CN108227494A - The fuzzy fault tolerant control method of the non-linear optimal constraints of batch process 2D - Google Patents
The fuzzy fault tolerant control method of the non-linear optimal constraints of batch process 2D Download PDFInfo
- Publication number
- CN108227494A CN108227494A CN201810009893.4A CN201810009893A CN108227494A CN 108227494 A CN108227494 A CN 108227494A CN 201810009893 A CN201810009893 A CN 201810009893A CN 108227494 A CN108227494 A CN 108227494A
- Authority
- CN
- China
- Prior art keywords
- model
- fault
- batch
- fuzzy
- batch process
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000010923 batch production Methods 0.000 title claims abstract description 30
- 239000011159 matrix material Substances 0.000 claims abstract description 30
- 238000013461 design Methods 0.000 claims abstract description 15
- 230000006870 function Effects 0.000 claims description 9
- 230000003044 adaptive effect Effects 0.000 claims description 6
- 230000003416 augmentation Effects 0.000 claims description 3
- 230000006641 stabilisation Effects 0.000 abstract 1
- 238000011105 stabilization Methods 0.000 abstract 1
- 230000008569 process Effects 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000005457 optimization Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 238000012937 correction Methods 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 241000772415 Neovison vison Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
The present invention seeks to improve the control performance and tracking performance of control method in non-linear batch process, a kind of fuzzy fault controller method of the optimal constraints of 2D of non-linear batch process is proposed.The non-linear and two-dimensional characteristics that the present invention passes through batch process, establish 2D T S fringe spatial models, further combined with system mode error and output error, the dynamic model of original system is converted into a closed loop failure fuzzy system model represented in the form of prediction with Roesser models, design constraint is obscured iterative learning faults-tolerant control rule is converted into determining constraint more new law;According to designed infinite optimality criterion and 2D system Lyapunov Theory of Stability, with linear matrix inequality(LMI)Constraint type provides the fuzzy fault-tolerant more new law real-time online design for ensuring closed-loop system robust asymptotically stabilization.The present invention solves the problems, such as that non-linear lower system model is more intractable very well, ensure that system in worst case still can even running, and with optimal tracking performance.
Description
Technical Field
The invention belongs to the field of advanced control of industrial processes, and relates to a nonlinear batch process 2D optimal constraint fuzzy fault-tolerant control method.
Background
As a batch process, which is one of the production methods, there are roughly two types of system descriptions, one is linear and the other is nonlinear. The early control of the intermittent process is mostly directly aimed at the linear model, however, in the actual industrial process, the intermittent process has strong nonlinear characteristics, and the linear model and the actual process have a large mismatch problem. Making it difficult to achieve optimal control in practical applications. Direct processing of non-linear systems presents certain difficulties. For this purpose, a new model is used to approximate the nonlinear system.
Along with the increase of the production scale and the increase of the complexity of the production steps, the uncertainty existing in the actual production is increasingly prominent, so that the high-efficiency and smooth operation of the system is influenced, and even the quality of the product is threatened. These complex operating conditions, in turn, increase the probability of system failure. Among them, actuator failure is a common failure, which affects the operation of the process and reduces the control performance, even endangers the personal safety. Although control methods such as iterative learning reliable fault-tolerant control and the like appear in the batch processing process, the control problem that the system still stably runs when an actuator fails can be well solved. However, for equipment with high precision, the possibility of failure occurrence is extremely low, if no failure occurs, the equipment is reliably controlled to use, so that resource waste is caused, the cost is increased in the past, and the environment-friendly concept of energy conservation and emission reduction is obviously not met. In the event of a serious fault, the reliable control law may completely lose control, which may lead to system breakdown, resulting in significant property loss and casualties.
In addition, although the robust iterative learning reliable control strategy adopted at the present stage can effectively resist the influence caused by uncertainty and faults in the production link, ensure the stability of the system and maintain the control performance of the system, the control law is obtained by solving based on the whole production process and belongs to global-covering optimization control in the control effect, namely the same control law is used all the time. However, in actual operation, under the influence of interference and faults, the system state cannot change completely according to the obtained control law action; if the system state at the current moment deviates from the set value to a certain extent, the same control law is still continuously adopted, the deviation of the system state is increased gradually along with the lapse of time, and the existing robust iterative learning reliable control method cannot solve the problem of the deviation of the system state, which inevitably has adverse effects on the stable operation and the control performance of the system. In addition, the existing literature does not consider the constraint problem for control law design and system output, and the constraint must be considered in the actual production process.
The Model Predictive Control (MPC) can well meet the requirement of real-time update and correction of the control law, and the optimal control law at each moment is obtained through rolling optimization and feedback correction, so that the system state can be ensured to run along the set track as much as possible. However, in the prior art, a one-dimensional infinite time domain control law is mostly adopted, a learning process is lacked among batches, and the control effect is not improved along with the increment of the batches; there is also a process that only considers batch-to-batch "learning" and this approach does not achieve the control problem of an intermittent process where the initial value is uncertain. It is clear that the discussion of the infinite time domain constraint optimization problem for systems with uncertainty and faults is left to be further. Therefore, a new control method is urgently needed to make up the defects of the existing method so as to achieve the aims of saving energy, reducing consumption, reducing cost, even reducing the occurrence of accidents which harm human safety and the like in the batch production process.
Most of the existing prediction control technologies design a control law in a one-dimensional direction, only the time direction or the batch direction is considered, only the time direction is considered, so that each batch is only simply repeated, and the control performance cannot be improved along with the increment of the batch; the control problem of the intermittent process with uncertain initial values cannot be realized only by considering the batch direction. Although there are few results considering time and batch direction, there is no good research result for the situations of nonlinearity, actuator failure and the like.
Therefore, in order to solve the problems, respond to calls for energy conservation, emission reduction and the like in the production process and ensure the control performance of the system, it is necessary to provide a 2D fuzzy constraint fault-tolerant control method for infinite time domain optimization in a nonlinear batch process.
Disclosure of Invention
In order to solve the technical problems, the invention provides a nonlinear batch process 2D optimal fuzzy constraint fault-tolerant control method. And designing a nonlinear infinite time domain optimized 2D fuzzy iterative learning control law for batch process models with nonlinear interference and actuator faults. The control law is designed by the design method, so that the system can be ensured to stably run when a fault occurs, the aims of saving energy, reducing consumption, reducing cost and the like are fulfilled, and the aims of reducing the occurrence of personal safety hazard and the like can be fulfilled.
The invention aims to improve the control performance and the tracking performance of a control method in a nonlinear batch process, and provides a 2D optimal constraint fuzzy fault-tolerant controller design method for the nonlinear batch process. According to the method, a 2D T-S fuzzy state space model is established through the nonlinear and two-dimensional characteristics of a batch process, a system state error and an output error are further combined, a dynamic model of an original system is converted into a closed-loop fault system model represented in a prediction mode through a Roesser model, and a design constraint iterative learning fault-tolerant control law is converted into a determination constraint updating law; according to designed infinite optimization performance indexes and a 2D system Lyapunov stability theory, a fuzzy fault-tolerant update law real-time online design for ensuring the stability of the robustness asymptotic of a closed-loop system is given in a Linear Matrix Inequality (LMI) constraint form. The invention is directed to the design of a fuzzy optimal fault-tolerant controller under the condition that an actuator of a nonlinear batch process fails. The control algorithm can achieve the aims of saving energy, reducing consumption, reducing cost, reducing the occurrence of personal safety hazards and the like.
The invention is realized by the following technical scheme:
the nonlinear batch process 2D optimal constraint fuzzy fault-tolerant control method comprises the following specific steps:
step 1, establishing an equivalent 2D-Rosser error augmentation model of a nonlinear batch process:
step 1.1, considering actuator gain faults, and establishing a 2D T-S fuzzy fault state space model according to the nonlinear and two-dimensional characteristics of the batch process, wherein the model is represented by formula (1):
and the input and output constraints thereof meet:
wherein x (t, k), y (t, k), u (t, k), ω (t, k) respectively represent the state of the system, the output of the system, the control input of the system, and the unknown disturbance;the upper bound constraint values of input and actual output are respectively, and t and k respectively represent the running time and the batch in the batch; t ispRepresents the total time of a batch run; p is the number of preconditions; r is the number of fuzzy rules; a. thei,Bi,CiA system state matrix, a system input matrix and a system output matrix under the corresponding fuzzy rule i are obtained; x (0, k) is the initial state of the kth batch; mijFor fuzzy sets, Mij(xj(t, k)) is xj(t, k) is MijDegree of membership of;byCan obtain the product
Defining different α values to indicate different fault types of the actuator, indicating partial failure fault when α is more than 0, indicating complete failure fault when α is equal to 0, and not relating to the problem of the optimal controller;
for partial actuator failure, α > 0 should satisfy the following form:
in the formula,andis a known constant;
step 1.2, designing a 2D iterative learning controller u (t, k), as shown in formula (3):
therefore, u (t, k) is designed, and only k batches of the updating law r (t, k) at t moment are designed to realize that the system output y (t, k) tracks the given expected output yd(t,k);
Step 1.3 defines the state error and output error in the batch direction as follows:
δ(x(t,k))=x(t,k)-x(t,k-1) (4a)
order toThen the equation (1) is converted into an equivalent error model which is equation (5):
wherein,δ(ω(t,k))=ω(t,k)-ω(t,k-1),
δ(hi(x(t,k)))=hi(x(t,k))-hi(x(t,k-1)), i is an adaptive identity matrix; and is provided with The above model is then expressed as:
wherein,the horizontal and vertical state components of the adaptive vector, respectively, and Z (t, k) is the controlled output of the system;
step 2, designing an iterative learning control law for batch process models with interference and actuator faults:
step 2.1, a 2D predictive fault-tolerant controller is designed for the model (5) to achieve minimum optimal control under the maximum interference and the maximum fault, even if the model (5) achieves a steady state and meets the following robust performance indexes at each moment:
and (3) limiting:
and Q (Q > 0) and R (R > 0) are weighting matrices of appropriate dimensions, R (t + i | t, k) is the predicted value input at time t to t + i, and R (t, k) ═ R (t | t, k),represents an input increment;
step 2.2, defining a state feedback control law to enable the system to achieve secondary stability, wherein the selected updating law is as follows:
the closed-loop model of (5) is expressed as:
wherein,its closed-loop prediction model is represented as:
step 2.3, the stability of the system is proved by using a 2D Lyapunov function, wherein the Lyapunov function is defined as follows:
wherein M > 0
Step 2.4 the model (8c) can still run stably within the fault tolerance range, and the following requirements must be met:
(1) the 2D lyapunov function is inequality constrained:
(2) for a given semi-positive definite symmetric matrix R, Q, there is a positive definite symmetric matrix M ═ diag { Mh,Mv}, semi-positive definite symmetric matrixMatrix Yi,Yj(i ═ 1, 2.. r.,), scalar epsiloni,εjγ, θ > 0, 0 < α < 1,0 < μ < 1, such that the following matrix inequality holds:
and is
And is
Wherein,
the robust update law gain is:
therefore, the further update law is represented as:and (3) the value is substituted into u (t, k) ═ u (t, k-1) + r (t, k), so that a 2D constraint iterative learning control law design u (t, k) can be obtained, the step 2.4 is continuously repeated at the next moment, the new controlled variable u (t, k) is continuously solved, and the steps are sequentially circulated.
Compared with the prior art, the invention has the beneficial effects that:
designing a fuzzy fault-tolerant iterative learning control law on the basis of a control system model with nonlinearity, interference and faults, introducing a state error and an output error, converting a dynamic model of an original system into a closed-loop system model represented in a prediction form by using a Roesser model, and converting the designed fuzzy fault-tolerant iterative learning control law into a determined updating law; according to designed infinite optimization performance indexes and a 2D system Lyapunov stability theory, an update law real-time online design for ensuring asymptotic stability of a closed-loop system robustness is given in a Linear Matrix Inequality (LMI) constraint form, and the problems that a system model is difficult to process under nonlinearity and a fuzzy optimal fault-tolerant control law is constrained under a fault condition are effectively solved. The method effectively solves the problem that the control performance of the nonlinear batch process cannot be improved along with the increment of the batch, realizes the real-time optimization of the system in a variable constraint range regardless of the existence of faults, improves the control performance of the system, ensures that the system can still run stably under the worst condition and has the optimal tracking performance. Finally, the purposes of saving energy, reducing consumption, reducing cost and reducing the occurrence of accidents damaging personal safety are achieved.
Detailed Description
The present invention will be further described with reference to the following specific examples.
The nonlinear batch process 2D optimal constraint fuzzy fault-tolerant control method comprises the following specific steps:
step 1, establishing an equivalent 2D-Rosser error augmentation model of a nonlinear batch process:
step 1.1, considering actuator gain faults, and establishing a 2D T-S fuzzy fault state space model according to the nonlinear and two-dimensional characteristics of the batch process, wherein the model is represented by formula (1):
and the input and output constraints thereof meet:
wherein x (t, k), y (t, k), u (t, k), ω (t, k) respectively represent the state of the system, the output of the system, the control input of the system, and the unknown disturbance;the upper bound constraint values of input and actual output are respectively, and t and k respectively represent the running time and the batch in the batch; t ispRepresents the total time of a batch run; p is the number of preconditions; r is the number of fuzzy rules; a. thei,Bi,CiA system state matrix, a system input matrix and a system output matrix under the corresponding fuzzy rule i are obtained; x (0, k) is the initial state of the kth batch; mijFor fuzzy sets, Mij(xj(t, k)) is xj(t, k) is MijDegree of membership of;byCan obtain the product
Defining different α values to indicate different fault types of the actuator, indicating partial failure fault when α is more than 0, indicating complete failure fault when α is equal to 0, and not relating to the problem of the optimal controller;
for partial actuator failure, α > 0 should satisfy the following form:
in the formula,α(α1) andis a known constant;
step 1.2, designing a 2D iterative learning controller u (t, k), as shown in formula (3):
therefore, u (t, k) is designed, and only k batches of the updating law r (t, k) at t moment are designed to realize that the system output y (t, k) tracks the given expected output yd(t,k);
Step 1.3 defines the state error and output error in the batch direction as follows:
δ(x(t,k))=x(t,k)-x(t,k-1) (4a)
order toThen the equation (1) is converted into an equivalent error model which is equation (5):
wherein,δ(ω(t,k))=ω(t,k)-ω(t,k-1),
δ(hi(x(t,k)))=hi(x(t,k))-hi(x(t,k-1)),is an adaptive identity matrix; and is provided withThe above model is then expressed as:
wherein,the horizontal and vertical state components of the adaptive vector, respectively, and Z (t, k) is the controlled output of the system;
step 2, designing an iterative learning control law for batch process models with interference and actuator faults:
step 2.1, a 2D predictive fault-tolerant controller is designed for the model (5) to achieve minimum optimal control under the maximum interference and the maximum fault, even if the model (5) achieves a steady state and meets the following robust performance indexes at each moment:
and (3) limiting:
and Q (Q > 0) and R (R > 0) are weighting matrices of appropriate dimensions, R (t + i | t, k) is the predicted value input at time t to t + i, and R (t, k) ═ R (t | t, k),represents an input increment;
step 2.2, defining a state feedback control law to enable the system to achieve secondary stability, wherein the selected updating law is as follows:
the closed-loop model of (5) is expressed as:
wherein,its closed-loop prediction model is represented as:
step 2.3, the stability of the system is proved by using a 2D Lyapunov function, wherein the Lyapunov function is defined as follows:
wherein M > 0
Step 2.4 the model (8c) can still run stably within the fault tolerance range, and the following requirements must be met:
(1) the 2D lyapunov function is inequality constrained:
(2) for a given semi-positive definite symmetric matrix R, Q, there is a positive definite symmetric matrix M ═ diag { Mh,Mv}, semi-positive definite symmetric matrixMatrix Yi,Yj(i ═ 1, 2.. r.,), scalar epsiloni,εjγ, θ > 0, 0 < α < 1,0 < μ < 1, such that the following matrix inequality holds:
and is
And is
Wherein,
the robust update law gain is:
therefore, the further update law is represented as:and (3) the value is substituted into u (t, k) ═ u (t, k-1) + r (t, k), so that a 2D constraint iterative learning control law design u (t, k) can be obtained, the step 2.4 is continuously repeated at the next moment, the new controlled variable u (t, k) is continuously solved, and the steps are sequentially circulated.
Examples
Consider a non-linear continuous stirred tank:
wherein, CAConcentration of A during irreversible reaction (A → B); t is the temperature of the reaction kettle; t isCFor the cooling stream temperature, the manipulated variables q are 100(L/min), V100 (L), CAf=1(mol/L),Tf=400(K),ρ=1000(g/L),CP=1(J/gK),k0=4.71×108(min-1),E/R=8000(K),ΔH=-2×105(J/mol),UA=1×105(J/minK). The variable range is limited to 200 ≦ TC≤450(K),0.01≤CAT is more than or equal to 1(mol/L) and more than or equal to 250 and less than or equal to 500 (K); y (t, k) ═ Cx (t, k) is the output. The above nonlinear model translates into:
wherein,
C=[1 0]
the control objective is to let the reactor temperature follow a given curve:
the simulation was performed for 50 batches, each run for 600 steps. The evaluation index uses a sum of squares root error (RSSE) for evaluating the control effect.
The initial phase controller gain calculated is:
K1=[-0.0905 0.0041 0.5031];
K2=[0.1120 0.0021 0.5799];
K3=[0.1344 -0.0078 0.2622];
K4=[0.0260 0.0042 0.4630]。
the method designs a fuzzy iterative learning control law under the condition of interference and faults in the nonlinear batch process, and effectively solves the problems that a system model is difficult to process under the nonlinear condition and the design problem of a constraint fuzzy optimal fault-tolerant control method under the condition of faults. The method effectively solves the problem that the control performance of the nonlinear batch process cannot be improved along with the increment of the batch, realizes the real-time optimization of the system in a variable constraint range regardless of the existence of faults, improves the control performance of the system, ensures that the system can still run stably under the worst condition and has the optimal tracking performance. Finally, the purposes of saving energy, reducing consumption, reducing cost and reducing the occurrence of accidents damaging personal safety are achieved.
Claims (1)
1. The nonlinear batch process 2D optimal constraint fuzzy fault-tolerant control method is characterized by comprising the following steps: the method comprises the following specific steps:
step 1, establishing an equivalent 2D-Rosser error augmentation model of a nonlinear batch process:
step 1.1, considering actuator gain faults, and establishing a 2D T-S fuzzy fault state space model according to the nonlinear and two-dimensional characteristics of the batch process, wherein the model is represented by formula (1):
and the input and output constraints thereof meet:
wherein x (t, k), y (t, k), u (t, k), ω (t, k) respectively represent the state of the system, the output of the system, the control input of the system, and the unknown disturbance;the upper bound constraint values of input and actual output are respectively, and t and k respectively represent the running time and the batch in the batch; t ispRepresents the total time of a batch run; p is the number of preconditions; r is the number of fuzzy rules; a. thei,Bi,CiA system state matrix, a system input matrix and a system output matrix under the corresponding fuzzy rule i are obtained; x (0, k) is the initial state of the kth batch; mijFor fuzzy sets, Mij(xj(t, k)) is xj(t, k) is MijDegree of membership of;byCan obtain the product
Defining different α values to indicate different fault types of the actuator, indicating partial failure fault when α is more than 0, indicating complete failure fault when α is equal to 0, and not relating to the problem of the optimal controller;
for partial actuator failure, α > 0 should satisfy the following form:
in the formula,α(α1) andis a known constant;
step 1.2, designing a 2D iterative learning controller u (t, k), as shown in formula (3):
therefore, u (t, k) is designed, and only k batches of the updating law r (t, k) at t moment are designed to realize that the system output y (t, k) tracks the given expected output yd(t,k);
Step 1.3 defines the state error and output error in the batch direction as follows:
δ(x(t,k))=x(t,k)-x(t,k-1) (4a)
order toThen the equation (1) is converted into an equivalent error model which is equation (5):
wherein,δ(ω(t,k))=ω(t,k)-ω(t,k-1),
δ(hi(x(t,k)))=hi(x(t,k))-hi(x(t,k-1)), i is an adaptive identity matrix; and is provided with The above model is then expressed as:
wherein,the horizontal and vertical state components of the adaptive vector, respectively, and Z (t, k) is the controlled output of the system;
step 2, designing an iterative learning control law for batch process models with interference and actuator faults:
step 2.1, a 2D predictive fault-tolerant controller is designed for the model (5) to achieve minimum optimal control under the maximum interference and the maximum fault, even if the model (5) achieves a steady state and meets the following robust performance indexes at each moment:
and (3) limiting:
and Q (Q > 0) and R (R > 0) are weighting matrices of appropriate dimensions, R (t + i | t, k) is the predicted value input at time t to t + i, and R (t, k) ═ R (t | t, k),represents an input increment;
step 2.2, defining a state feedback control law to enable the system to achieve secondary stability, wherein the selected updating law is as follows:
the closed-loop model of (5) is expressed as:
wherein,its closed-loop prediction model is represented as:
step 2.3, the stability of the system is proved by using a 2D Lyapunov function, wherein the Lyapunov function is defined as follows:
wherein,
step 2.4 the model (8c) can still run stably within the fault tolerance range, and the following requirements must be met:
(1) the 2D lyapunov function is inequality constrained:
(2) for a given semi-positive definite symmetric matrix R, Q, there is a positive definite symmetric matrix M ═ diag { Mh,Mv}, semi-positive definite symmetric matrixMatrix Yi,Yj(i ═ 1, 2.., r), scalar epsiloni,εjγ, θ > 0, 0 < α < 1,0 < μ < 1, such that the following matrix inequality holds:
and is
And is
Wherein,the robust update law gain is:
therefore, the further update law is represented as:and (3) the value is substituted into u (t, k) ═ u (t, k-1) + r (t, k), so that a 2D constraint iterative learning control law design u (t, k) can be obtained, the step 2.4 is continuously repeated at the next moment, the new controlled variable u (t, k) is continuously solved, and the steps are sequentially circulated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810009893.4A CN108227494B (en) | 2018-01-05 | 2018-01-05 | Nonlinear batch process 2D optimal constraint fuzzy fault-tolerant control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810009893.4A CN108227494B (en) | 2018-01-05 | 2018-01-05 | Nonlinear batch process 2D optimal constraint fuzzy fault-tolerant control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108227494A true CN108227494A (en) | 2018-06-29 |
CN108227494B CN108227494B (en) | 2022-01-04 |
Family
ID=62642838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810009893.4A Active CN108227494B (en) | 2018-01-05 | 2018-01-05 | Nonlinear batch process 2D optimal constraint fuzzy fault-tolerant control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108227494B (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108107723A (en) * | 2017-11-28 | 2018-06-01 | 辽宁石油化工大学 | The 2D Design of Optimized Fuzzy Controller methods of nonlinear batch process |
CN108628275A (en) * | 2018-07-04 | 2018-10-09 | 杭州电子科技大学 | A kind of chemical engineering industry process fuzzy constraint control method |
CN108873688A (en) * | 2018-07-11 | 2018-11-23 | 杭州电子科技大学 | A kind of chemical engineering industry process performance holding control method |
CN108897219A (en) * | 2018-07-11 | 2018-11-27 | 杭州电子科技大学 | A kind of uncertain industrial process constrained forecast control method of chemical industry |
CN109100941A (en) * | 2018-10-11 | 2018-12-28 | 海南师范大学 | The multistage anti-interference Design of Predictive method of batch process two dimension |
CN109471364A (en) * | 2018-12-28 | 2019-03-15 | 西安交通大学 | A kind of reliable control method of the switched nonlinear systems with actuator failures |
CN109541940A (en) * | 2018-11-13 | 2019-03-29 | 海南师范大学 | Mix fault tolerant control method based on 2D model multistage batch process constrained predictive |
CN109991853A (en) * | 2019-04-23 | 2019-07-09 | 海南师范大学 | Multistage batch process 2D input and output constrain tracking and controlling method |
CN110018639A (en) * | 2019-05-10 | 2019-07-16 | 杭州电子科技大学 | The robust Fault-Tolerant Control method of network control system based on two type T-S model of section |
CN110045611A (en) * | 2019-04-24 | 2019-07-23 | 华北电力大学 | A kind of Robust Iterative Learning model predictive control method applied to batch stirred tank reactor |
CN110442028A (en) * | 2019-09-09 | 2019-11-12 | 南京工程学院 | Anti- bifurcated control method based on fuzzy prediction |
CN110658724A (en) * | 2019-11-20 | 2020-01-07 | 电子科技大学 | Self-adaptive fuzzy fault-tolerant control method for nonlinear system |
CN110750049A (en) * | 2019-09-23 | 2020-02-04 | 海南师范大学 | Intermittent process 2D prediction fault-tolerant control method with time lag and disturbance |
CN111142503A (en) * | 2019-12-30 | 2020-05-12 | 山东科技大学 | Fault diagnosis method and system based on iterative learning observer |
CN112180717A (en) * | 2020-10-14 | 2021-01-05 | 河北工业大学 | Heat exchanger temperature fuzzy control method and system based on 2D model |
CN113093536A (en) * | 2021-03-23 | 2021-07-09 | 南京航空航天大学 | Adaptive incremental optimization fault-tolerant control method for nonlinear system actuator faults |
CN113625563A (en) * | 2021-08-06 | 2021-11-09 | 江南大学 | DC motor quantization iterative learning fault-tolerant control method |
CN113848847A (en) * | 2021-08-30 | 2021-12-28 | 北京工业大学 | Nonlinear control system fault detection method based on T-S fuzzy model |
CN114035523A (en) * | 2021-11-11 | 2022-02-11 | 海南师范大学 | Industrial process fault-tolerant control method based on data-driven Q-learning |
CN114237187A (en) * | 2021-12-20 | 2022-03-25 | 杭州电子科技大学 | Constraint learning advanced control method for industrial process |
CN114721268A (en) * | 2022-04-08 | 2022-07-08 | 江南大学 | Heuristic iterative learning control method for pressure robustness of injection molding nozzle |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5357436A (en) * | 1992-10-21 | 1994-10-18 | Rockwell International Corporation | Fuzzy logic traffic signal control system |
CN103488092A (en) * | 2013-10-16 | 2014-01-01 | 哈尔滨工业大学 | Satellite fault diagnosis and fault-tolerant control method based on T-S fuzzy model and learning observer |
CN103488080B (en) * | 2013-09-09 | 2015-11-11 | 河北科技师范学院 | Moon craft based on layered fuzzy system is coordinated to drive adaptive fusion method |
WO2016070095A1 (en) * | 2014-11-01 | 2016-05-06 | SMS/800, Inc. | Toll-free telecommunications management platform |
CN105683873A (en) * | 2013-04-27 | 2016-06-15 | 谷歌公司 | Fault-tolerant input method editor |
CN105988368A (en) * | 2016-07-27 | 2016-10-05 | 江南大学 | Fault-tolerant control method for networked control system with time-varying delay |
CN106257873A (en) * | 2016-07-16 | 2016-12-28 | 江南大学 | A kind of uncatalyzed coking H ∞ fault tolerant control method of nonlinear network networked control systems |
CN107038477A (en) * | 2016-08-10 | 2017-08-11 | 哈尔滨工业大学深圳研究生院 | A kind of neutral net under non-complete information learns the estimation method of combination with Q |
-
2018
- 2018-01-05 CN CN201810009893.4A patent/CN108227494B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5357436A (en) * | 1992-10-21 | 1994-10-18 | Rockwell International Corporation | Fuzzy logic traffic signal control system |
CN105683873A (en) * | 2013-04-27 | 2016-06-15 | 谷歌公司 | Fault-tolerant input method editor |
CN103488080B (en) * | 2013-09-09 | 2015-11-11 | 河北科技师范学院 | Moon craft based on layered fuzzy system is coordinated to drive adaptive fusion method |
CN103488092A (en) * | 2013-10-16 | 2014-01-01 | 哈尔滨工业大学 | Satellite fault diagnosis and fault-tolerant control method based on T-S fuzzy model and learning observer |
WO2016070095A1 (en) * | 2014-11-01 | 2016-05-06 | SMS/800, Inc. | Toll-free telecommunications management platform |
CN106257873A (en) * | 2016-07-16 | 2016-12-28 | 江南大学 | A kind of uncatalyzed coking H ∞ fault tolerant control method of nonlinear network networked control systems |
CN105988368A (en) * | 2016-07-27 | 2016-10-05 | 江南大学 | Fault-tolerant control method for networked control system with time-varying delay |
CN107038477A (en) * | 2016-08-10 | 2017-08-11 | 哈尔滨工业大学深圳研究生院 | A kind of neutral net under non-complete information learns the estimation method of combination with Q |
Non-Patent Citations (2)
Title |
---|
FUQIANG,等: "Fault Tolerant Control for T-S Fuzszy Systems With Simultaneous Actuator Sensor Faults", 《IEEE》 * |
王立敏,等: "基于 T-S 模糊模型的间歇过程的迭代学习容错控制", 《化工学报》 * |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108107723A (en) * | 2017-11-28 | 2018-06-01 | 辽宁石油化工大学 | The 2D Design of Optimized Fuzzy Controller methods of nonlinear batch process |
CN108107723B (en) * | 2017-11-28 | 2020-11-06 | 辽宁石油化工大学 | 2D optimal fuzzy controller design method for nonlinear intermittent process |
CN108628275A (en) * | 2018-07-04 | 2018-10-09 | 杭州电子科技大学 | A kind of chemical engineering industry process fuzzy constraint control method |
CN108897219A (en) * | 2018-07-11 | 2018-11-27 | 杭州电子科技大学 | A kind of uncertain industrial process constrained forecast control method of chemical industry |
CN108873688B (en) * | 2018-07-11 | 2021-02-09 | 杭州电子科技大学 | Chemical industry process performance maintaining control method |
CN108873688A (en) * | 2018-07-11 | 2018-11-23 | 杭州电子科技大学 | A kind of chemical engineering industry process performance holding control method |
CN109100941A (en) * | 2018-10-11 | 2018-12-28 | 海南师范大学 | The multistage anti-interference Design of Predictive method of batch process two dimension |
CN109100941B (en) * | 2018-10-11 | 2022-01-04 | 海南师范大学 | Multi-stage intermittent process two-dimensional anti-interference prediction controller design method |
CN109541940A (en) * | 2018-11-13 | 2019-03-29 | 海南师范大学 | Mix fault tolerant control method based on 2D model multistage batch process constrained predictive |
CN109541940B (en) * | 2018-11-13 | 2022-03-29 | 海南师范大学 | Multi-stage intermittent process limited prediction hybrid fault-tolerant control method based on 2D model |
CN109471364A (en) * | 2018-12-28 | 2019-03-15 | 西安交通大学 | A kind of reliable control method of the switched nonlinear systems with actuator failures |
CN109471364B (en) * | 2018-12-28 | 2020-10-27 | 西安交通大学 | Reliable control method of nonlinear switching system with actuator fault |
CN109991853A (en) * | 2019-04-23 | 2019-07-09 | 海南师范大学 | Multistage batch process 2D input and output constrain tracking and controlling method |
CN109991853B (en) * | 2019-04-23 | 2022-01-25 | 海南师范大学 | Multi-stage intermittent process 2D input and output constraint tracking control method |
CN110045611A (en) * | 2019-04-24 | 2019-07-23 | 华北电力大学 | A kind of Robust Iterative Learning model predictive control method applied to batch stirred tank reactor |
CN110045611B (en) * | 2019-04-24 | 2020-10-09 | 华北电力大学 | Robust iterative learning model prediction control method applied to intermittent stirred tank reactor |
CN110018639A (en) * | 2019-05-10 | 2019-07-16 | 杭州电子科技大学 | The robust Fault-Tolerant Control method of network control system based on two type T-S model of section |
CN110442028A (en) * | 2019-09-09 | 2019-11-12 | 南京工程学院 | Anti- bifurcated control method based on fuzzy prediction |
CN110442028B (en) * | 2019-09-09 | 2022-09-27 | 南京工程学院 | Fuzzy prediction based anti-bifurcation control method |
CN110750049A (en) * | 2019-09-23 | 2020-02-04 | 海南师范大学 | Intermittent process 2D prediction fault-tolerant control method with time lag and disturbance |
CN110750049B (en) * | 2019-09-23 | 2022-03-29 | 海南师范大学 | Intermittent process 2D prediction fault-tolerant control method with time lag and disturbance |
CN110658724B (en) * | 2019-11-20 | 2021-12-10 | 电子科技大学 | Self-adaptive fuzzy fault-tolerant control method for nonlinear system |
CN110658724A (en) * | 2019-11-20 | 2020-01-07 | 电子科技大学 | Self-adaptive fuzzy fault-tolerant control method for nonlinear system |
CN111142503A (en) * | 2019-12-30 | 2020-05-12 | 山东科技大学 | Fault diagnosis method and system based on iterative learning observer |
CN111142503B (en) * | 2019-12-30 | 2023-03-21 | 山东科技大学 | Fault diagnosis method and system based on iterative learning observer |
CN112180717B (en) * | 2020-10-14 | 2021-09-03 | 河北工业大学 | Heat exchanger temperature fuzzy control method and system based on 2D model |
CN112180717A (en) * | 2020-10-14 | 2021-01-05 | 河北工业大学 | Heat exchanger temperature fuzzy control method and system based on 2D model |
CN113093536A (en) * | 2021-03-23 | 2021-07-09 | 南京航空航天大学 | Adaptive incremental optimization fault-tolerant control method for nonlinear system actuator faults |
CN113625563A (en) * | 2021-08-06 | 2021-11-09 | 江南大学 | DC motor quantization iterative learning fault-tolerant control method |
CN113625563B (en) * | 2021-08-06 | 2024-03-15 | 江南大学 | DC motor quantization iteration learning fault-tolerant control method |
CN113848847A (en) * | 2021-08-30 | 2021-12-28 | 北京工业大学 | Nonlinear control system fault detection method based on T-S fuzzy model |
CN113848847B (en) * | 2021-08-30 | 2024-06-04 | 北京工业大学 | Nonlinear control system fault detection method based on T-S fuzzy model |
CN114035523A (en) * | 2021-11-11 | 2022-02-11 | 海南师范大学 | Industrial process fault-tolerant control method based on data-driven Q-learning |
CN114035523B (en) * | 2021-11-11 | 2024-07-05 | 海南师范大学 | Industrial process fault-tolerant control method based on data-driven Q-learning |
CN114237187A (en) * | 2021-12-20 | 2022-03-25 | 杭州电子科技大学 | Constraint learning advanced control method for industrial process |
CN114721268A (en) * | 2022-04-08 | 2022-07-08 | 江南大学 | Heuristic iterative learning control method for pressure robustness of injection molding nozzle |
Also Published As
Publication number | Publication date |
---|---|
CN108227494B (en) | 2022-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108227494B (en) | Nonlinear batch process 2D optimal constraint fuzzy fault-tolerant control method | |
CN109212974B (en) | Robust fuzzy prediction fault-tolerant control method of interval time-varying time-delay system | |
CN107976942B (en) | 2D constraint fault-tolerant control method for intermittent process of infinite time domain optimization | |
Li et al. | Offset-free fuzzy model predictive control of a boiler–turbine system based on genetic algorithm | |
CN109212971B (en) | Multi-stage intermittent process 2D linear secondary tracking fault-tolerant control method | |
CN102998974A (en) | Multi-model generalized predictive control system and performance evaluation method thereof | |
CN109407512B (en) | Time-lag-dependent intermittent process 2D input-output constraint control method | |
Pan et al. | L1 adaptive control for improving load-following capability of nonlinear boiler–turbine units in the presence of unknown uncertainties | |
Chopra et al. | Auto tuning of fuzzy PI type controller using fuzzy logic | |
Liang et al. | A transfer predictive control method based on inter-domain mapping learning with application to industrial roasting process | |
CN110750049B (en) | Intermittent process 2D prediction fault-tolerant control method with time lag and disturbance | |
CN109581873A (en) | The finite time specified performance control algolithm of unknown actuator dead zone switching system | |
CN110597055B (en) | Uncertainty-resistant 2D piecewise affine intermittent process minimum-maximum optimization prediction control method | |
CN110412873A (en) | Time lag batch process 2D iterative learning forecast Control Algorithm based on end conswtraint | |
Garrido et al. | Wastewater neutralization control based in fuzzy logic: simulation results | |
FI129470B (en) | Controller | |
CN111505937A (en) | Industrial process improved model prediction fault-tolerant control method under multiple modes | |
Fu et al. | Controller Design for Affine Nonlinear System Based on Constructing Optimization T–S Fuzzy Model and Disturbance Reconstruction | |
Cho et al. | Automatic rule generation using genetic algorithms for fuzzy-PID hybrid control | |
CN112379601A (en) | MFA control system design method based on industrial process | |
CN108628275A (en) | A kind of chemical engineering industry process fuzzy constraint control method | |
CN110825051A (en) | Multi-model control method of uncertainty system based on gap metric | |
CN111061155A (en) | Intermittent process 2D model prediction control method based on genetic algorithm optimization | |
Nosair et al. | Min–max control using parametric approximate dynamic programming | |
CN113110317B (en) | Hybrid model industrial process constraint robust prediction control comprehensive optimization design method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |