CN108227494A - The fuzzy fault tolerant control method of the non-linear optimal constraints of batch process 2D - Google Patents
The fuzzy fault tolerant control method of the non-linear optimal constraints of batch process 2D Download PDFInfo
- Publication number
- CN108227494A CN108227494A CN201810009893.4A CN201810009893A CN108227494A CN 108227494 A CN108227494 A CN 108227494A CN 201810009893 A CN201810009893 A CN 201810009893A CN 108227494 A CN108227494 A CN 108227494A
- Authority
- CN
- China
- Prior art keywords
- model
- fault
- batch
- fuzzy
- batch process
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010923 batch production Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000011159 matrix material Substances 0.000 claims abstract description 30
- 238000013461 design Methods 0.000 claims abstract description 27
- 230000006870 function Effects 0.000 claims description 10
- 230000003416 augmentation Effects 0.000 claims description 3
- 230000003044 adaptive effect Effects 0.000 claims 2
- 230000006641 stabilisation Effects 0.000 abstract 1
- 238000011105 stabilization Methods 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000005457 optimization Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000012937 correction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 241000772415 Neovison vison Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本发明属于工业过程的先进控制领域,涉及一种非线性批次过程2D最优约束模糊容错控制方法。The invention belongs to the advanced control field of industrial processes, and relates to a 2D optimal constraint fuzzy fault-tolerant control method for nonlinear batch processes.
背景技术Background technique
作为生产方式之一的间歇过程,对其系统描述大致有两类,一类是线性的,另一类是非线性的。早期对间歇过程的控制大部分直接针对线性模型,然而在实际工业过程中间歇过程本身具有强非线性特性,线性模型和实际过程之间存在较大的不匹配问题。使得在实际应用中很难达到最佳的控制效果。直接处理非线性系统存在一定的困难。为此需要利用新的模型来逼近非线性系统。As one of the production methods, there are roughly two types of system descriptions for the batch process, one is linear and the other is nonlinear. Most of the control of batch process in the early stage was directly based on the linear model. However, in the actual industrial process, the batch process itself has strong nonlinear characteristics, and there is a large mismatch between the linear model and the actual process. It is difficult to achieve the best control effect in practical application. There are certain difficulties in dealing with nonlinear systems directly. To this end, it is necessary to use new models to approximate nonlinear systems.
随着生产规模的增大,以及生产步骤复杂程度的增加,实际生产中存在的不确定性日益凸显,不仅影响到了系统的高效平稳运行,甚至威胁到了产品的质量。而且这些复杂的操作条件,相应的增加了系统故障出现的机率。其中,执行器故障是一种常见的故障,会影响工艺过程的操作和降低控制性能,甚至危害人身安全。虽然批次处理过程中出现了诸如迭代学习可靠容错控制等控制方法,能很好地解决了发生执行器故障时系统依然稳定运行的控制问题。但对于具有高精密程度的设备来说,故障发生的可能极低,若不管有没有故障,均使用可靠控制将会造成资源的浪费,长此以往,成本也会增加,显然并不符合节能减排的环保理念。在发生严重故障时可靠控制律可能完全失去控制作用,这种情况下极有可能导致系统崩溃,造成重大的财产损失和人员伤亡。With the increase of production scale and the complexity of production steps, the uncertainty in actual production has become increasingly prominent, which not only affects the efficient and stable operation of the system, but even threatens the quality of products. Moreover, these complex operating conditions correspondingly increase the probability of system failure. Among them, actuator failure is a common failure, which will affect the operation of the process and reduce the control performance, and even endanger personal safety. Although control methods such as iterative learning reliable fault-tolerant control have appeared in the batch processing process, they can well solve the control problem that the system can still run stably when actuator failure occurs. However, for high-precision equipment, the possibility of failure is extremely low. If reliable control is used regardless of whether there is a failure or not, it will cause a waste of resources. Environmental protection concept. Reliable control law may completely lose its control function in the event of a serious failure, which is very likely to lead to system collapse, resulting in heavy property losses and casualties.
此外,现阶段采用的鲁棒迭代学习可靠控制策略虽然可以有效地抵制生产环节中的不确定性及故障所带来的影响,保证系统的稳定性,维持系统的控制性能,但该控制律是基于整个生产过程而求解得出,在控制效果上属于覆盖全局的优化控制,即自始至终使用同一控制律。然而,在实际运行时,在干扰及故障影响下,系统状态不可能完全按照所求得的控制律作用而变化;若当前时刻的系统状态与设定值发生一定的偏离时,仍继续采用同一控制律,随着时间的推移,系统状态的偏离会愈发增大,而现行的鲁棒迭代学习可靠控制方法无法解决系统状态偏离的问题,这势必会对系统的稳定运行和控制性能产生不良的影响。此外,对于控制律设计及系统输出,已有文献并没有考虑约束问题,而在实际生产过程中,必须要考虑约束。In addition, although the robust iterative learning reliable control strategy adopted at this stage can effectively resist the influence of uncertainties and faults in the production process, ensure the stability of the system, and maintain the control performance of the system, but the control law is Based on the solution of the entire production process, the control effect belongs to the optimal control covering the whole world, that is, the same control law is used from beginning to end. However, in actual operation, under the influence of disturbances and faults, the system state cannot completely change according to the obtained control law; if the current system state deviates from the set value to a certain extent, the same control law, as time goes by, the deviation of the system state will increase, and the current robust iterative learning reliable control method cannot solve the problem of system state deviation, which will inevitably have adverse effects on the stable operation and control performance of the system Impact. In addition, for the control law design and system output, the existing literature does not consider the constraints, but in the actual production process, constraints must be considered.
