starting from the leading edge of the 768KHZ clock, and outputs 0 during the remaining 124 clock times, thereby performing 96MHZ sampling output. And then at the leading edge of the 96MHZ clock signal from the clock generation circuit 120, the subtractor 112 subtracts the content of the delay register 113 from the output of the SW111, the subtractor 114 subtracts the content of the delay register 115 from the output of the subtractor 112, and the subtractor 116 After subtracting the content of the delay register 117 from the output of the subtractor 114 and output the subtracted result to the D/A converter 118, the output of the subtractor 116 is transmitted to the delay register 117, the subtractor at the trailing edge of the 96MHZ clock signal The output of 114 is sent to delay register 115 , and the output of subtractor 112 is sent to delay register 113 . The output of the D/A converter 118 passes through the analog BPF 119 with a center frequency of 24MHZ to form an analog transmission signal.

这样,根据本发明的实施例1,通过内插数字基带发射信号提高采样频率,模拟BPF119的特性(曲线)变化缓慢就能使电路小型化。另外,在数字带通发射信号插入期间,通过提取(抽出)采样频率的整数倍频率的高次谐波频谱中的一个频率进行变换,获得一个带通信号后进行D/A转换,因此,在以后运算放大器等中所加的直流偏压不会使已调波产生载漏等恶化现象,就能使电路实现无控化(adjustment-free)。In this way, according to Embodiment 1 of the present invention, by interpolating the digital baseband transmission signal to increase the sampling frequency, the characteristic (curve) of the analog BPF 119 changes slowly and the circuit can be miniaturized. In addition, during the insertion period of the digital band-pass transmission signal, a frequency in the high-order harmonic spectrum of the integer multiple frequency of the sampling frequency is extracted (extracted) for conversion, and a band-pass signal is obtained before D/A conversion. Therefore, in In the future, the DC bias voltage added to the operational amplifier will not cause deterioration such as carrier leakage of the modulated wave, and the circuit can be adjusted-free.

再者,进行上述内插和变频的数字滤波器,通过级数和的形式构成无延迟失真的矩形脉冲响应的滤波传递函数,能够不需要乘法器而用延迟器和加减法器来实现,能够用无延迟失真的数字滤波器进行不需要调整(无控)的变频。另外,这种数字滤波器尽管采样频率是96MHZ,但由于它的一半处理是以768KHZ动作,所以每一级HB(Z)只需要3个延迟器、2个减法器,就是说,全部需要9个延迟器、6个减法器也行,就能实现尺寸小、耗电少。另外,若减法器准备最大18位字长,就能实现无误差运算。Furthermore, the digital filter for the above-mentioned interpolation and frequency conversion constitutes the filter transfer function of the rectangular impulse response without delay distortion through the form of the series sum, which can be realized with a delay device and an adder-subtractor without a multiplier, A digital filter without delay and distortion can be used for frequency conversion that does not require adjustment (no control). In addition, although the sampling frequency of this digital filter is 96MHZ, because half of its processing is at 768KHZ, so each stage of HB(Z) only needs 3 delayers and 2 subtractors, that is to say, all of them need 9 Only one delay device and six subtractors can be used to achieve small size and low power consumption. In addition, if the subtractor prepares a maximum word length of 18 bits, error-free operation can be realized.

(实施例2)(Example 2)

接下来,参照图7的方框图和图8的定时图对本发明实施例2中的变频电路进行说明。Next, the frequency conversion circuit in Embodiment 2 of the present invention will be described with reference to the block diagram of FIG. 7 and the timing diagram of FIG. 8 .

本实施例的变频电路是将采样频率为768KHZ、中心频率为96KHZ、带宽为16KHZ的12位数字基带发射信号变频为采样频率96MHZ(=768KHZ×250)中心频率24MHZ的带通发射信号,经过中心频率为24MHZ的BPF得到发射信号。本实施例的数字滤波器的传递函数H(Z)也是用上述等式(1)表示,以采样频率768KHZ工作的一部分滤波器与实施例1相同,但输入信号经过768KHZD/A转换器被转换为采样值信号后使用开关电容器电路(以下称SC电路)进行96MHZ动作的处理,从而抑制D/A转换器的转换速度、减少电力消耗。The frequency conversion circuit of the present embodiment is that the sampling frequency is 768KHZ, the center frequency is 96KHZ, and the frequency conversion of the 12-bit digital baseband transmission signal with a bandwidth of 16KHZ is a bandpass transmission signal with a sampling frequency of 96MHZ (=768KHZ×250) and a center frequency of 24MHZ. The BPF with a frequency of 24MHZ gets the transmitted signal. The transfer function H (Z) of the digital filter of the present embodiment is also expressed by the above equation (1), and a part of the filter working at a sampling frequency of 768KHZ is the same as in Embodiment 1, but the input signal is converted through a 768KHZ D/A converter After sampling the value signal, use a switched capacitor circuit (hereinafter referred to as SC circuit) to perform 96MHZ operation processing, thereby suppressing the conversion speed of the D/A converter and reducing power consumption.

在图7中,201是数字基带发射信号输入端,与202、235连接。202是12位延迟寄存器,与201、203、235连接。203是12位延迟寄存器,与202、204、235连接。204是13位加法器,与201、203、205、207连接。205是13位延迟寄存器,与204、206、235连接。206是13位延迟寄存器,与205、207、235连接。207是14位加法器,与204、205、206、208、210连接。208是14位延迟寄存器,与207、209、210、235连接。209是14位延迟寄存器,与208、210、235连接。210是15位加法器,与207、208、209、211连接。211是12位D/A转换器、与210、212、235连接。212是0信号插入开关SW,与211、213、235连接。213是模拟开关,与212、214连接。214是电容量为2C的电容器,与213、215连接。215是模拟开关,与214、218、216连接。216是容量为C的电容器,与215、217、218、220连接。217是运算放大器,与215、216、218、220连接。218是模拟开关,与215、216、217、220连接。219是容量为2C的电容器,与218连接。220是模拟开关,与216、217、218、221连接。221是容量为2C的电容器,与220、222连接。222是模拟开关,与221、223、224、225连接。223是容量为C的电容器,与222、224、225、227连接。224是运算放大器,与222、223、225、227连接。225是模拟开关,与222、223、224、225、227连接。226是容量为2C的电容器,与225连接。227是模拟开关,与223、224、226、228连接。228是容量为2C的电容器,与227、229连接。229是模拟开关,与228、230、231、232连接。230是容量为C的电容器,与229、231、232、234连接。231是运算放大器,与229、230、231、234连接。232是模拟开关,与229、230、201、233、234连接。233是容量为2C的电容器,与232连接。234是模拟BPF,与230、231、233、236连接。235是时钟发生电路,与202、203、205、206、208、209、211、212连接。236是模拟调波输出端,与234连接。In FIG. 7 , 201 is a digital baseband transmission signal input terminal, which is connected to 202 and 235 . 202 is a 12-bit delay register, connected to 201, 203, 235. 203 is a 12-bit delay register, connected to 202, 204, 235. 204 is a 13-bit adder connected to 201, 203, 205, and 207. 205 is a 13-bit delay register, connected to 204, 206, 235. 206 is a 13-bit delay register, connected to 205, 207, 235. 207 is a 14-bit adder connected to 204 , 205 , 206 , 208 , and 210 . 208 is a 14-bit delay register, connected to 207, 209, 210, 235. 209 is a 14-bit delay register, connected to 208, 210, 235. 210 is a 15-bit adder connected to 207, 208, 209, and 211. 211 is a 12-bit D/A converter connected to 210, 212, and 235. 212 is a 0 signal insertion switch SW, which is connected to 211, 213, and 235. 213 is an analog switch connected to 212 and 214 . 214 is a capacitor with a capacitance of 2C, which is connected to 213 and 215 . 215 is an analog switch connected to 214, 218, 216. 216 is a capacitor with a capacity C, which is connected to 215 , 217 , 218 , and 220 . 217 is an operational amplifier connected to 215 , 216 , 218 , and 220 . 218 is an analog switch connected to 215 , 216 , 217 and 220 . 219 is a capacitor with a capacity of 2C, which is connected to 218 . 220 is an analog switch, connected to 216, 217, 218, 221. 221 is a capacitor with a capacity of 2C, which is connected to 220 and 222 . 222 is an analog switch, connected to 221, 223, 224, 225. 223 is a capacitor with a capacity C, which is connected to 222 , 224 , 225 , and 227 . 224 is an operational amplifier connected to 222 , 223 , 225 , and 227 . 225 is an analog switch, connected to 222, 223, 224, 225, 227. 226 is a capacitor with a capacity of 2C, which is connected to 225 . 227 is an analog switch, connected to 223, 224, 226, 228. 228 is a capacitor with a capacity of 2C, which is connected to 227 and 229 . 229 is an analog switch, connected to 228, 230, 231, 232. 230 is a capacitor with a capacity C, which is connected to 229 , 231 , 232 , and 234 . 231 is an operational amplifier connected to 229 , 230 , 231 , and 234 . 232 is an analog switch, connected to 229, 230, 201, 233, 234. 233 is a capacitor with a capacity of 2C, which is connected to 232 . 234 is an analog BPF, which is connected to 230, 231, 233, and 236. 235 is a clock generating circuit, which is connected to 202 , 203 , 205 , 206 , 208 , 209 , 211 , and 212 . 236 is an analog modulation output terminal, which is connected with 234.

下面就本实施例的动作进行说明。在图7中,如果首先在来自时钟发生电路235的768KHZ时钟信号的前沿从数字基带发射信号输入端201输入1个采样信号,则加法器204将延迟寄存器203的内容加到输入信号中、加法器207将延迟寄存器206的内容加到加法器204的输出中,加法器210将延迟寄存器209的内容加到207的输出中,并将相加的结果输出到D/A转换器211中转换成采样值信号以后,输出到SW212,在768KHZ时钟信号的后沿延迟寄存器208的输出被传输到延迟寄存器209、加法器207的输出被传输到延迟寄存器208、延迟寄存器205的输出被传输到延迟寄存器206、加法器204的输出被传输到延迟寄存器205、延迟寄存器202的输出被传输到延迟寄存器203、来自数字带通发射信号输入端201的输入信号被传输到延迟寄存器202。另外,从768KHZ时钟的前沿开始,在96MHZ时钟信号的1个时钟时间单位内,SW212输出D/A转换器211的输出,但在其余的124个时钟时间单位内输出0,由此输出96MHZ采样信号。另外,在由时钟发生电路235所产生的96MHZ时钟φ1的前沿,分别将电容器214充电到SW212的输出电压、电容器219和221充电到运算放大器217的输出电压、电容器226和228充电到运算放大器224的输出电压、电容器233充电到运算放大器231的输出电压,并将这些状态保持在时钟φ1的后沿。接着在由时钟发生电路235所产生的96MHZ时钟φ2的前沿,分别将电容器214和219的电荷传输到电容器216、将电容器221和226的电荷传输到电容器223、将电容器228和233的电容传输到电容器230,并保持在时钟φ2的后沿,经过中心频率为24MHZ的模拟BPF234得到模拟发射信号。Next, the operation of this embodiment will be described. In Fig. 7, if at first from the leading edge of the 768KHZ clock signal of clock generation circuit 235, input 1 sampling signal from digital baseband transmission signal input end 201, then adder 204 adds the content of delay register 203 in the input signal, addition The adder 207 adds the content of the delay register 206 to the output of the adder 204, and the adder 210 adds the content of the delay register 209 to the output of the 207, and the result of the addition is output to the D/A converter 211 and converted into After the sampling value signal is output to SW212, the output of the delay register 208 is transmitted to the delay register 209 on the trailing edge of the 768KHZ clock signal, the output of the adder 207 is transmitted to the delay register 208, and the output of the delay register 205 is transmitted to the delay register 206 , the output of the adder 204 is transmitted to the delay register 205 , the output of the delay register 202 is transmitted to the delay register 203 , and the input signal from the digital bandpass transmit signal input terminal 201 is transmitted to the delay register 202 . In addition, starting from the leading edge of the 768KHZ clock, within 1 clock time unit of the 96MHZ clock signal, SW212 outputs the output of the D/A converter 211, but outputs 0 in the remaining 124 clock time units, thereby outputting 96MHZ sampling Signal. In addition, at the leading edge of the 96MHZ clock φ1 generated by the clock generating circuit 235, the capacitor 214 is charged to the output voltage of SW212, the capacitors 219 and 221 are charged to the output voltage of the operational amplifier 217, and the capacitors 226 and 228 are charged to the operational amplifier 224. The output voltage of the operational amplifier 231, the capacitor 233 is charged to the output voltage of the operational amplifier 231, and these states are maintained at the trailing edge of the clock φ1. Then, at the leading edge of the 96MHZ clock φ2 generated by the clock generation circuit 235, the charges of capacitors 214 and 219 are transferred to capacitor 216, the charges of capacitors 221 and 226 are transferred to capacitor 223, and the capacitance of capacitors 228 and 233 is transferred to Capacitor 230, and kept at the trailing edge of the clock φ2, through the analog BPF234 with a center frequency of 24MHZ to obtain an analog transmit signal.

像以上那样,如果采用本发明实施例2,与实施例1一样,在谋求电路小型化和无控化的同时,还能进行变频。另外,根据上面等式(1),在数字基带发射信号的内插和高次谐波抽出时,通过用数字电路执行等式(1)中的分子部分后在768KHZ频率上进行D/A转换、用无控化的SC电路执行等式(1)中的分母部分,就能抑制D/A转换速度减少电力损耗。As described above, according to the second embodiment of the present invention, similar to the first embodiment, the frequency conversion can be performed while achieving circuit miniaturization and uncontrolled. In addition, according to the above equation (1), when the digital baseband transmit signal is interpolated and the higher harmonics are extracted, the D/A conversion is performed at the frequency of 768KHZ after performing the molecular part in the equation (1) with a digital circuit , Implementing the denominator part in equation (1) with an uncontrolled SC circuit can suppress the D/A conversion speed and reduce power loss.

(实施例3)(Example 3)

接下来,就本发明的实施例3进行说明。图9是表示本实施例的调制电路中变频电路的结构方框图。Next, Embodiment 3 of the present invention will be described. Fig. 9 is a block diagram showing the configuration of the frequency conversion circuit in the modulation circuit of this embodiment.

本实施例的调制电路,将采样频率48KHZ、带宽16KHZ的12位数字基带发射信号经变频为采样频率96MHZ(=384KHZ×250)、中心频率24MHZ的数字带通发射信号后,进行D/A变换,经过中心频率24MHZ的BPF就得到了模拟发射信号。本实施例的数字滤波器的传递函数H(Z)用等式(2)表示。 HB ( Z ) = 1 + Z - 8 1 + Z - 2 = 1 - Z - 2 + Z - 4 - Z - 6 … … ( 2 ) In the modulation circuit of this embodiment, after the 12-bit digital baseband transmission signal with a sampling frequency of 48KHZ and a bandwidth of 16KHZ is converted into a digital bandpass transmission signal with a sampling frequency of 96MHZ (=384KHZ×250) and a center frequency of 24MHZ, D/A conversion is performed , the analog transmission signal is obtained through the BPF with a center frequency of 24MHZ. The transfer function H(Z) of the digital filter of this embodiment is expressed by equation (2). HB ( Z ) = 1 + Z - 8 1 + Z - 2 = 1 - Z - 2 + Z - 4 - Z - 6 … … ( 2 )

此处,Z-1表示(384KHZ)-1的延迟。Here, Z -1 represents a delay of (384KHZ) -1 .

在图9中,301是数字基带发射信号输入端,与302、320连接。302是12位延迟寄存器,与301、303、320连接。303是12位延迟寄存器,与302、304、320连接。304是13位加法器,与301、303、305、307连接。305是13位延迟寄存器,与304、306、320连接。306是13位延迟寄存器,与305、307、320连接。307是14位加法器,与304、305、306、308、320连接。308是14位延迟寄存器,与307、309、310、320连接。309是14位延迟寄存器,与308、310、320连接。310是15位加法器,与307、308、309、311连接。311是0信号插入开关SW,与310、312、320连接。312是16位减法器,与311、313、314连接。313是16位延迟寄存器,与312、314、315、320连接。314是17位减法器,与313、315、316连接。317是17位延迟寄存器,与314、316、320连接。316是18位减法器,与315、317、318连接。317是18位延迟寄存器,与316、318、320连接。318是12位D/A转换器,与316、317、319、320连接。319是模拟BPF,与318、321连接。320是时钟发生电路,与302、303、305、306、308、309、311、313、315、317、318连接。321是模拟已调波输出端,与319连接。In FIG. 9 , 301 is a digital baseband transmission signal input terminal, which is connected to 302 and 320 . 302 is a 12-bit delay register, connected to 301, 303, 320. 303 is a 12-bit delay register connected to 302, 304, 320. 304 is a 13-bit adder connected to 301, 303, 305, and 307. 305 is a 13-bit delay register, connected to 304, 306, 320. 306 is a 13-bit delay register, connected to 305, 307, 320. 307 is a 14-bit adder connected to 304 , 305 , 306 , 308 , and 320 . 308 is a 14-bit delay register, which is connected to 307, 309, 310, and 320. 309 is a 14-bit delay register, connected to 308, 310, 320. 310 is a 15-bit adder connected to 307, 308, 309, and 311. 311 is a 0 signal insertion switch SW, connected to 310, 312, 320. 312 is a 16-bit subtractor connected to 311, 313, 314. 313 is a 16-bit delay register, which is connected to 312, 314, 315, and 320. 314 is a 17-bit subtractor connected with 313, 315, 316. 317 is a 17-bit delay register, connected to 314, 316, 320. 316 is an 18-bit subtractor connected with 315, 317, 318. 317 is an 18-bit delay register connected with 316, 318, 320. 318 is a 12-bit D/A converter connected to 316, 317, 319, and 320. 319 is a simulated BPF connected with 318 and 321 . 320 is a clock generation circuit, which is connected to 302 , 303 , 305 , 306 , 308 , 309 , 311 , 313 , 315 , 317 , and 318 . 321 is an analog modulated wave output terminal, which is connected with 319.

接下来对本实施例的动作进行说明。在图9中,如果首先在从时钟发生电路320来的48KHZ时钟信号的前沿,从数字基带发射信号输入端301输入1个采样信号,则加法器304将延迟寄存器303的内容加到输入信号中、加法器307将延迟寄存器306的内容加到加法器304的输出中、加法器310将延迟寄存器309的内容加到加法器307的输出后将结果输出到SW311,在48KHZ时钟信号的后沿,延迟寄存器308的输出被传输到延迟寄存器309、加法器307的输出被传输到延迟寄存器308、延迟寄存器305的输出被传输到延迟寄存器306、加法器304的输出被传输到延迟寄存器305、延迟寄存器302的输出被传输到延迟寄存器303、来自数字基带发射信号输入端301的输入信号被传输到延迟寄存器302。另外,SW311从来自48KHZ时钟信号前沿开始,在96MHZ时钟信号的1个时钟时间单位输出加法器310的输出,但在其余的124个时钟时间单位输出0,由此输出96MHZ采样信号。另外,在来自时钟发生电路320的96MHZ时钟信号前沿,减法器312从SW311的输出减去延迟寄存器313的内容,减法器314从减法器312的输出中减去延迟寄存器315的内容,减法器316从减法器314的输出中减去延迟寄存器317的内容后将减得的结果输出到D/A转换器318,在96MHZ时钟信号的后沿减法器316输出被传输到延迟寄存器317、减法器314的输出被传输到延迟寄存器315、减法器312的输出被传输到延迟寄存器313。D/A转换器318的输出经中心频率24MHZ的模拟BPF319变成模拟发射信号。Next, the operation of this embodiment will be described. In Fig. 9, if first at the leading edge of the 48KHZ clock signal coming from the clock generation circuit 320, a sampling signal is input from the digital baseband transmission signal input terminal 301, then the adder 304 adds the content of the delay register 303 to the input signal 1. The adder 307 adds the content of the delay register 306 to the output of the adder 304, and the adder 310 adds the content of the delay register 309 to the output of the adder 307 and then outputs the result to SW311. On the trailing edge of the 48KHZ clock signal, The output of delay register 308 is transferred to delay register 309, the output of adder 307 is transferred to delay register 308, the output of delay register 305 is transferred to delay register 306, the output of adder 304 is transferred to delay register 305, delay register The output of 302 is transmitted to the delay register 303 , and the input signal from the digital baseband transmission signal input terminal 301 is transmitted to the delay register 302 . In addition, SW311 starts from the leading edge of the 48KHZ clock signal, outputs the output of the adder 310 in one clock time unit of the 96MHZ clock signal, but outputs 0 in the remaining 124 clock time units, thereby outputting the 96MHZ sampling signal. In addition, at the leading edge of the 96MHZ clock signal from the clock generating circuit 320, the subtractor 312 subtracts the content of the delay register 313 from the output of the SW311, the subtractor 314 subtracts the content of the delay register 315 from the output of the subtractor 312, and the subtractor 316 After subtracting the content of the delay register 317 from the output of the subtractor 314, the subtracted result is output to the D/A converter 318, and the output of the subtractor 316 is transmitted to the delay register 317, the subtractor 314 at the trailing edge of the 96MHZ clock signal The output of is transmitted to the delay register 315, and the output of the subtractor 312 is transmitted to the delay register 313. The output of the D/A converter 318 is converted into an analog transmission signal through an analog BPF 319 with a center frequency of 24MHZ.

像以上那样,根据本实施例的实施例3,通过在前级,用数字滤波器在插入数字基带发射信号的同时,得到384KHZ的采样的、中心频率24MHZ的带通信号,在后级,使用实施例1的变频电路,就能试图使调制电路小型化,无控化。As above, according to Embodiment 3 of this embodiment, by using a digital filter in the front stage while inserting the digital baseband transmission signal, a band-pass signal of 384KHZ sampling and a center frequency of 24MHZ is obtained, and in the latter stage, use The frequency conversion circuit of Embodiment 1 can try to make the modulation circuit miniaturized and uncontrolled.

(实施例4)(Example 4)

接下来,对本发明实施例4进行说明。图10是表示本实施例的调制电路中变频电路结构方框图。Next, Embodiment 4 of the present invention will be described. Fig. 10 is a block diagram showing the configuration of the frequency conversion circuit in the modulation circuit of this embodiment.

本实施例的调制电路是将采样频率为48KHZ、带宽16KHZ的12位数字基带发射信号变频为采样频率96MHZ(=384KHZ×250),中心频率24MHZ的数字带通发射信号后经中心频率24MHZ的BPF得到模拟发射信号。在本实施例中,数字滤波器的传递函数H(Z)也可用等式(2)表示,工作在采样频率48KHZ的部分与实施例1相同,但输入信号经过48 KHZ D/A转换器转换为采样值信号后经过开关电容器电路(以下标记为SC电路)进行96MHZ动作的处理,从而就会抑制D/A转换器的转换速度,实现低电力消耗。The modulation circuit of the present embodiment is that the sampling frequency is 48KHZ, the frequency conversion of 12 digital baseband transmission signals of bandwidth 16KHZ is sampling frequency 96MHZ (=384KHZ * 250), the digital band-pass transmission signal of center frequency 24MHZ passes through the BPF of center frequency 24MHZ Obtain an analog transmit signal. In this embodiment, the transfer function H (Z) of the digital filter can also be represented by equation (2), and the part working at the sampling frequency of 48KHZ is the same as that of embodiment 1, but the input signal is converted through the 48 KHZ D/A converter The switching capacitor circuit (hereinafter referred to as SC circuit) is used to process the 96MHZ operation after sampling the value signal, thereby suppressing the conversion speed of the D/A converter and realizing low power consumption.

在图10中,401是数字基带发射信号输入端,与402、435连接。402是12位延迟寄存器,与401、403、435连接。403是12位延迟寄存器,与402、404、435连接。404是13位加法器,与401、403、405、407连接。405是13位延迟寄存器,与404、406、435连接。406是13位延迟寄存器,与405、407、435连接。407是14位加法器,与404、405、406、408、410连接。408是14位延迟寄存器,与407、409、410、435连接。409是14位延迟寄存器,与408、410、435连接。410是15位加法器,与407、408、409、411连接。411是12位D/A转换器,与410、412、435连接。412是0信号插入开关SW,与411、413、435连接。413是模拟开关,与412、414连接。414是容量为2C的电容器,与413、415连接。415是模拟开关,与414、418、416连接。416是容量为C的电容器,与415、417、418、420连接。417是运算放大器,与415、416、418、420连接。418是模拟开关,与415、416、417、419、420连接。419是容量为2C的电容器,与418连接。420是模拟开关,与416、417、418、421连接。421是容量为2C的电容器,与420、422连接。422是模拟开关,与421、423、424、425连接。423是容量为C的电容器,与422、424、425、427连接。424是运算放大器,与422、423、425、427连接。425是模拟开关,与422、423、424、426、427连接。426是容量为2C的电容器,与425连接。427是模拟开关,与423、424、426、428连接。428是容量为2C的电容器,与427、429连接。429是模拟开关,与428、430、431、432连接。430是容量为C的电容器,与429、431、432、434连接。431是运算放大器,与429、430、431、434连接。432是模拟开关,与429、430、401、433、434连接。433是容量为2C的电容器,与432连接。434是模拟BPF,与430、431、433、436连接。435是时钟发生电路,与402、403、405、406、408、409、411、412连接。436是模拟已调波输出端,与434连接。In FIG. 10 , 401 is a digital baseband transmission signal input terminal, which is connected to 402 and 435 . 402 is a 12-bit delay register, connected to 401, 403, 435. 403 is a 12-bit delay register, connected to 402, 404, 435. 404 is a 13-bit adder connected to 401, 403, 405, and 407. 405 is a 13-bit delay register, connected to 404, 406, 435. 406 is a 13-bit delay register, connected to 405, 407, 435. 407 is a 14-bit adder, connected to 404, 405, 406, 408, 410. 408 is a 14-bit delay register, connected to 407, 409, 410, 435. 409 is a 14-bit delay register, connected to 408, 410, 435. 410 is a 15-bit adder connected to 407, 408, 409, and 411. 411 is a 12-bit D/A converter connected with 410, 412, 435. 412 is a 0 signal insertion switch SW, connected to 411, 413, 435. 413 is an analog switch connected to 412 and 414 . 414 is a capacitor with a capacity of 2C, which is connected to 413 and 415 . 415 is an analog switch, connected to 414, 418, 416. 416 is a capacitor with a capacity C, which is connected to 415 , 417 , 418 , and 420 . 417 is an operational amplifier connected to 415 , 416 , 418 , and 420 . 418 is an analog switch, connected with 415, 416, 417, 419, 420. 419 is a capacitor with a capacity of 2C, which is connected to 418 . 420 is an analog switch, connected with 416, 417, 418, 421. 421 is a capacitor with a capacity of 2C, which is connected to 420 and 422 . 422 is an analog switch, connected to 421, 423, 424, 425. 423 is a capacitor with a capacity C, which is connected to 422 , 424 , 425 , and 427 . 424 is an operational amplifier, which is connected to 422, 423, 425, and 427. 425 is an analog switch, connected with 422, 423, 424, 426, 427. 426 is a capacitor with a capacity of 2C, which is connected to 425 . 427 is an analog switch, connected to 423, 424, 426, 428. 428 is a capacitor with a capacity of 2C, which is connected to 427 and 429 . 429 is an analog switch, connected to 428, 430, 431, 432. 430 is a capacitor with a capacity C, which is connected to 429 , 431 , 432 , and 434 . 431 is an operational amplifier connected to 429 , 430 , 431 , and 434 . 432 is an analog switch, connected to 429, 430, 401, 433, 434. 433 is a capacitor with a capacity of 2C, which is connected to 432 . 434 is a simulated BPF, connected with 430, 431, 433, 436. 435 is a clock generating circuit, which is connected to 402 , 403 , 405 , 406 , 408 , 409 , 411 , and 412 . 436 is an analog modulated wave output terminal, which is connected with 434.

接下来对本实施例的动作进行说明。在图10中,如果首先在由时钟发生电路435发生的48KHZ时钟信号的前沿从数字基带发射信号输入端401输入1个采样信号,则加法器404将延迟寄存器403的内容加到输入信号中,加法器407将延迟寄存器406的内容加到加法器404的输出中,加法器410将延迟寄存器409的内容加到加法器407的输出中、经D/A转换器411转换为采样值信号之后,输出到SW412,在48KHZ时钟信号的后沿延迟寄存器408的输出被传输到延迟寄存器409,加法器407的输出被传输到延迟寄存器408、延迟寄存器405的输出被传输到延迟寄存器406、加法器404的输出被传输到延迟寄存器405、延迟寄存器402的输出被传输到延迟寄存器403、来自数字基带发射信号输入端401的输入信号被传输到延迟寄存器402。另外,SW412从来自48KHZ时钟信号前沿开始,在96MHZ 1个时钟时间单位输出D/A转换器411的输出,而在其余的124个时间单位输出0,由此输出96MHZ采样信号。还有,在来自时钟发生电路435的96MHZ时钟φ1的前沿,分别将电容器414充电到SW412的输出电压,将电容器419和421充电到运算放大器417的输出电压,将电容器426和428充电到运算放大器424的输出电压,将电容器433充电到运算放大器431的输出电压,并以时钟信号φ1的后沿保持。接着,在来自时钟发生电路435的96MHZ时钟信号φ2的前沿,分别将电容器414和419的电荷传输到电容器416,将电容器421和426的电荷传输到电容器423,将电容器428和433的电荷传输到电容器430,并用时钟信号φ2的后沿保持,经过中心频率为24MHZ的模拟BPF434得到模拟发射信号。Next, the operation of this embodiment will be described. In Fig. 10, if at first by the leading edge of the 48KHZ clock signal that clock generation circuit 435 produces, input 1 sampling signal from digital baseband transmission signal input end 401, then adder 404 adds the content of delay register 403 in the input signal, The adder 407 adds the content of the delay register 406 to the output of the adder 404, and the adder 410 adds the content of the delay register 409 to the output of the adder 407, after the D/A converter 411 is converted into a sampled value signal, Output to SW412, the output of delay register 408 is transmitted to delay register 409 at the trailing edge of 48KHZ clock signal, the output of adder 407 is transmitted to delay register 408, the output of delay register 405 is transmitted to delay register 406, adder 404 The output of is transmitted to the delay register 405, the output of the delay register 402 is transmitted to the delay register 403, and the input signal from the digital baseband transmission signal input terminal 401 is transmitted to the delay register 402. In addition, SW412 starts from the leading edge of the 48KHZ clock signal, outputs the output of the D/A converter 411 in 1 clock time unit of 96MHZ, and outputs 0 in the remaining 124 time units, thereby outputting the 96MHZ sampling signal. Also, at the leading edge of the 96MHZ clock φ1 from the clock generating circuit 435, the capacitor 414 is charged to the output voltage of SW412, the capacitors 419 and 421 are charged to the output voltage of the operational amplifier 417, and the capacitors 426 and 428 are charged to the operational amplifier The output voltage of 424 charges the capacitor 433 to the output voltage of the operational amplifier 431 and maintains it at the trailing edge of the clock signal φ1. Then, at the leading edge of the 96MHZ clock signal φ2 from the clock generating circuit 435, the charges of capacitors 414 and 419 are transferred to capacitor 416, the charges of capacitors 421 and 426 are transferred to capacitor 423, and the charges of capacitors 428 and 433 are transferred to The capacitor 430 is held by the trailing edge of the clock signal φ2, and the analog transmit signal is obtained through the analog BPF 434 whose center frequency is 24MHZ.

根据以上本发明实施例4,通过在前级将数字基带发射信号用数字滤波器插入的同时,获得384KHZ采样的、中心频率24MHZ的带通信号,并在后级使用实施例2的变频电路,就能使调制电路小型化和无控化,另外通过使用实施例2的变频电路能抑制D/A转换速度并减少耗电量。According to the above embodiment 4 of the present invention, by inserting the digital baseband transmission signal with a digital filter in the previous stage, the bandpass signal of 384KHZ sampling and center frequency 24MHZ is obtained, and the frequency conversion circuit of embodiment 2 is used in the latter stage, The modulation circuit can be miniaturized and uncontrolled, and the D/A conversion speed can be suppressed and the power consumption can be reduced by using the frequency conversion circuit of the second embodiment.

(实施例5)(Example 5)

下面,参照图11的方框图对本发明实施例5进行说明。本实施例5的调制电路,是将采样频率64KHZ、带宽16KHZ的12位数字基带发射信号变频为采样频率96MHZ(=384KHZ×250)、中心频率24MHZ的数字带通发射信号后进行D/A转换,经中心频率24MHZ的BPF,从而获得模拟发射信号。在本实施例5中,首先用等式(3)表示的数字滤波器,内插输入信号得到采样频率为384KHZ的基带发射信号中后,乘以1,0,…1,0,1,…并转换到中心频率为96KHZ的12位数字带通发射信号,然后用实施例1的变频电路进行变频。在实施例3中,由等式(2)产生的采样频率转换比率受到2次幂的倍乘的限制,但在等式(3)中是有可能进行整数倍数的采样频率的转换的。 HL ( Z ) = 1 - Z - 6 1 - Z - 1 = 1 + Z - 1 + Z - 2 + Z - 4 + Z - 5 … … ( 3 ) Next, Embodiment 5 of the present invention will be described with reference to the block diagram shown in FIG. 11 . The modulation circuit of the present embodiment 5 is to convert the 12-bit digital baseband transmission signal with a sampling frequency of 64KHZ and a bandwidth of 16KHZ into a digital band-pass transmission signal with a sampling frequency of 96MHZ (=384KHZ×250) and a center frequency of 24MHZ to perform D/A conversion , through the BPF with a center frequency of 24MHZ to obtain an analog transmit signal. In the present embodiment 5, at first, the digital filter represented by equation (3) is used to interpolate the input signal to obtain the baseband transmission signal with a sampling frequency of 384KHZ, and then multiply by 1, 0, ... 1, 0, 1, ... And it is converted to a 12-bit digital band-pass transmission signal with a center frequency of 96KHZ, and then the frequency conversion circuit of Embodiment 1 is used for frequency conversion. In Embodiment 3, the sampling frequency conversion ratio generated by Equation (2) is limited by the multiplication of the power of 2, but in Equation (3) it is possible to convert the sampling frequency of integer multiples. HL ( Z ) = 1 - Z - 6 1 - Z - 1 = 1 + Z - 1 + Z - 2 + Z - 4 + Z - 5 … … ( 3 )

式中,Z-1表示(384KHZ)-1的延迟。In the formula, Z -1 represents the delay of (384KHZ) -1 .

另外,图12表示HL(Z)的脉冲响应波形,图13表示其频率—增益特性曲线图,图14表示H(Z)的频率—增益特性曲线图,本滤波器是LPF(低通滤波器),并由于64KHZ的整数倍的频率的高次谐波对应于H(Z)的陷波频率,故可知输入信号衰减70dB以上。In addition, Fig. 12 shows the impulse response waveform of HL (Z), Fig. 13 shows its frequency-gain characteristic curve, Fig. 14 shows the frequency-gain characteristic curve of H (Z), this filter is LPF (low-pass filter ), and since the higher harmonics of the integer multiples of 64KHZ correspond to the notch frequency of H(Z), it can be seen that the input signal is attenuated by more than 70dB.

在图11中,501是数字基带发射信号输入端,与502、503、518连接。502是12位延迟寄存器,与501、503、518连接。503是13位减法器,与501、502、504、505连接。504是13位延迟寄存器,与503、505、517连接。505是14位减法器,与503、504、506、507连接。506是14位延迟寄存器,与505、507、517连接。507是15位减法器,与505、506、508、517连接。508是0倍号插入开关SW,与507、509、517连接。509是16位减法器,与508、510、511连接。510是16位延迟寄存器,与509、511、517连接。511是17位减法器,与510、512、513连接。512是17位延迟寄存器,与511、513、517连接。513是18位减法器,与512、514、515连接。514是18位延迟寄存器,与513、515、517连接。515是乘法器,与513、514、516连接。516是实施例1的变频电路,与515、517、518连接。517是时钟发生电路,与502、504、506、508、510、512、514、516连接。518是横拟已调波输出端,与516连接。In FIG. 11 , 501 is a digital baseband transmission signal input terminal, which is connected to 502 , 503 , and 518 . 502 is a 12-bit delay register, connected to 501, 503, 518. 503 is a 13-bit subtractor connected to 501, 502, 504, 505. 504 is a 13-bit delay register, connected to 503, 505, 517. 505 is a 14-bit subtractor connected to 503, 504, 506, 507. 506 is a 14-bit delay register, connected to 505, 507, 517. 507 is a 15-bit subtractor connected with 505, 506, 508, 517. 508 is a 0 times number insertion switch SW, which is connected with 507, 509, 517. 509 is a 16-bit subtractor connected with 508, 510, 511. 510 is a 16-bit delay register, connected to 509, 511, 517. 511 is a 17-bit subtractor connected with 510, 512, 513. 512 is a 17-bit delay register, connected with 511, 513, 517. 513 is an 18-bit subtractor connected with 512, 514, 515. 514 is an 18-bit delay register, connected to 513, 515, 517. 515 is a multiplier, connected to 513, 514, 516. 516 is the frequency conversion circuit of Embodiment 1, which is connected to 515, 517, and 518. 517 is a clock generating circuit, connected to 502, 504, 506, 508, 510, 512, 514, 516. 518 is a horizontal analog modulated wave output terminal, which is connected with 516.

下面将对本实施例的动作进行说明。在图11中,如果首先在来自时钟发生电路517的64KHZ时钟信号前沿,从数字基带发射信号输入端501输入一个采样信号,则减法器503从输入信号中减去延迟寄存器502的内容,减法器505从减法器503的输出中减去延迟寄存器504的内容,减法器507从505的输出中减去延迟寄存器506的内容并将结果输出到SW508,在64KHZ时钟信号的后沿,减法器505的输出被传输到延迟寄存器506,减法器503的输出被传输到延迟寄存器504,从数字基带发射信号输入端501接收的输入信号被传输到延迟寄存器502。另外SW508从来自64KHZ时钟的前沿开始,在384KHZ的1个时钟时间单位输出减法器507的输出,但其余的5个时钟时间输出0,由此输出384KHZ的采样信号。再在来自时钟发生电路517的384KHZ时钟的前沿,减法器509从SW508的输出中减去延迟寄存器510的内容,减法器511从减法器509的输出中减去延迟寄存器512的内容,减法器513从减法器511的输出中减去延迟寄存器514的内容,在乘法器515中,乘以{jn+(-j)n}/2=1,0,-1,0,1,…后输出,在384KHZ时钟信号的后沿减法器509的输出被传输到延迟寄存器510,减法器511的输出被传输到延迟寄存器512,减法器513的输出被传输到延迟寄存器514。再通过乘法器515,得到384KHZ采样、中心频率24MHZ的带通信号,因此,在以后的变频电路516中经中心频率24MHZ的模拟BPF得到发射信号。The operation of this embodiment will be described below. In Fig. 11, if at first from the leading edge of the 64KHZ clock signal of the clock generation circuit 517, a sampling signal is input from the digital baseband transmission signal input terminal 501, then the subtractor 503 subtracts the content of the delay register 502 from the input signal, and the subtractor 505 subtracts the content of the delay register 504 from the output of the subtractor 503, and the subtractor 507 subtracts the content of the delay register 506 from the output of the 505 and outputs the result to SW508. On the trailing edge of the 64KHZ clock signal, the The output is transmitted to the delay register 506 , the output of the subtractor 503 is transmitted to the delay register 504 , and the input signal received from the digital baseband transmit signal input terminal 501 is transmitted to the delay register 502 . In addition, SW508 starts from the leading edge of the 64KHZ clock, outputs the output of the subtractor 507 in 1 clock time unit of 384KHZ, but outputs 0 in the remaining 5 clock time units, thereby outputting a sampling signal of 384KHZ. From the leading edge of the 384KHZ clock of clock generation circuit 517 again, subtractor 509 subtracts the content of delay register 510 from the output of SW508, subtractor 511 subtracts the content of delay register 512 from the output of subtractor 509, and subtractor 513 The content of the delay register 514 is subtracted from the output of the subtractor 511, and in the multiplier 515, it is multiplied by {j n + (-j) n }/2=1, 0, -1, 0, 1, ... and output , the output of the subtractor 509 is transmitted to the delay register 510 at the trailing edge of the 384KHZ clock signal, the output of the subtractor 511 is transmitted to the delay register 512, and the output of the subtractor 513 is transmitted to the delay register 514. Through the multiplier 515, a band-pass signal with 384KHZ sampling and a center frequency of 24MHZ is obtained. Therefore, in the subsequent frequency conversion circuit 516, a transmit signal is obtained through an analog BPF with a center frequency of 24MHZ.

根据以上的本发明实施例5,通过在前级用数字滤波器插入数字基带发射信号,同时得到384MHZ采样、中心频率24MHZ的带通信号,而在后级使用实施例1的变频电路,就能使调制电路小型化和无控化。另外,在实施例3中,数字基带发射信号的采样频率转换比率受到2次幂的倍乘的限制,但在实施例5中,能进行整数倍的采样转换。According to the above embodiment 5 of the present invention, by inserting the digital baseband transmission signal with a digital filter in the previous stage, the band-pass signal of 384MHZ sampling and center frequency 24MHZ is obtained simultaneously, and the frequency conversion circuit of embodiment 1 is used in the subsequent stage. Make the modulation circuit miniaturized and uncontrolled. In addition, in the third embodiment, the sampling frequency conversion ratio of the digital baseband transmission signal is limited by the multiplication of the power of 2, but in the fifth embodiment, the sampling conversion of an integer multiple can be performed.

(实施例6)(Example 6)

接下来,参照图15的方框图对本发明实施例6进行说明。本实施例的调制电路,将具有采样频率64KHZ,带宽16KHZ的12位数字基带发射信号变频为具有采样频率96MHZ(=384KHZ×250)、中心频率24MHZ的数字带通发射信号后借助于中心频率为24MHZ的BPF来获得发射信号。在本实施例中,是在前级与实施例5相同的电路中将输入信号转换成具有采样频率384KHZ、中心频率96KHZ的12位数字带通发射信号后,在后级借助于实施例2的变频电路进行变频。Next, Embodiment 6 of the present invention will be described with reference to the block diagram of FIG. 15 . The modulation circuit of the present embodiment will have sampling frequency 64KHZ, the frequency conversion of 12 digital baseband transmission signals of bandwidth 16KHZ is to have sampling frequency 96MHZ (=384KHZ * 250), after the digital bandpass transmission signal of center frequency 24MHZ by means of center frequency is 24MHZ BPF to get the transmit signal. In this embodiment, after the input signal is converted into a 12-bit digital band-pass transmission signal with a sampling frequency of 384KHZ and a center frequency of 96KHZ in the same circuit as that of Embodiment 5 at the previous stage, the circuit of Embodiment 2 is used in the latter stage to The frequency conversion circuit performs frequency conversion.

在图15中,601是数字基带发射信号输入端,与602、603、617连接。602是12位延迟寄存器,与601、603、617连接。603是13位减法器,与601、602、604、605  连接。604是13位延迟寄存器,与603、605、617连接。605是14位减法器,与603、604、606、607连接。606是14位延迟寄存器,与605、607、、617连接。607是15位减法器,与605、606、608、617连接。608是0信号插入开关SW,与607、609、617连接。609是16位减法器,与608、610、611连接。610是16位延迟寄存器,与609、611、617连接。611是17位减法器,与610、612、613连接。612是17位延迟寄存器,与611、613、617连接。613是18位减法器,与612、614、615连接。614是18位延迟寄存器,与613、615、617连接。615是乘法器,与613、614、616连接。616是实施例2的变频电路,与615、617、618连接。617是时钟发生电路,与602、604、606、608、610、612、614、616连接。618是模拟已调波输出端,与616连接。In FIG. 15 , 601 is a digital baseband transmission signal input terminal, which is connected to 602 , 603 , and 617 . 602 is a 12-bit delay register, connected to 601, 603, 617. 603 is a 13-bit subtractor, connected with 601, 602, 604, 605. 604 is a 13-bit delay register, connected to 603, 605, 617. 605 is a 14-bit subtractor connected to 603, 604, 606, 607. 606 is a 14-bit delay register, connected to 605, 607, 617. 607 is a 15-bit subtractor connected with 605, 606, 608, 617. 608 is a 0 signal insertion switch SW, connected to 607, 609, 617. 609 is a 16-bit subtractor connected with 608, 610, 611. 610 is a 16-bit delay register, connected to 609, 611, 617. 611 is a 17-bit subtractor connected with 610, 612, 613. 612 is a 17-bit delay register, connected to 611, 613, 617. 613 is an 18-bit subtractor connected with 612, 614, 615. 614 is an 18-bit delay register, connected to 613, 615, 617. 615 is a multiplier connected to 613, 614, 616. 616 is the frequency conversion circuit of the second embodiment, connected to 615, 617, 618. 617 is a clock generating circuit, connected to 602, 604, 606, 608, 610, 612, 614, 616. 618 is an analog modulated wave output terminal, which is connected with 616.

下面就本发明实施例的动作进行说明。在图15中,如果首先在来自时钟发生电路617的64KHZ时钟信号的前沿从数字基带发射信号输入端601输入1个采样信号,则减法器603就从输入信号中减去延迟寄存器602的内容,减法器605从减法器603的输出减去延迟寄存器604的内容,减法器607从减法器605的输出减去延迟寄存器606的内容,并将结果输出到SW608,在64KHZ时钟信号的后沿,减法器605的输出被传输到延迟寄存器606,减法器603的输出被传输到延迟寄存器604,来自数字基带发射信号输入端601的输入信号被传输到延迟寄存器602。另外,SW608从来自64KHZ时钟信号前沿开始,在384KHZ的1个时钟时间单位输出减法器607的输出,但在其余的5个时钟时间单位输出0,由此输出384KHZ采样信号。进而在来自时钟发生电路617的384KHZ时钟前沿,减法器609从SW608的输出中减去延迟寄存器610的内容,减法器611从减法器609的输出中减去延迟寄存器612的内容,减法器613从减法器611的输出中减去延迟寄存器614的内容,再用乘法器615乘以{jn+(-j)n}/2=1,0,-1,0,1,…后输出,384KHZ时钟的后沿减法器609的输出被传输到延迟寄存器610,减法器611的输出被传输到延迟寄存器612,减法器613的输出被传输到延迟寄存器614。由于通过乘法器615得到384KHZ采样、中心频率24MHZ的带通信号,所以在其后的变频电路616中通过中心频率24MHZ的模拟BPF得到模拟发射信号。The operation of the embodiment of the present invention will be described below. In Fig. 15, if at first from the leading edge of the 64KHZ clock signal of clock generation circuit 617, input 1 sampling signal from digital baseband transmission signal input end 601, then subtracter 603 just subtracts the content of delay register 602 from input signal, Subtractor 605 subtracts the content of delay register 604 from the output of subtractor 603, and subtractor 607 subtracts the content of delay register 606 from the output of subtractor 605, and the result is output to SW608, at the trailing edge of 64KHZ clock signal, subtraction The output of the subtractor 605 is transmitted to the delay register 606, the output of the subtractor 603 is transmitted to the delay register 604, and the input signal from the digital baseband transmit signal input terminal 601 is transmitted to the delay register 602. In addition, SW608 starts from the leading edge of the 64KHZ clock signal, outputs the output of the subtractor 607 in 1 clock time unit of 384KHZ, but outputs 0 in the remaining 5 clock time units, thereby outputting a 384KHZ sampling signal. And then from the 384KHZ clock leading edge of clock generation circuit 617, subtractor 609 subtracts the content of delay register 610 from the output of SW608, subtractor 611 subtracts the content of delay register 612 from the output of subtractor 609, subtractor 613 from Subtract the content of the delay register 614 from the output of the subtractor 611, then multiply {j n + (-j) n }/2=1, 0, -1, 0, 1, ... and then output by the multiplier 615, 384KHZ The output of subtractor 609 is transmitted to delay register 610 on the trailing edge of the clock, the output of subtractor 611 is transmitted to delay register 612 , and the output of subtractor 613 is transmitted to delay register 614 . Since the band-pass signal with 384KHZ sampling and center frequency of 24MHZ is obtained through the multiplier 615, the analog transmit signal is obtained through the analog BPF with a center frequency of 24MHZ in the subsequent frequency conversion circuit 616.

根据以上的本发明实施例6,通过经数字滤波器在前级内插数字基带发射信号的同时,得到384KHZ采样、中心频率24MHZ的带通信号,在后级使用实施例2的变频电路,就能使调制电路小型化和无控化,另外,通过使用实施例2的变频电路,能抑制D/A转换速度并降低功耗。According to the above embodiment 6 of the present invention, by interpolating the digital baseband transmission signal in the previous stage through the digital filter, a band-pass signal of 384KHZ sampling and center frequency 24MHZ is obtained, and the frequency conversion circuit of embodiment 2 is used in the latter stage. The modulation circuit can be miniaturized and uncontrolled, and by using the frequency conversion circuit of the second embodiment, the D/A conversion speed can be suppressed and the power consumption can be reduced.

如以上所说明的那样,根据本发明,通过内插数字基带发射信号使采样频率升高,就能使在D/A转换后的内插滤波器的特性曲线变缓,从而谋求电路小型化。另外,在数字基带发射信号的内插期间,通过抽出采样频率整数倍的频率高次谐波频谱中的一个进行变频、产生带通信号之后进行D/A转换,因此,加在其后的运算放大器等中的直流偏压就不会使已调波产生载漏等恶化现象,从而能够使电路无控化。另外,进行上述内插和变频的数字滤波器,由于是以级数和的形式构成无延迟失真的矩形脉冲响应的滤波器传递函数,所以不用乘法器而用延迟器和加减法器就能实现,还由于其传递函数的分子是以低速时钟工作的,与通常的积和运算的滤波器结构比较,可以大幅度地减少延迟器和加减法器的数量,从而就能使电路更加小型化并降低耗电量。另外,由于不需要乘法和少量的加减法器,只增加加减法器的字长的位数就能实现无运算误差的,用整数运算的滤波器运算。As explained above, according to the present invention, by interpolating the digital baseband transmission signal and raising the sampling frequency, the characteristic curve of the interpolation filter after D/A conversion can be made gentle, and the circuit size can be reduced. In addition, during the interpolation period of the digital baseband transmission signal, one of the frequency high-order harmonic spectrums that are integer multiples of the sampling frequency is extracted for frequency conversion, and D/A conversion is performed after the band-pass signal is generated. Therefore, the subsequent calculation The DC bias voltage in the amplifier, etc. will not cause deterioration such as carrier leakage in the modulated wave, so that the circuit can be made uncontrolled. In addition, since the above-mentioned digital filter for interpolation and frequency conversion is a filter transfer function that constitutes a rectangular impulse response without delay and distortion in the form of a series sum, it can be achieved by using a delay device and an adder-subtractor instead of a multiplier. Realization, also because the numerator of its transfer function works with a low-speed clock, compared with the filter structure of the usual product-sum operation, the number of delayers and adder-subtractors can be greatly reduced, thereby making the circuit smaller and reduce power consumption. In addition, since multiplication and a small number of adder-subtractors are not required, filter operations using integer operations without operational errors can be realized by only increasing the number of digits of the word length of the adder-subtractors.

本发明实施例示出的都是用硬件实现的调制电路情况,但采样频率低的基带信号的产生、内插处理以及变频电路的低速工作部分(分子部分)也可能通过使用数字信号处理器(DSP)等用软件方式来实现。这种情况下DSP的附加电路,由于只适合于变频电路的高速工作部分(分母部分),因而能使电路小型化。另外,在转换多种调制方式、多种传输比率并执行该电路的用途中,由于只能转换DSP的软件就能共同使用附加电路,因此根据这一点也能使电路小型化。What the embodiment of the present invention shows is all the modulation circuit situation realized by hardware, but the generation of the baseband signal with low sampling frequency, interpolation processing and the low-speed working part (molecular part) of the frequency conversion circuit may also be possible by using a digital signal processor (DSP ) etc. are realized by software. In this case, the additional circuit of DSP is only suitable for the high-speed working part (denominator part) of the frequency conversion circuit, so the circuit can be miniaturized. In addition, in the application of converting multiple modulation methods and multiple transmission ratios and executing the circuit, only the DSP software can be changed and the additional circuit can be used in common, so the circuit can also be miniaturized from this point.

Claims (6)

1.一种变频电路,在该电路中,通过将N2(N2是整数)个等式(1)中的传递函数(HB(Z))级联起来的数字滤波器将采样频率为fs2,中心频率为fs2/4的数字带通发射信号进行L倍内插处理(其中L为奇数)和高次谐波抽出(中心频率为fs3/4,fs3=L*fs2),并且将上述的数字滤波器传递函数HB(Z)NB2的分子以采样频率fs2、分母以采样频率fs3进行处理后进行D/A转换,得到一个模拟发射信号, HB ( Z ) = 1 - ( - Z - 2 ) L 1 + Z - 2 =1-Z-2+Z-4-…+(-Z-2)L-1…(1)1. A frequency conversion circuit in which the sampling frequency is f s2 , the digital band-pass transmission signal with a center frequency of f s2 /4 is subjected to L-fold interpolation processing (where L is an odd number) and high-order harmonic extraction (the center frequency is f s3 /4, f s3 = L*f s2 ) , and the numerator of the above-mentioned digital filter transfer function HB(Z) NB2 is processed with the sampling frequency f s2 and the denominator is processed with the sampling frequency f s3 , and then D/A conversion is performed to obtain an analog transmission signal, HB ( Z ) = 1 - ( - Z - 2 ) L 1 + Z - 2 =1-Z -2 +Z- 4- …+(-Z -2 ) L-1 …(1) 式中,L表示奇数,Z-1表示1/fs3的延迟。In the formula, L represents an odd number, and Z -1 represents a delay of 1/f s3 . 2.权利要求1所述的变频电路,在该电路中,通过将N2(N为整数)个等式(1)的传递函数(HB(Z))级联起来的所述数字滤波器将采样频率为fs2、中心频率fs2/4的数字带通发射信号进行L倍内插处理(其中,L为奇数)和高次谐波抽出(中心频率为fs3/4,fs3=L*fs2)时,用采样频率fs2进行上述数字滤波器传递函数(HB(Z)NB2)的分子的运算处理和D/A转换以得到采样值信号,再经过开关电容电路用采样频率fs3/2对传递函数(HB(Z)NB2)的分母进行处理以内插上述采样值信号。2. the frequency conversion circuit described in claim 1, in this circuit, by the described digital filter that the transfer function (HB (Z)) of N 2 (N is an integer) equation (1) cascaded together will The digital band-pass transmission signal whose sampling frequency is f s2 and center frequency f s2 /4 is subjected to L times interpolation processing (wherein, L is an odd number) and high-order harmonic extraction (center frequency is f s3 /4, f s3 =L *f s2 ), use the sampling frequency f s2 to carry out the arithmetic processing and D/A conversion of the numerator of the above-mentioned digital filter transfer function (HB(Z) NB2 ) to obtain the sampled value signal, and then pass through the switched capacitor circuit with the sampling frequency f s3 /2 processes the denominator of the transfer function (HB(Z) NB2 ) to interpolate the above sampled value signal. 3.根据权利要求1所述的变频电路,把N1(N为整数)个权利要求1的上述等式(1)的传递函数(HB(Z))级联起来的数字滤波器按照与权利要求1的变频电路同样的处理方法将采样频率fs1的数字基带发射信号实行L倍内插处理(其中L是4或以上的2的幂数)和高次谐波成分的抽出,以得到采样频率为fs2、中心频率为fs2/4的数字带通发射信号,然后使其以权利要求1的变频电路进行变频。3. frequency conversion circuit according to claim 1, the digital filter that the transfer function (HB (Z)) cascading of the above-mentioned equation (1) of N1 (N is an integer) claim 1 gets up according to claim The same processing method of the frequency conversion circuit of 1 performs L-fold interpolation processing (where L is a power of 2 of 4 or above) and the extraction of high-order harmonic components to obtain the sampling frequency f s2 , the digital band-pass transmission signal whose center frequency is f s2 /4, and then make it frequency-converted by the frequency conversion circuit of claim 1. 4.根据权利要求2所述的变频电路,把N1个(N为整数)权利要求1的等式(1)中的传递函数HB(Z)级联起来的数字滤波器、按照与权利要求2的变频电路相同的处理方法对采样频率fs1的数字带通发射信号进行L倍内插处理(其中L为4或以上的2的幂数)和高次谐波成分的抽出以得到采样频率fs2、中心频率为fs2/4的数字带通发射信号,然后使其以上述权利要求2的变频电路进行变频。4. frequency conversion circuit according to claim 2, the digital filter that the transfer function HB (Z) in the equation (1) of N1 (N is an integer) claim 1 is cascaded together, according to claim 2 The same processing method as the frequency conversion circuit performs L times interpolation processing (where L is a power of 2 of 4 or above ) and extraction of high-order harmonic components to obtain the sampling frequency f s2 , the digital band-pass transmission signal whose center frequency is f s2 /4, and then make it frequency-converted by the frequency conversion circuit of claim 2 above. 5.根据权利要求1所述的变频电路,用把N1个(N为整数)下述等式(2)中的传递函数(HL(Z))级联起来的数字滤波器对采样频率为fs1的数字基带发射信号进行L倍内插处理(其中L为整数),并将所述滤波器输出乘以{jn+(-j)n}/2(此外j为复数=1,0,-1,0,1,…以得到采样频率为fs2(=L*fs1)、中心频率为fs2/4的数字带通发射信号,然后使其用上述权利要求1的变频电路进行变频, HL ( Z ) = 1 - Z - L 1 - Z - 1 =1-Z-1+Z-2-…+Z-(L-1)…(2)5. frequency conversion circuit according to claim 1, with the digital filter that the transfer function (HL (Z)) in the following equation (2) of N1 (N is an integer) cascaded together is f to sampling frequency The digital baseband transmission signal of s1 is carried out L times interpolation process (wherein L is integer), and described filter output is multiplied by {j n +(-j) n }/2 (in addition j is complex number=1,0, -1, 0, 1, ... to obtain a digital band-pass transmission signal whose sampling frequency is f s2 (=L*f s1 ) and center frequency is f s2 /4, and then make it use the frequency conversion circuit of claim 1 to perform frequency conversion , HL ( Z ) = 1 - Z - L 1 - Z - 1 =1-Z -1 +Z -2- …+Z- (L-1) …(2) 式中,L为整数,Z-1表示1/fs3的延迟。In the formula, L is an integer, and Z -1 represents a delay of 1/f s3 . 6.权利要求5所述的变频电路,在该电路中,用把N1个(N为整数)等式(2)的传递函数(HL(Z))级联起来的数字滤波器对采样频率为fs1的数字基带发射信号进行L倍内插处理(其中L为整数),并将所述滤波器输出乘以{jn+(-j)n}/2(此处j为复数)=1,0,-1,0,1,…以得到采样频率为fs2(=L*fs1)、中心频率为fs2/4的数字带通发射信号,然后使其以上述权利要求2的变频电路进行变频。6. the frequency conversion circuit described in claim 5, in this circuit, with the digital filter that the transfer function (HL (Z)) of N1 (N is an integer) equation (2) cascaded together is to sampling frequency as The digital baseband transmission signal of f s1 is interpolated by L times (where L is an integer), and the filter output is multiplied by {j n +(-j) n }/2 (where j is a complex number)=1 , 0, -1, 0, 1, ... to obtain the sampling frequency is f s2 (=L*f s1 ), the digital band-pass transmission signal that the center frequency is f s2 /4, then make it with the frequency conversion of above-mentioned claim 2 The circuit performs frequency conversion.
CN96107781A 1996-05-30 1996-05-30 Circuit for frequency converting and modulating Expired - Fee Related CN1082277C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN96107781A CN1082277C (en) 1996-05-30 1996-05-30 Circuit for frequency converting and modulating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN96107781A CN1082277C (en) 1996-05-30 1996-05-30 Circuit for frequency converting and modulating

Publications (2)

Publication Number Publication Date
CN1167365A CN1167365A (en) 1997-12-10
CN1082277C true CN1082277C (en) 2002-04-03

Family

ID=5119763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96107781A Expired - Fee Related CN1082277C (en) 1996-05-30 1996-05-30 Circuit for frequency converting and modulating

Country Status (1)

Country Link
CN (1) CN1082277C (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855894A (en) * 1987-05-25 1989-08-08 Kabushiki Kaisha Kenwood Frequency converting apparatus
EP0631377A2 (en) * 1993-06-24 1994-12-28 Robert Bosch Gmbh Method for frequency modulation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855894A (en) * 1987-05-25 1989-08-08 Kabushiki Kaisha Kenwood Frequency converting apparatus
EP0631377A2 (en) * 1993-06-24 1994-12-28 Robert Bosch Gmbh Method for frequency modulation

Also Published As

Publication number Publication date
CN1167365A (en) 1997-12-10

Similar Documents

Publication Publication Date Title
JP4213348B2 (en) Digital reception with radio frequency sampling
US7227482B2 (en) Complex band-pass filter for use in digital radio receiver and complex band-pass Δ-Σ AD modulator using the same
JP3130105B2 (en) Sigma-delta modulator for D / A converter
US6275836B1 (en) Interpolation filter and method for switching between integer and fractional interpolation rates
KR100422449B1 (en) Low power CSD Linear phase FIR filter architecture using vertical common subexpression and filter design method therefore
CN1236244A (en) Direct conversion receiving apparatus with DC component cut function
EP1365515B1 (en) Analog-to-digital converter arrangement and method
CN1069005C (en) Comb filter with smaller number of delay elements and radio receiver transmitter having said filter
CN1082277C (en) Circuit for frequency converting and modulating
US5848100A (en) Frequency conversion and modulation circuits
CN111404513A (en) CIC decimation filter and implementation method thereof
CN108900202B (en) Parallel sigma-delta modulator with flexibly adjustable frequency points and working method thereof
JP3204595B2 (en) Frequency conversion circuit and modulation circuit
US4779128A (en) Digital low-pass filter with improved frequency reduction characteristics
JP2002043965A (en) Receiver
CN1262812A (en) Time discrete filter
JPH0732344B2 (en) Thinning filter
JP3125225B2 (en) Digital / analog converter
JPH0453069Y2 (en)
JP3350801B2 (en) Oversampling type D / A converter
JPH04160822A (en) D/a converter
EP1570574A1 (en) Multirate filter and a display system and a mobile telephone comprising said multirate filter
JPH06334536A (en) Noise shaping circuit
CN118487608A (en) Interpolation filter system for high-precision Sigma Delta DACs
JP3150537B2 (en) D / A converter

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20020403

Termination date: 20140530