模型预测控制(MPC)能够很好地满足控制律实时更新修正的需要,通过“滚动优化”和“反馈校正”的方式获得每一时刻的最优控制律,确保系统状态能够尽可能地沿着设定的轨迹运行。然而,现有技术大多采用的是一维形式的无限时域的控制律,批次间缺少“学习”的过程,控制效果并未随着批次的递增而得到改善;还有一种只考虑批次间“学习”的过程,这种方法不能实现初值不确定的间歇过程的控制问题。很显然,针对具有不确定性及故障的系统无穷时域约束优化问题的讨论有待于继续深入。因而急需提出一种新的控制方法来弥补现有方法的不足,以实现批次生产过程中节能减耗、降低成本甚至降低危害人身安全事故发生等目标。Model Predictive Control (MPC) can well meet the needs of real-time update and correction of control law. The optimal control law at each moment is obtained through "rolling optimization" and "feedback correction" to ensure that the system state can follow the The set trajectory runs. However, most of the existing technologies use a one-dimensional infinite time-domain control law, which lacks a "learning" process between batches, and the control effect does not improve with the increase in batches; there is another method that only considers batches The process of "learning" between times, this method cannot realize the control problem of the batch process with uncertain initial value. Obviously, the discussion on the optimization problem of infinite time-domain constraints for systems with uncertainties and faults needs to be further deepened. Therefore, it is urgent to propose a new control method to make up for the shortcomings of the existing methods, so as to achieve the goals of energy saving, cost reduction, and even reduction of personal safety accidents in the batch production process.
现行的预测控制技术大多在一维方向上设计控制律,只考虑时间方向或批次方向,只考虑时间方向使得每一批次只是单纯的重复,控制性能无法随着批次的递增而得到完善;只考虑批次方向不能实现初值不确定的间歇过程的控制问题。尽管也有少数成果考虑时间及批次方向,但是针对非线性及执行器故障等情况,目前并没有好的研究成果。Most of the current predictive control technologies design the control law in the one-dimensional direction, only considering the time direction or batch direction, and only considering the time direction makes each batch just a simple repetition, and the control performance cannot be improved with the increment of batches ; Only considering the batch direction can not realize the control problem of batch process with uncertain initial value. Although there are a few results considering time and batch direction, there are no good research results for nonlinearity and actuator failure.
因此说,为解决上述存在的诸多问题,响应生产过程中节能减排等号召,保证系统的控制性能,提出一种非线性批次过程无穷时域优化2D模糊约束容错控制方法极为必要。Therefore, in order to solve the above-mentioned problems, respond to the call for energy saving and emission reduction in the production process, and ensure the control performance of the system, it is extremely necessary to propose a 2D fuzzy-constrained fault-tolerant control method for infinite time-domain optimization of nonlinear batch processes.
发明内容Contents of the invention
为了解决上述存在的技术问题,本发明提供一种非线性批次过程2D最优模糊约束容错控制方法。对具有非线性干扰及执行器故障的批次过程模型设计出非线性无穷时域优化的2D模糊迭代学习控制律。利用此设计方法设计控制律,不仅能够保证系统在发生故障时平稳运行,以实现节能减耗、降低成本等目标,甚至还可以实现降低危害人身安全事故发生等目标。In order to solve the above-mentioned existing technical problems, the present invention provides a 2D optimal fuzzy-constrained fault-tolerant control method for a nonlinear batch process. A 2D fuzzy iterative learning control law for nonlinear infinite time-domain optimization is designed for batch process models with nonlinear disturbances and actuator failures. Using this design method to design the control law can not only ensure the smooth operation of the system when a fault occurs, so as to achieve the goals of energy saving, consumption reduction and cost reduction, but also the goal of reducing the occurrence of accidents that endanger personal safety.
本发明目的是改善非线性批次过程中控制方法的控制性能和跟踪性能,提出非线性批次过程的2D最优约束模糊容错控制器设计方法。本发明通过批次过程的非线性和二维特性,建立2D T-S模糊状态空间模型,进一步结合系统状态误差和输出误差,用Roesser模型将原系统的动态模型转化为一个以预测形式表示的闭环故障系统模型,将设计约束迭代学习容错控制律转化为确定约束更新律;根据所设计的无穷优化性能指标和2D系统Lyapunov稳定性理论,以线性矩阵不等式(LMI)约束形式给出确保闭环系统鲁棒渐近稳定的模糊容错更新律实时在线设计。本发明致力于非线性批次过程执行器发生故障情况下模糊最优容错控制器设计。首先解决非线性下系统模型较难处理问题,其次解决发生故障情况下约束容错控制律设计,此控制算法最终可达到节能减耗、降低成本、降低危害人身安全事故发生等目标。The purpose of the invention is to improve the control performance and tracking performance of the control method in the nonlinear batch process, and propose a 2D optimal constraint fuzzy fault-tolerant controller design method for the nonlinear batch process. The present invention establishes a 2D T-S fuzzy state space model through the nonlinear and two-dimensional characteristics of the batch process, further combines the system state error and output error, and uses the Roesser model to convert the dynamic model of the original system into a closed-loop fault expressed in a predictive form The system model transforms the design-constrained iterative learning fault-tolerant control law into a definite constraint update law; according to the designed infinite optimization performance index and 2D system Lyapunov stability theory, it is given in the form of linear matrix inequality (LMI) constraints to ensure the robustness of the closed-loop system Real-time online design of asymptotically stable fuzzy fault-tolerant update law. The invention is dedicated to the design of fuzzy optimal fault-tolerant controller under the condition that actuator of nonlinear batch process fails. Firstly, it solves the problem that the system model is difficult to deal with under nonlinear conditions, and secondly, it solves the design of constrained fault-tolerant control law under the condition of failure. This control algorithm can finally achieve the goals of energy saving, cost reduction, and personal safety accidents.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
非线性批次过程2D最优约束模糊容错控制方法,该方法的具体步骤是:A 2D optimal constraint fuzzy fault-tolerant control method for a nonlinear batch process, the specific steps of which are:
步骤1、建立非线性批次过程等价2D-Rosser误差增广模型:Step 1. Establish a nonlinear batch process equivalent 2D-Rosser error augmentation model:
步骤1.1考虑执行器增益故障,根据批次过程的非线性和二维特性,建立2D T-S模糊故障状态空间模型,由式(1)表示:Step 1.1 Considering the actuator gain fault, according to the nonlinear and two-dimensional characteristics of the batch process, a 2D T-S fuzzy fault state space model is established, expressed by formula (1):
且其输入、输出约束满足: And its input and output constraints satisfy:
其中,x(t,k),y(t,k),u(t,k),ω(t,k)分别表示系统的状态,系统的输出,系统的控制输入以及未知扰动;分别是输入、实际输出的上界约束值,t,k分别表示在批次内的运行时刻与批次;Tp表示一个批次运行的总时间;p为前提变量数目;r为模糊规则数目;Ai,Bi,Ci为相应模糊规则i下的系统状态矩阵、系统输入矩阵、系统输出矩阵;x(0,k)为第k个批次的初始状态;Mij为模糊集,Mij(xj(t,k))为xj(t,k)属于Mij的隶属度;由可得 Among them, x(t,k), y(t,k), u(t,k), ω(t,k) respectively represent the state of the system, the output of the system, the control input of the system and the unknown disturbance; are the upper bound constraint values of input and actual output respectively, t and k respectively represent the running time and batch in the batch; T p represents the total running time of a batch; p is the number of premise variables; r is the number of fuzzy rules ; A i , B i , C i are the system state matrix, system input matrix, and system output matrix under the corresponding fuzzy rule i; x(0,k) is the initial state of the kth batch; M ij is the fuzzy set, M ij (x j (t,k)) is the membership degree of x j (t,k) belonging to M ij ; Depend on Available
定义不同的α值表示执行器不同的故障类型,当α>0时,表示部分失效故障;当α=0时,表示完全失效故障,不涉及最优控制器的问题;Different α values are defined to indicate different fault types of actuators. When α>0, it means a partial failure; when α=0, it means a complete failure, which does not involve the problem of optimal controller;
对于执行器部分失效,α>0需满足如下形式:For the partial failure of the actuator, α>0 needs to satisfy the following form:
式中,和是已知的常数;In the formula, and is a known constant;
步骤1.2设计2D迭代学习控制器u(t,k),如式(3)所示:Step 1.2 Design a 2D iterative learning controller u(t,k), as shown in formula (3):
由此可知,设计u(t,k),只需设计k批次t时刻更新律r(t,k),以实现系统输出y(t,k)跟踪所给定的期望输出yd(t,k);It can be seen that to design u(t,k), it is only necessary to design k batches of update laws r(t,k) at time t, so as to realize the system output y(t,k) tracking the given expected output y d (t ,k);
步骤1.3定义批次方向上的状态误差及输出误差如下:Step 1.3 defines the state error and output error in the batch direction as follows:
δ(x(t,k))=x(t,k)-x(t,k-1) (4a)δ(x(t,k))=x(t,k)-x(t,k-1) (4a)
令则(1)式转化为等价误差模型为式(5):make Then formula (1) is transformed into an equivalent error model as formula (5):
其中,δ(ω(t,k))=ω(t,k)-ω(t,k-1),in, δ(ω(t,k))=ω(t,k)-ω(t,k-1),
δ(hi(x(t,k)))=hi(x(t,k))-hi(x(t,k-1)), I为适维的单位矩阵;并设 则上述模型表示为:δ(h i (x(t,k)))=h i (x(t,k))-h i (x(t,k-1)), I is the dimension-appropriate identity matrix; and let Then the above model is expressed as:
其中,分别为适维向量的水平和垂直状态分量,Z(t,k)是系统的被控输出;in, are the horizontal and vertical state components of the dimensionality vector respectively, and Z(t,k) is the controlled output of the system;
步骤2、对具有干扰及执行器故障的批次过程模型设计出迭代学习控制律:Step 2. Design an iterative learning control law for the batch process model with disturbance and actuator failure:
步骤2.1对于上述模型(5)设计2D预测容错控制器,达到在最大干扰及最大故障下的最小优化控制,即使模型(5)达到稳态且在每一时刻满足下面的鲁棒性能指标:Step 2.1 Design a 2D predictive fault-tolerant controller for the above model (5) to achieve the minimum optimal control under the maximum disturbance and maximum fault, even if the model (5) reaches a steady state and satisfies the following robust performance index at each moment:
限制: limit:
并且Q(Q>0)和R(R>0)是适当维数的加权矩阵,r(t+i|t,k)是时刻t对t+i时刻输入的预测值,并且r(t,k)=r(t|t,k),代表输入增量;And Q(Q>0) and R(R>0) are weighted matrices of appropriate dimensions, r(t+i|t,k) is the predicted value input at time t to t+i time, and r(t, k)=r(t|t,k), represents the input increment;
步骤2.2定义状态反馈控制律,使系统达到二次稳定,选取的更新律为:Step 2.2 defines the state feedback control law to make the system achieve quadratic stability, and the selected update law is:
则(5)的闭环模型表示为:Then the closed-loop model of (5) is expressed as:
其中,则其闭环预测模型表示为:in, Then its closed-loop prediction model is expressed as:
步骤2.3利用2D Lyapunov函数证明系统的稳定,定义Lyapunov函数为:Step 2.3 uses the 2D Lyapunov function to prove the stability of the system, and defines the Lyapunov function as:
其中,M>0 Among them, M>0
步骤2.4模型(8c)在故障允许范围内依然能平稳运行,必须满足:Step 2.4 Model (8c) can still run smoothly within the allowable range of faults, it must meet:
(1)2D李亚普诺夫函数不等式约束:(1) 2D Lyapunov function inequality constraints:
(2)对于给定半正定对称矩阵R,Q,存在正定对称矩阵M=diag{Mh,Mv},半正定对称矩阵矩阵Yi,Yj(i=1,2,...r,),标量εi,εj,γ,θ>0,0<α<1,0<μ<1,可使得下面的矩阵不等式成立:(2) For a given positive semi-definite symmetric matrix R, Q, there is a positive-definite symmetric matrix M=diag{M h , M v }, a positive semi-definite symmetric matrix Matrix Y i , Y j (i=1,2,...r,), scalar ε i ,ε j ,γ,θ>0, 0<α<1, 0<μ<1, can make the following matrix The inequality holds:
且 and
且 and
其中, in,
鲁棒更新律增益为: The robust update law gain is:
因此,进一步更新律表示为:将其带入u(t,k)=u(t,k-1)+r(t,k),便可得到2D约束迭代学习控制律设计u(t,k),在下一时刻,不断重复步骤2.4,继续求解新的控制量u(t,k),并依次循环。Therefore, the further update law is expressed as: Putting it into u(t,k)=u(t,k-1)+r(t,k), the 2D constrained iterative learning control law design u(t,k) can be obtained, and at the next moment, repeat Step 2.4, continue to solve the new control quantity u(t,k), and loop in turn.
与现有技术相比,本发明的有益效果为:Compared with prior art, the beneficial effect of the present invention is:
该方法在针对具有非线性、干扰及故障的控制系统模型基础上设计出模糊容错迭代学习控制律,引入状态误差和输出误差,用Roesser模型将原系统的动态模型转化为一个以预测形式表示的闭环系统模型,将设计模糊容错迭代学习控制律转化为确定更新律;根据所设计的无穷优化性能指标和2D系统Lyapunov稳定性理论,以线性矩阵不等式(LMI)约束形式给出确保闭环系统鲁棒渐近稳定的更新律实时在线设计,有效解决非线性下系统模型较难处理问题及发生故障情况下约束模糊最优容错控制律设计问题。有效地解决了非线性批次过程的控制性能无法随着批次的递增而得到完善,实现系统不管有没有故障,在变量约束范围内均能实时优化,改善了系统控制性能,保证了系统在最差情况下依然能平稳运行并具有最优的跟踪性能。最终达到节能减耗、降低成本、降低危害人身安全事故的发生。This method designs a fuzzy fault-tolerant iterative learning control law based on the control system model with nonlinearity, disturbance and fault, introduces the state error and output error, and uses the Roesser model to convert the dynamic model of the original system into a predictive form. The closed-loop system model converts the designed fuzzy fault-tolerant iterative learning control law into a definite update law; according to the designed infinite optimization performance index and 2D system Lyapunov stability theory, it is given in the form of linear matrix inequality (LMI) constraints to ensure the robustness of the closed-loop system The asymptotically stable update law is designed on-line in real time, which effectively solves the problem that the system model is difficult to deal with under nonlinear conditions and the problem of constrained fuzzy optimal fault-tolerant control law design in the event of a fault. It effectively solves the problem that the control performance of the nonlinear batch process cannot be improved with the increase of the batch, realizes that the system can be optimized in real time within the variable constraint range regardless of whether there is a fault, improves the system control performance, and ensures the system in It can still run smoothly and have the best tracking performance in the worst case. Ultimately, energy saving, consumption reduction, cost reduction, and accidents endangering personal safety are reduced.
具体实施方式Detailed ways
下面结合具体实施例对本发明做进一步的说明。The present invention will be further described below in conjunction with specific embodiments.
非线性批次过程2D最优约束模糊容错控制方法,该方法的具体步骤是:A 2D optimal constraint fuzzy fault-tolerant control method for a nonlinear batch process, the specific steps of which are:
步骤1、建立非线性批次过程等价2D-Rosser误差增广模型:Step 1. Establish a nonlinear batch process equivalent 2D-Rosser error augmentation model:
步骤1.1考虑执行器增益故障,根据批次过程的非线性和二维特性,建立2D T-S模糊故障状态空间模型,由式(1)表示:Step 1.1 Considering the actuator gain fault, according to the nonlinear and two-dimensional characteristics of the batch process, a 2D T-S fuzzy fault state space model is established, expressed by formula (1):
且其输入、输出约束满足: And its input and output constraints satisfy:
其中,x(t,k),y(t,k),u(t,k),ω(t,k)分别表示系统的状态,系统的输出,系统的控制输入以及未知扰动;分别是输入、实际输出的上界约束值,t,k分别表示在批次内的运行时刻与批次;Tp表示一个批次运行的总时间;p为前提变量数目;r为模糊规则数目;Ai,Bi,Ci为相应模糊规则i下的系统状态矩阵、系统输入矩阵、系统输出矩阵;x(0,k)为第k个批次的初始状态;Mij为模糊集,Mij(xj(t,k))为xj(t,k)属于Mij的隶属度;由可得 Among them, x(t,k), y(t,k), u(t,k), ω(t,k) respectively represent the state of the system, the output of the system, the control input of the system and the unknown disturbance; are the upper bound constraint values of input and actual output respectively, t and k respectively represent the running time and batch in the batch; T p represents the total running time of a batch; p is the number of premise variables; r is the number of fuzzy rules ; A i , B i , C i are the system state matrix, system input matrix, and system output matrix under the corresponding fuzzy rule i; x(0,k) is the initial state of the kth batch; M ij is the fuzzy set, M ij (x j (t,k)) is the membership degree of x j (t,k) belonging to M ij ; Depend on Available
定义不同的α值表示执行器不同的故障类型,当α>0时,表示部分失效故障;当α=0时,表示完全失效故障,不涉及最优控制器的问题;Different α values are defined to indicate different fault types of actuators. When α>0, it means a partial failure; when α=0, it means a complete failure, which does not involve the problem of optimal controller;
对于执行器部分失效,α>0需满足如下形式:For the partial failure of the actuator, α>0 needs to satisfy the following form:
式中,α(α≤1)和是已知的常数;where α ( α ≤1) and is a known constant;
步骤1.2设计2D迭代学习控制器u(t,k),如式(3)所示:Step 1.2 Design a 2D iterative learning controller u(t,k), as shown in formula (3):
由此可知,设计u(t,k),只需设计k批次t时刻更新律r(t,k),以实现系统输出y(t,k)跟踪所给定的期望输出yd(t,k);It can be seen that to design u(t,k), it is only necessary to design k batches of update laws r(t,k) at time t, so as to realize the system output y(t,k) tracking the given expected output y d (t ,k);
步骤1.3定义批次方向上的状态误差及输出误差如下:Step 1.3 defines the state error and output error in the batch direction as follows:
δ(x(t,k))=x(t,k)-x(t,k-1) (4a)δ(x(t,k))=x(t,k)-x(t,k-1) (4a)
令则(1)式转化为等价误差模型为式(5):make Then formula (1) is transformed into an equivalent error model as formula (5):
其中,δ(ω(t,k))=ω(t,k)-ω(t,k-1),in, δ(ω(t,k))=ω(t,k)-ω(t,k-1),
δ(hi(x(t,k)))=hi(x(t,k))-hi(x(t,k-1)),为适维的单位矩阵;并设则上述模型表示为:δ(h i (x(t,k)))=h i (x(t,k))-h i (x(t,k-1)), is the dimension-appropriate identity matrix; and let Then the above model is expressed as:
其中,分别为适维向量的水平和垂直状态分量,Z(t,k)是系统的被控输出;in, are the horizontal and vertical state components of the dimensionality vector respectively, and Z(t,k) is the controlled output of the system;
步骤2、对具有干扰及执行器故障的批次过程模型设计出迭代学习控制律:Step 2. Design an iterative learning control law for the batch process model with disturbance and actuator failure:
步骤2.1对于上述模型(5)设计2D预测容错控制器,达到在最大干扰及最大故障下的最小优化控制,即使模型(5)达到稳态且在每一时刻满足下面的鲁棒性能指标:Step 2.1 Design a 2D predictive fault-tolerant controller for the above model (5) to achieve the minimum optimal control under the maximum disturbance and maximum fault, even if the model (5) reaches a steady state and satisfies the following robust performance index at each moment:
限制: limit:
并且Q(Q>0)和R(R>0)是适当维数的加权矩阵,r(t+i|t,k)是时刻t对t+i时刻输入的预测值,并且r(t,k)=r(t|t,k),代表输入增量;And Q(Q>0) and R(R>0) are weighted matrices of appropriate dimensions, r(t+i|t,k) is the predicted value input at time t to t+i time, and r(t, k)=r(t|t,k), represents the input increment;
步骤2.2定义状态反馈控制律,使系统达到二次稳定,选取的更新律为:Step 2.2 defines the state feedback control law to make the system achieve quadratic stability, and the selected update law is:
则(5)的闭环模型表示为:Then the closed-loop model of (5) is expressed as:
其中,则其闭环预测模型表示为:in, Then its closed-loop prediction model is expressed as:
步骤2.3利用2D Lyapunov函数证明系统的稳定,定义Lyapunov函数为:Step 2.3 uses the 2D Lyapunov function to prove the stability of the system, and defines the Lyapunov function as:
其中,M>0 Among them, M>0
步骤2.4模型(8c)在故障允许范围内依然能平稳运行,必须满足:Step 2.4 Model (8c) can still run smoothly within the allowable range of faults, it must meet:
(1)2D李亚普诺夫函数不等式约束:(1) 2D Lyapunov function inequality constraint:
(2)对于给定半正定对称矩阵R,Q,存在正定对称矩阵M=diag{Mh,Mv},半正定对称矩阵矩阵Yi,Yj(i=1,2,...r,),标量εi,εj,γ,θ>0,0<α<1,0<μ<1,可使得下面的矩阵不等式成立:(2) For a given positive semi-definite symmetric matrix R, Q, there is a positive-definite symmetric matrix M=diag{M h , M v }, a positive semi-definite symmetric matrix Matrix Y i , Y j (i=1,2,...r,), scalar ε i ,ε j ,γ,θ>0, 0<α<1, 0<μ<1, can make the following matrix The inequality holds:
且 and
且 and
其中, in,
鲁棒更新律增益为: The robust update law gain is:
因此,进一步更新律表示为:将其带入u(t,k)=u(t,k-1)+r(t,k),便可得到2D约束迭代学习控制律设计u(t,k),在下一时刻,不断重复步骤2.4,继续求解新的控制量u(t,k),并依次循环。Therefore, the further update law is expressed as: Putting it into u(t,k)=u(t,k-1)+r(t,k), the 2D constrained iterative learning control law design u(t,k) can be obtained, and at the next moment, repeat Step 2.4, continue to solve the new control quantity u(t,k), and loop in turn.
实施例Example
考虑一个非线性连续搅拌罐:Consider a nonlinear continuous stirred tank:
其中,CA为不可逆反应(A→B)过程中A的浓度;T为反应釜温度;TC为冷却流温度,做为操纵变量q=100(L/min),V=100(L),CAf=1(mol/L),Tf=400(K),ρ=1000(g/L),CP=1(J/gK),k0=4.71×108(min-1),E/R=8000(K),ΔH=-2×105(J/mol),UA=1×105(J/minK)。变量范围限制为200≤TC≤450(K),0.01≤CA≤1(mol/L),250≤T≤500(K);y(t,k)=Cx(t,k)是输出。以上非线性模型转化为:Wherein, C A is the concentration of A in the irreversible reaction (A → B) process; T is the reactor temperature; T C is the cooling flow temperature, as the manipulated variable q=100 (L/min), V=100 (L) , C Af =1(mol/L), T f =400(K), ρ=1000(g/L), C P =1(J/gK), k 0 =4.71×10 8 (min -1 ) , E/R=8000(K), ΔH=-2×10 5 (J/mol), UA=1×10 5 (J/minK). The variable range is limited to 200≤T C ≤450(K), 0.01≤C A ≤1(mol/L), 250≤T≤500(K); y(t,k)=Cx(t,k) is the output . The above nonlinear model is transformed into:
其中, in,
C=[1 0]C=[1 0]
控制目标是让反应堆温度遵循给定的曲线:The control objective is to make the reactor temperature follow a given curve:
模拟进行了50个批次,每批都运行600步。评估指标使用平方和求根误差(RSSE)用于评价控制效果。The simulation was run in 50 batches, each run for 600 steps. The evaluation index uses root sum of square error (RSSE) to evaluate the control effect.
计算出来的初始阶段控制器增益是:The calculated initial stage controller gain is:
K1=[-0.0905 0.0041 0.5031];K1=[-0.0905 0.0041 0.5031];
K2=[0.1120 0.0021 0.5799];K2=[0.1120 0.0021 0.5799];
K3=[0.1344 -0.0078 0.2622];K3=[0.1344-0.0078 0.2622];
K4=[0.0260 0.0042 0.4630]。K4 = [0.0260 0.0042 0.4630].
该方法针对非线性批次过程在具有干扰及故障的情况下设计出模糊迭代学习控制律,有效解决非线性下系统模型较难处理问题及发生故障情况下约束模糊最优容错控制方法设计问题。有效地解决了非线性批次过程的控制性能无法随着批次的递增而得到完善,实现系统不管有没有故障,在变量约束范围内均能实时优化,改善了系统控制性能,保证了系统在最差情况下依然能平稳运行并具有最优的跟踪性能。最终达到节能减耗、降低成本、降低危害人身安全事故的发生。This method designs a fuzzy iterative learning control law for the nonlinear batch process with disturbances and faults, which effectively solves the problem that the system model is difficult to deal with under nonlinear conditions and the problem of constrained fuzzy optimal fault-tolerant control method design in the case of faults. It effectively solves the problem that the control performance of the nonlinear batch process cannot be improved with the increase of the batch, realizes that the system can be optimized in real time within the variable constraint range regardless of whether there is a fault, improves the system control performance, and ensures the system in It can still run smoothly and have the best tracking performance in the worst case. Ultimately, energy saving, consumption reduction, cost reduction, and accidents endangering personal safety are reduced.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810009893.4A CN108227494B (en) | 2018-01-05 | 2018-01-05 | Nonlinear batch process 2D optimal constraint fuzzy fault-tolerant control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810009893.4A CN108227494B (en) | 2018-01-05 | 2018-01-05 | Nonlinear batch process 2D optimal constraint fuzzy fault-tolerant control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108227494A true CN108227494A (en) | 2018-06-29 |
CN108227494B CN108227494B (en) | 2022-01-04 |
Family
ID=62642838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810009893.4A Active CN108227494B (en) | 2018-01-05 | 2018-01-05 | Nonlinear batch process 2D optimal constraint fuzzy fault-tolerant control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108227494B (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108107723A (en) * | 2017-11-28 | 2018-06-01 | 辽宁石油化工大学 | The 2D Design of Optimized Fuzzy Controller methods of nonlinear batch process |
CN108628275A (en) * | 2018-07-04 | 2018-10-09 | 杭州电子科技大学 | A kind of chemical engineering industry process fuzzy constraint control method |
CN108873688A (en) * | 2018-07-11 | 2018-11-23 | 杭州电子科技大学 | A kind of chemical engineering industry process performance holding control method |
CN108897219A (en) * | 2018-07-11 | 2018-11-27 | 杭州电子科技大学 | A kind of uncertain industrial process constrained forecast control method of chemical industry |
CN109100941A (en) * | 2018-10-11 | 2018-12-28 | 海南师范大学 | The multistage anti-interference Design of Predictive method of batch process two dimension |
CN109471364A (en) * | 2018-12-28 | 2019-03-15 | 西安交通大学 | A Reliable Control Method for Nonlinear Switching Systems with Actuator Faults |
CN109541940A (en) * | 2018-11-13 | 2019-03-29 | 海南师范大学 | Mix fault tolerant control method based on 2D model multistage batch process constrained predictive |
CN109991853A (en) * | 2019-04-23 | 2019-07-09 | 海南师范大学 | A 2D I/O Constraint Tracking Control Method for Multi-Stage Batch Processes |
CN110018639A (en) * | 2019-05-10 | 2019-07-16 | 杭州电子科技大学 | The robust Fault-Tolerant Control method of network control system based on two type T-S model of section |
CN110045611A (en) * | 2019-04-24 | 2019-07-23 | 华北电力大学 | A kind of Robust Iterative Learning model predictive control method applied to batch stirred tank reactor |
CN110442028A (en) * | 2019-09-09 | 2019-11-12 | 南京工程学院 | Anti-bifurcation control method based on fuzzy prediction |
CN110658724A (en) * | 2019-11-20 | 2020-01-07 | 电子科技大学 | Adaptive fuzzy fault-tolerant control method for a class of nonlinear systems |
CN110750049A (en) * | 2019-09-23 | 2020-02-04 | 海南师范大学 | Intermittent process 2D prediction fault-tolerant control method with time lag and disturbance |
CN111142503A (en) * | 2019-12-30 | 2020-05-12 | 山东科技大学 | A Fault Diagnosis Method and Diagnosis System Based on Iterative Learning Observer |
CN112180717A (en) * | 2020-10-14 | 2021-01-05 | 河北工业大学 | A 2D model-based heat exchanger temperature fuzzy control method and system |
CN113093536A (en) * | 2021-03-23 | 2021-07-09 | 南京航空航天大学 | Adaptive incremental optimization fault-tolerant control method for nonlinear system actuator faults |
CN113625563A (en) * | 2021-08-06 | 2021-11-09 | 江南大学 | A Quantitative Iterative Learning Fault Tolerant Control Method for DC Motors |
CN113848847A (en) * | 2021-08-30 | 2021-12-28 | 北京工业大学 | Nonlinear control system fault detection method based on T-S fuzzy model |
CN114035523A (en) * | 2021-11-11 | 2022-02-11 | 海南师范大学 | Industrial process fault-tolerant control method based on data-driven Q-learning |
CN114237187A (en) * | 2021-12-20 | 2022-03-25 | 杭州电子科技大学 | Constraint learning advanced control method for industrial process |
CN114594685A (en) * | 2022-02-25 | 2022-06-07 | 中国核电工程有限公司 | Control method and control equipment for batch reaction |
CN114721268A (en) * | 2022-04-08 | 2022-07-08 | 江南大学 | Robust heuristic iterative learning control method for injection molding nozzle pressure |
CN117472027A (en) * | 2023-11-15 | 2024-01-30 | 无锡学院 | Fault-tolerant control method and system for actuator faults, electronic equipment and medium |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5357436A (en) * | 1992-10-21 | 1994-10-18 | Rockwell International Corporation | Fuzzy logic traffic signal control system |
CN103488092A (en) * | 2013-10-16 | 2014-01-01 | 哈尔滨工业大学 | Satellite fault diagnosis and fault-tolerant control method based on T-S fuzzy model and learning observer |
CN103488080B (en) * | 2013-09-09 | 2015-11-11 | 河北科技师范学院 | Moon craft based on layered fuzzy system is coordinated to drive adaptive fusion method |
WO2016070095A1 (en) * | 2014-11-01 | 2016-05-06 | SMS/800, Inc. | Toll-free telecommunications management platform |
CN105683873A (en) * | 2013-04-27 | 2016-06-15 | 谷歌公司 | Fault-tolerant input method editor |
CN105988368A (en) * | 2016-07-27 | 2016-10-05 | 江南大学 | Fault-tolerant control method for networked control system with time-varying delay |
CN106257873A (en) * | 2016-07-16 | 2016-12-28 | 江南大学 | A kind of uncatalyzed coking H ∞ fault tolerant control method of nonlinear network networked control systems |
CN107038477A (en) * | 2016-08-10 | 2017-08-11 | 哈尔滨工业大学深圳研究生院 | A kind of neutral net under non-complete information learns the estimation method of combination with Q |
-
2018
- 2018-01-05 CN CN201810009893.4A patent/CN108227494B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5357436A (en) * | 1992-10-21 | 1994-10-18 | Rockwell International Corporation | Fuzzy logic traffic signal control system |
CN105683873A (en) * | 2013-04-27 | 2016-06-15 | 谷歌公司 | Fault-tolerant input method editor |
CN103488080B (en) * | 2013-09-09 | 2015-11-11 | 河北科技师范学院 | Moon craft based on layered fuzzy system is coordinated to drive adaptive fusion method |
CN103488092A (en) * | 2013-10-16 | 2014-01-01 | 哈尔滨工业大学 | Satellite fault diagnosis and fault-tolerant control method based on T-S fuzzy model and learning observer |
WO2016070095A1 (en) * | 2014-11-01 | 2016-05-06 | SMS/800, Inc. | Toll-free telecommunications management platform |
CN106257873A (en) * | 2016-07-16 | 2016-12-28 | 江南大学 | A kind of uncatalyzed coking H ∞ fault tolerant control method of nonlinear network networked control systems |
CN105988368A (en) * | 2016-07-27 | 2016-10-05 | 江南大学 | Fault-tolerant control method for networked control system with time-varying delay |
CN107038477A (en) * | 2016-08-10 | 2017-08-11 | 哈尔滨工业大学深圳研究生院 | A kind of neutral net under non-complete information learns the estimation method of combination with Q |
Non-Patent Citations (2)
Title |
---|
FUQIANG,等: "Fault Tolerant Control for T-S Fuzszy Systems With Simultaneous Actuator Sensor Faults", 《IEEE》 * |
王立敏,等: "基于 T-S 模糊模型的间歇过程的迭代学习容错控制", 《化工学报》 * |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108107723A (en) * | 2017-11-28 | 2018-06-01 | 辽宁石油化工大学 | The 2D Design of Optimized Fuzzy Controller methods of nonlinear batch process |
CN108107723B (en) * | 2017-11-28 | 2020-11-06 | 辽宁石油化工大学 | 2D optimal fuzzy controller design method for nonlinear intermittent process |
CN108628275A (en) * | 2018-07-04 | 2018-10-09 | 杭州电子科技大学 | A kind of chemical engineering industry process fuzzy constraint control method |
CN108897219A (en) * | 2018-07-11 | 2018-11-27 | 杭州电子科技大学 | A kind of uncertain industrial process constrained forecast control method of chemical industry |
CN108873688B (en) * | 2018-07-11 | 2021-02-09 | 杭州电子科技大学 | Chemical industry process performance maintaining control method |
CN108873688A (en) * | 2018-07-11 | 2018-11-23 | 杭州电子科技大学 | A kind of chemical engineering industry process performance holding control method |
CN109100941A (en) * | 2018-10-11 | 2018-12-28 | 海南师范大学 | The multistage anti-interference Design of Predictive method of batch process two dimension |
CN109100941B (en) * | 2018-10-11 | 2022-01-04 | 海南师范大学 | Multi-stage intermittent process two-dimensional anti-interference prediction controller design method |
CN109541940A (en) * | 2018-11-13 | 2019-03-29 | 海南师范大学 | Mix fault tolerant control method based on 2D model multistage batch process constrained predictive |
CN109541940B (en) * | 2018-11-13 | 2022-03-29 | 海南师范大学 | Multi-stage intermittent process limited prediction hybrid fault-tolerant control method based on 2D model |
CN109471364A (en) * | 2018-12-28 | 2019-03-15 | 西安交通大学 | A Reliable Control Method for Nonlinear Switching Systems with Actuator Faults |
CN109471364B (en) * | 2018-12-28 | 2020-10-27 | 西安交通大学 | A Reliable Control Method for Nonlinear Switching Systems with Actuator Faults |
CN109991853A (en) * | 2019-04-23 | 2019-07-09 | 海南师范大学 | A 2D I/O Constraint Tracking Control Method for Multi-Stage Batch Processes |
CN109991853B (en) * | 2019-04-23 | 2022-01-25 | 海南师范大学 | Multi-stage intermittent process 2D input and output constraint tracking control method |
CN110045611A (en) * | 2019-04-24 | 2019-07-23 | 华北电力大学 | A kind of Robust Iterative Learning model predictive control method applied to batch stirred tank reactor |
CN110045611B (en) * | 2019-04-24 | 2020-10-09 | 华北电力大学 | Robust iterative learning model prediction control method applied to intermittent stirred tank reactor |
CN110018639A (en) * | 2019-05-10 | 2019-07-16 | 杭州电子科技大学 | The robust Fault-Tolerant Control method of network control system based on two type T-S model of section |
CN110442028A (en) * | 2019-09-09 | 2019-11-12 | 南京工程学院 | Anti-bifurcation control method based on fuzzy prediction |
CN110442028B (en) * | 2019-09-09 | 2022-09-27 | 南京工程学院 | Anti-bifurcation control method based on fuzzy prediction |
CN110750049A (en) * | 2019-09-23 | 2020-02-04 | 海南师范大学 | Intermittent process 2D prediction fault-tolerant control method with time lag and disturbance |
CN110750049B (en) * | 2019-09-23 | 2022-03-29 | 海南师范大学 | Intermittent process 2D prediction fault-tolerant control method with time lag and disturbance |
CN110658724B (en) * | 2019-11-20 | 2021-12-10 | 电子科技大学 | Self-adaptive fuzzy fault-tolerant control method for nonlinear system |
CN110658724A (en) * | 2019-11-20 | 2020-01-07 | 电子科技大学 | Adaptive fuzzy fault-tolerant control method for a class of nonlinear systems |
CN111142503A (en) * | 2019-12-30 | 2020-05-12 | 山东科技大学 | A Fault Diagnosis Method and Diagnosis System Based on Iterative Learning Observer |
CN111142503B (en) * | 2019-12-30 | 2023-03-21 | 山东科技大学 | Fault diagnosis method and system based on iterative learning observer |
CN112180717B (en) * | 2020-10-14 | 2021-09-03 | 河北工业大学 | Heat exchanger temperature fuzzy control method and system based on 2D model |
CN112180717A (en) * | 2020-10-14 | 2021-01-05 | 河北工业大学 | A 2D model-based heat exchanger temperature fuzzy control method and system |
CN113093536A (en) * | 2021-03-23 | 2021-07-09 | 南京航空航天大学 | Adaptive incremental optimization fault-tolerant control method for nonlinear system actuator faults |
CN113625563A (en) * | 2021-08-06 | 2021-11-09 | 江南大学 | A Quantitative Iterative Learning Fault Tolerant Control Method for DC Motors |
CN113625563B (en) * | 2021-08-06 | 2024-03-15 | 江南大学 | DC motor quantization iteration learning fault-tolerant control method |
CN113848847A (en) * | 2021-08-30 | 2021-12-28 | 北京工业大学 | Nonlinear control system fault detection method based on T-S fuzzy model |
CN113848847B (en) * | 2021-08-30 | 2024-06-04 | 北京工业大学 | Nonlinear control system fault detection method based on T-S fuzzy model |
CN114035523A (en) * | 2021-11-11 | 2022-02-11 | 海南师范大学 | Industrial process fault-tolerant control method based on data-driven Q-learning |
CN114035523B (en) * | 2021-11-11 | 2024-07-05 | 海南师范大学 | Industrial process fault-tolerant control method based on data-driven Q-learning |
CN114237187A (en) * | 2021-12-20 | 2022-03-25 | 杭州电子科技大学 | Constraint learning advanced control method for industrial process |
CN114594685A (en) * | 2022-02-25 | 2022-06-07 | 中国核电工程有限公司 | Control method and control equipment for batch reaction |
CN114721268A (en) * | 2022-04-08 | 2022-07-08 | 江南大学 | Robust heuristic iterative learning control method for injection molding nozzle pressure |
CN117472027A (en) * | 2023-11-15 | 2024-01-30 | 无锡学院 | Fault-tolerant control method and system for actuator faults, electronic equipment and medium |
Also Published As
Publication number | Publication date |
---|---|
CN108227494B (en) | 2022-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108227494B (en) | Nonlinear batch process 2D optimal constraint fuzzy fault-tolerant control method | |
Huang et al. | LSTM-MPC: A deep learning based predictive control method for multimode process control | |
Song et al. | Online optimal event-triggered H∞ control for nonlinear systems with constrained state and input | |
Lin et al. | Direct adaptive interval type-2 fuzzy control of multivariable nonlinear systems | |
He et al. | Command-filtered adaptive fuzzy control for switched MIMO nonlinear systems with unknown dead zones and full state constraints | |
CN111459051B (en) | A Discrete Terminal Sliding Mode Model-Free Control Method with Disturbance Observer | |
Li et al. | Offset-free fuzzy model predictive control of a boiler–turbine system based on genetic algorithm | |
CN110928189A (en) | Robust control method based on reinforcement learning and Lyapunov function | |
Zhao et al. | The fuzzy PID control optimized by genetic algorithm for trajectory tracking of robot arm | |
Song et al. | Fixed-time fuzzy adaptive fault-tolerant control for strict-feedback nonlinear systems with input delay | |
Si et al. | Decentralized adaptive neural control for interconnected stochastic nonlinear delay-time systems with asymmetric saturation actuators and output constraints | |
Yang et al. | A fuzzy adaptive tracking control for a class of uncertain strick-feedback nonlinear systems with dead-zone input | |
Li et al. | Iterative learning hybrid robust predictive fault-tolerant control for nonlinear batch processes with partial actuator faults | |
CN110597055B (en) | Uncertainty-resistant 2D piecewise affine intermittent process minimum-maximum optimization prediction control method | |
Zhao et al. | Fuzzy adaptive dynamic surface control for strict-feedback nonlinear systems with unknown control gain functions | |
Chopra et al. | Auto tuning of fuzzy PI type controller using fuzzy logic | |
Liang et al. | A transfer predictive control method based on inter-domain mapping learning with application to industrial roasting process | |
Azarinfar et al. | Robust adaptive backstepping control of H‐bridge inverter based on type‐2 fuzzy optimization of parameters | |
Qi et al. | Event-triggered-based fuzzy adaptive tracking control for nonstrict-feedback asymmetric state constrained systems | |
Song et al. | Adaptive interval type-2 fuzzy fixed-time control for nonlinear MIMO fast-slow coupled systems with user-defined tracking performance | |
CN110412873A (en) | Terminal Constraint-Based 2D Iterative Learning Predictive Control Method for Time-Delay Intermittent Processes | |
CN106094524A (en) | The rapid model prediction control method compensated based on input trend | |
CN110750049B (en) | Intermittent process 2D prediction fault-tolerant control method with time lag and disturbance | |
CN112068446B (en) | An anti-interference control method for DC motor system based on discrete-time fuzzy model | |
Mao et al. | Simulation of liquid level cascade control system based on genetic Fuzzy PID |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |