CN108226079A - The infrared double spectra devices of metallic graphite carbon alkene multilayer resonance structure enhancing Raman and preparation method - Google Patents
The infrared double spectra devices of metallic graphite carbon alkene multilayer resonance structure enhancing Raman and preparation method Download PDFInfo
- Publication number
- CN108226079A CN108226079A CN201711482994.5A CN201711482994A CN108226079A CN 108226079 A CN108226079 A CN 108226079A CN 201711482994 A CN201711482994 A CN 201711482994A CN 108226079 A CN108226079 A CN 108226079A
- Authority
- CN
- China
- Prior art keywords
- metal
- antenna
- micro
- infrared
- graphene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001069 Raman spectroscopy Methods 0.000 title claims abstract description 32
- 238000001228 spectrum Methods 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims description 15
- 230000002708 enhancing effect Effects 0.000 title claims description 6
- 229910052799 carbon Inorganic materials 0.000 title claims description 4
- -1 graphite carbon alkene Chemical class 0.000 title description 3
- 229910002804 graphite Inorganic materials 0.000 title 1
- 239000010439 graphite Substances 0.000 title 1
- 229910052751 metal Inorganic materials 0.000 claims abstract description 95
- 239000002184 metal Substances 0.000 claims abstract description 95
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 50
- 239000002082 metal nanoparticle Substances 0.000 claims abstract description 39
- 230000000694 effects Effects 0.000 claims abstract description 19
- 239000000126 substance Substances 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 238000001514 detection method Methods 0.000 claims abstract description 13
- 230000005684 electric field Effects 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 23
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 claims description 16
- 239000010408 film Substances 0.000 claims description 15
- 239000010931 gold Substances 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 15
- 229910052737 gold Inorganic materials 0.000 claims description 14
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 13
- 238000005566 electron beam evaporation Methods 0.000 claims description 12
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 10
- 239000010409 thin film Substances 0.000 claims description 10
- 238000001237 Raman spectrum Methods 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 9
- 238000005516 engineering process Methods 0.000 claims description 9
- 230000005284 excitation Effects 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 239000004332 silver Substances 0.000 claims description 8
- 238000002207 thermal evaporation Methods 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 238000002329 infrared spectrum Methods 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 238000005229 chemical vapour deposition Methods 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 5
- 239000002105 nanoparticle Substances 0.000 claims description 5
- 239000000523 sample Substances 0.000 claims description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 238000000206 photolithography Methods 0.000 claims description 4
- 229910016036 BaF 2 Inorganic materials 0.000 claims description 3
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 229910021607 Silver chloride Inorganic materials 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 3
- 238000003491 array Methods 0.000 claims description 3
- 238000004299 exfoliation Methods 0.000 claims description 3
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 3
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 3
- 239000012780 transparent material Substances 0.000 claims description 3
- 238000000233 ultraviolet lithography Methods 0.000 claims description 3
- 238000010894 electron beam technology Methods 0.000 claims 1
- 238000004544 sputter deposition Methods 0.000 claims 1
- 238000000862 absorption spectrum Methods 0.000 abstract description 6
- 238000012545 processing Methods 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 41
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 21
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 12
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000000985 reflectance spectrum Methods 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000001393 microlithography Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010905 molecular spectroscopy Methods 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
一种金属石墨烯多层谐振结构增强拉曼红外双光谱器件,包括衬底、金属反射层、介质层、金属微米天线、石墨烯薄膜、金属纳米颗粒。介质层位于金属微米天线和金属反射层之间,形成金属‑介质‑金属反射型微米天线结构。石墨烯薄膜位于金属纳米颗粒和金属微米天线之间,形成纳米间隙。在红外光波照射下,激发金属微米天线的天线谐振效应,在宽波段范围内增强痕量分子的红外吸收光谱信号。在可见光波段激光照射下,激发金属纳米颗粒的局域表面等离激元,在金属纳米颗粒与金属微米天线之间的纳米间隙产生高强度的局域电场谐振模式,增强痕量分子的拉曼散射信号。本发明具有增强波段宽,增强因子高,可大面积加工,成本低廉,探测物质种类范围广等优点。
A metal-graphene multilayer resonant structure enhanced Raman infrared dual-spectrum device includes a substrate, a metal reflection layer, a dielectric layer, a metal micro-antenna, a graphene film, and metal nanoparticles. The dielectric layer is located between the metal micro-antenna and the metal reflective layer, forming a metal-dielectric-metal reflective micro-antenna structure. The graphene film sits between the metal nanoparticles and the metal micro-antenna, forming a nanogap. Under the irradiation of infrared light, the antenna resonance effect of the metal micro-antenna is excited, and the infrared absorption spectrum signal of trace molecules is enhanced in a wide range of wavelengths. Under the laser irradiation in the visible light band, the local surface plasmons of metal nanoparticles are excited, and a high-intensity local electric field resonance mode is generated in the nano-gap between the metal nanoparticles and the metal micro-antenna, which enhances the Raman of trace molecules. scattered signal. The invention has the advantages of wide enhanced band, high enhanced factor, large-area processing, low cost, wide detection range of substances and the like.
Description
技术领域technical field
本发明涉及表面增强光谱技术领域,尤其涉及一种在单个器件上实现表面拉曼光谱及表面红外吸收光谱双增强的器件及其制备方法。The invention relates to the technical field of surface-enhanced spectroscopy, in particular to a device capable of achieving double enhancement of surface Raman spectrum and surface infrared absorption spectrum on a single device and a preparation method thereof.
背景技术Background technique
表面增强型光谱技术是基于表面等离激元效应发展起来的一种分子光谱检测技术,是确定生物分子组成及结构等重要信息的强力工具,在食品安全、环境监测、化学分析和生物医疗等领域具有广阔的应用前景。该技术最具有代表性的是表面增强拉曼散射光谱技术(Surface-enhanced Raman scattering,SERS)和表面增强红外吸收光谱技术(Surface-enhanced infrared absorption,SEIRA)。其中,SERS技术可以探测分子中化学键振动引起的极化率变化信息,而SEIRA技术可以探测分子中化学键振动引起的偶极矩变化信息。因而,它们是两种互补的分子技术,任何单一的技术(SERS或SEIRA)仅能探测分子的部分振动模式,无法同时获得分子的极化率和偶极矩变化信息。为了全面能够获得化学键振动模式繁多的生物分子的结构信息,研究人员将这两种技术的优势结合起来,提出了表面拉曼及红外光谱双增强技术,在同一基底上实现对分子极化率和偶极矩的探测。目前有两种解决思路。Surface-enhanced spectroscopy is a molecular spectroscopy detection technology developed based on the surface plasmon effect. It is a powerful tool for determining important information such as the composition and structure of biomolecules. It is used in food safety, environmental monitoring, chemical analysis and biomedicine. The field has broad application prospects. The most representative techniques are Surface-enhanced Raman scattering (SERS) and Surface-enhanced infrared absorption (SEIRA). Among them, the SERS technology can detect the change information of the polarizability caused by the vibration of the chemical bond in the molecule, and the SEIRA technology can detect the change information of the dipole moment caused by the vibration of the chemical bond in the molecule. Therefore, they are two complementary molecular techniques. Any single technique (SERS or SEIRA) can only detect part of the vibrational modes of molecules, and cannot simultaneously obtain information on the polarizability and dipole moment changes of molecules. In order to comprehensively obtain the structural information of biomolecules with various chemical bond vibration modes, the researchers combined the advantages of these two technologies and proposed a double-enhancement technology of surface Raman and infrared spectroscopy, which can realize the molecular polarizability and molecular polarization on the same substrate. Detection of dipole moment. There are currently two solutions.
一是制备金属纳米颗粒,在可见及红外两个波段产生局域电磁谐振模式。NaomiJ.Halas等首次利用金纳米球壳结构阵列获得了SERS和SEIRA光谱双增强信号。为了改进纳米颗粒的形貌,Wen-Bin Cai等制备了银纳米粒子岛膜,并实现了对血红素的SEIRA和SERS光谱检测。Monica Baia等采用连续沉积法得到了自组装金纳米颗粒,实现了对氨基苯硫酚分子的SERS和SEIRA光谱信号探测。Jiannian Yao等组装了网状金纳米颗粒,对被测分子的SERS增强因子为106,SEIRA增强因子为102。尽管该类方法在同一芯片上成功实现了SERS与SEIRA光谱双增强,但是红外波段SEIRA的增强效果较差,其增强因子仅为102。One is to prepare metal nanoparticles to generate localized electromagnetic resonance modes in the visible and infrared bands. For the first time, NaomiJ.Halas et al. obtained double enhanced signals of SERS and SEIRA spectra by using the gold nanosphere shell structure array. In order to improve the morphology of nanoparticles, Wen-Bin Cai et al. prepared silver nanoparticle island films and realized the SEIRA and SERS spectral detection of heme. Monica Baia et al. obtained self-assembled gold nanoparticles by continuous deposition method, and realized the SERS and SEIRA spectral signal detection of p-aminothiophenol molecules. Jiannian Yao et al. assembled network-shaped gold nanoparticles, and the SERS enhancement factor for the tested molecules was 10 6 , and the SEIRA enhancement factor was 10 2 . Although this type of method successfully achieves dual enhancement of SERS and SEIRA spectra on the same chip, the enhancement effect of SEIRA in the infrared band is poor, and its enhancement factor is only 10 2 .
二是设计金属纳米天线,在可见及红外两个波段产生局域电磁谐振模式。2013年,Cristiano D’Andrea等利用电子束光刻技术设计了金纳米天线结构阵列,通过改变激发场的极化方向在红外波段激发天线的天线谐振效应,从而产生高强度的尖锐局域电磁谐振峰。该方法对亚甲蓝分子的SEIRA增强因子大幅度提高到了6×105。然而,在器件加工完成后,其谐振频率固定不变。狭窄的光谱增强波段无法覆盖中红外特征指纹区,使得该器件只能对少数分子进行SEIRA光谱检测。同时,该基底的SERS增强因子只有102。The second is to design metal nano-antennas to generate local electromagnetic resonance modes in visible and infrared bands. In 2013, Cristiano D'Andrea et al. used electron beam lithography to design an array of gold nanoantenna structures. By changing the polarization direction of the excitation field, the antenna resonance effect of the antenna is excited in the infrared band, thereby producing a high-intensity sharp local electromagnetic resonance. peak. This method greatly increases the SEIRA enhancement factor of methylene blue molecule to 6×10 5 . However, after the device is fabricated, its resonant frequency is fixed. The narrow spectral enhancement band cannot cover the mid-infrared characteristic fingerprint region, making the device only capable of SEIRA spectral detection for a few molecules. Meanwhile, the SERS enhancement factor of the substrate is only 10 2 .
综上所述,尽管以上两种方法均能实现了对待测物质的拉曼信号和红外吸收光谱信号的双增强效果,但是,它们都是以牺牲其中一个(SERS或SEIRA)增强因子为代价的,无法保证拉曼信号和红外光谱信号都具有高的增强因子。In summary, although the above two methods can achieve the double enhancement effect of the Raman signal and the infrared absorption spectrum signal of the substance to be tested, they are all at the expense of one of the (SERS or SEIRA) enhancement factors , there is no guarantee that both the Raman signal and the infrared spectrum signal have a high enhancement factor.
发明内容Contents of the invention
本发明为了克服现有技术的不足,提出一种基于金属石墨烯多层谐振结构增强拉曼红外双光谱器件及制备方法,将金属纳米颗粒与金属微米天线结合,分别激发金属纳米颗粒在可见光波段的局域等离子体效应和金属微米天线在红外波段的天线谐振效应,从而实现待测物质拉曼光谱和红外吸收光谱的双增强效果,具有使用方便,增强因子高,可大面积加工,实现多种未知分子一步探测等优点,可用于环境监测、食品安全等领域。In order to overcome the deficiencies of the prior art, the present invention proposes a Raman infrared dual-spectrum device based on a metal graphene multilayer resonance structure and a preparation method, which combines metal nanoparticles with metal micro-antennas to respectively excite metal nanoparticles in the visible light band The local plasma effect and the antenna resonance effect of the metal micron antenna in the infrared band can realize the double enhancement effect of the Raman spectrum and the infrared absorption spectrum of the substance to be measured. It has the advantages of one-step detection of unknown molecules and can be used in environmental monitoring, food safety and other fields.
为解决本发明的技术问题,所采用的技术方案为:For solving the technical problem of the present invention, the technical scheme adopted is:
基于金属石墨烯多层谐振结构增强拉曼红外双光谱器件,包括自下而上依次设置的衬底、金属反射层、介质层、金属微米天线、石墨烯薄膜以及金属纳米颗粒。The Raman infrared dual-spectrum device based on a metal-graphene multilayer resonance structure includes a substrate, a metal reflective layer, a dielectric layer, a metal micro-antenna, a graphene film, and metal nanoparticles arranged sequentially from bottom to top.
所述介质层位于金属微米天线和所述金属反射层之间,形成金属-介质-金属反射型微米天线结构,在红外波段增强器件的SEIRA性能。The dielectric layer is located between the metal micro-antenna and the metal reflective layer, forming a metal-dielectric-metal reflective micro-antenna structure, and enhancing the SEIRA performance of the device in the infrared band.
所述石墨烯薄膜位于所述金属纳米颗粒和所述金属微米天线之间,形成纳米间隙,在可见光波段增强器件的SERS性能。The graphene film is located between the metal nanoparticles and the metal micro-antenna, forming a nano-gap, and enhancing the SERS performance of the device in the visible light band.
所述金属微米天线是通过在所述介质层上设计不同区域的微米天线阵列,每一个区域对应一种特定尺寸的微米天线,使得微米天线具有一个特定的谐振峰(对应谐振波长为λ)。通过设计多个参数递增变化的微米天线阵列区域(例如:区域1,区域2,……,区域10,分别对应于谐振波长λ1,λ2,……,λ10)来实现天线的谐振峰在3~16μm红外范围内分布,可以在红外光波激发下产生天线谐振效应,从而在金属微米天线边缘处产生强局域电场。当天线谐振频率与待检测物质的分子振动频率相一致时,可极大增强被测分子周围单位空间内的电磁场强度,从而在不同区域实现对待测分子不同振动模式的选择性增强和宽波段探测。所述的区域个数为2~10个,每个区域的面积范围在200μm*200μm~1mm*1mm;每个区域中的微米天线阵列图形一样,图形尺寸及周期参数不一样,可按照权利要求的参数设计。The metal micro-antenna is designed by designing micro-antenna arrays in different areas on the dielectric layer, and each area corresponds to a micro-antenna of a specific size, so that the micro-antenna has a specific resonance peak (corresponding to a resonance wavelength of λ). Realize the resonant peak of the antenna by designing multiple micron antenna array regions with incrementally changing parameters (for example: region 1, region 2,..., region 10, corresponding to the resonant wavelengths λ 1 , λ 2 ,..., λ 10 , respectively) Distributed in the infrared range of 3-16 μm, it can generate antenna resonance effect under the excitation of infrared light waves, thereby generating a strong local electric field at the edge of the metal micro-antenna. When the resonance frequency of the antenna is consistent with the molecular vibration frequency of the substance to be detected, the electromagnetic field strength in the unit space around the molecule to be detected can be greatly enhanced, thereby realizing selective enhancement and wide-band detection of different vibration modes of the molecule to be detected in different regions . The number of said regions is 2 to 10, and the area of each region ranges from 200μm*200μm to 1mm*1mm; the pattern of the micron antenna array in each region is the same, and the pattern size and period parameters are different, according to the requirements parameter design.
所述金属纳米探颗粒可以在可见光波激发下产生局域表面等离激元,从而在金属纳米颗粒周围产生强局域电场,进一步利用石墨烯纳米间隙使得金属纳米颗粒与金属微米天线发生耦合,提高器件的SERS性能。The metal nanoprobe particles can generate localized surface plasmons under the excitation of visible light waves, thereby generating a strong local electric field around the metal nanoparticles, and further utilizing the graphene nano-gap to couple the metal nanoparticles to the metal micro-antenna, Improve the SERS performance of the device.
本双增强器件通过分别探测待测物质的红外吸收信号和拉曼散射信号,对待测物质的分子结构进行全面精确解析。The dual-enhancement device detects the infrared absorption signal and the Raman scattering signal of the substance to be measured respectively, so as to comprehensively and accurately analyze the molecular structure of the substance to be measured.
进一步地,所述金属微米天线在器件的横切方向上呈矩形、正方形、圆形、椭圆形、六边形或十字架形。金属微米天线的尺寸和周期范围为1μm~10μm,厚度范围为20~200nm。Further, the metal micro-antenna is rectangular, square, circular, elliptical, hexagonal or cross-shaped in the transverse direction of the device. The size and period of the metal micro antenna range from 1 μm to 10 μm, and the thickness ranges from 20 to 200 nm.
进一步地,所述的石墨烯薄膜为1~10层,厚度小于5nm。Further, the graphene thin film has 1-10 layers, and the thickness is less than 5nm.
进一步地,所述金属纳米颗粒粒径范围为10~300nm,金属材料选自金、银、铜、铝。Further, the particle diameter of the metal nanoparticles ranges from 10 to 300 nm, and the metal material is selected from gold, silver, copper, and aluminum.
进一步地,所述介质层是厚度范围为20~1000nm,位于金属微米天线和金属反射层之间形成反射型微米天线结构。介质层的材料为红外透明材料,可选自:Al2O3,KBr,MgF2,CaF2,BaF2,AgCl,ZnSe,SiO2,类金刚石碳膜。Further, the dielectric layer has a thickness ranging from 20 to 1000 nm, and is located between the metal micro-antenna and the metal reflective layer to form a reflective micro-antenna structure. The material of the dielectric layer is an infrared transparent material, which can be selected from: Al 2 O 3 , KBr, MgF 2 , CaF 2 , BaF 2 , AgCl, ZnSe, SiO 2 , and diamond-like carbon film.
本发明进一步提出以上增强拉曼红外双光谱器件的制备方法。包括以下步骤:The present invention further proposes a preparation method of the above enhanced Raman infrared dual-spectrum device. Include the following steps:
(1)制备金属反射层:利用磁控溅射或电子束蒸镀方法在沉底上沉积一层金属层,作为反射层。(1) Preparation of the metal reflective layer: a metal layer is deposited on the bottom of the sink by magnetron sputtering or electron beam evaporation as a reflective layer.
(2)制备介质层:利用电子束蒸镀、原子沉积或分子束外延生长的方法在金属反射层上沉积介质层。(2) Preparing a dielectric layer: depositing a dielectric layer on the metal reflective layer by means of electron beam evaporation, atomic deposition or molecular beam epitaxy.
(3)制备金属微米天线:利用紫外光刻、激光直写等光刻技术,结合电子束蒸镀、磁控溅射、热蒸镀等方法在介质层上沉积金属微米天线。(3) Preparation of metal micro-antennas: Utilize ultraviolet lithography, laser direct writing and other photolithography technologies, combined with electron beam evaporation, magnetron sputtering, thermal evaporation and other methods to deposit metal micro-antennas on the dielectric layer.
(4)转移石墨烯薄膜:利用机械剥离工艺或者化学气相沉积法制备石墨烯薄膜,并将制备得到的石墨烯转移到金属微米天线上。石墨烯薄膜的层数为1~10层,多层结构可以通过直接生长多层石墨烯或多次转移方式实现。(4) Transfer graphene thin film: use mechanical exfoliation process or chemical vapor deposition method to prepare graphene thin film, and transfer the prepared graphene to the metal micro-antenna. The number of layers of the graphene film is 1-10 layers, and the multi-layer structure can be realized by directly growing multi-layer graphene or multiple transfer methods.
(5)制备金属纳米颗粒:利用电子束蒸镀、磁控溅射、热蒸镀等方法在石墨烯薄膜上沉积金属纳米颗粒。进一步地,所述金属纳米颗粒可通过电子束蒸镀、磁控溅射、热蒸镀以缓慢的速率沉积直接得到,沉积的金属厚度范围为3~20nm;也可进一步通过高温(300~500℃)退火方式控制金属纳米颗粒的尺寸,粒径范围在10~300nm;金属材料选自金、银、铜、铝。(5) Preparation of metal nanoparticles: deposit metal nanoparticles on the graphene film by electron beam evaporation, magnetron sputtering, thermal evaporation and other methods. Further, the metal nanoparticles can be deposited at a slow rate by electron beam evaporation, magnetron sputtering, thermal evaporation It can be directly obtained by deposition, and the deposited metal thickness ranges from 3 to 20nm; the size of metal nanoparticles can also be controlled by high temperature (300-500°C) annealing, and the particle size range is 10-300nm; the metal material is selected from gold, silver, copper, aluminum.
相对于现有技术,本发明具有如下优点:Compared with the prior art, the present invention has the following advantages:
第一,本发明的双增强器件采用自下而上的加工方式,并且金属微米天线和金属纳米颗粒的制备方法与标准微光刻工艺和镀膜工艺相兼容,具有加工工艺简单、可以批量化生产的明显优势。First, the double-enhanced device of the present invention adopts a bottom-up processing method, and the preparation method of metal micro-antenna and metal nanoparticles is compatible with the standard microlithography process and coating process, and has the advantages of simple processing technology and mass production obvious advantage.
第二,本发明可以通过精确控制金属微米天线的尺寸及周期参数,在红外波段对其共振波长进行精确控制,同时利用反射型微米天线结构上下反射面形成的法珀谐振效应,进一步增强对红外光波的局域,从而实现对待测物质红外光谱信号的最大增强效果;同时,通过在同一基片的不同区域上设计不同尺寸及周期参数的金属微米天线,使其产生谐振模式,从而实现对待测物质的宽波段增强探测。Second, the present invention can accurately control the resonance wavelength of the metal micron antenna in the infrared band by precisely controlling the size and period parameters of the metal micron antenna. The local area of the light wave, so as to achieve the maximum enhancement effect of the infrared spectrum signal of the substance to be measured; at the same time, by designing metal micron antennas with different sizes and period parameters on different regions of the same substrate, it can generate resonance modes, so as to realize the Broadband enhanced detection of matter.
第三,石墨烯作为一种二维材料,厚度仅有0.34nm,本发明利用石墨烯作为亚纳米隔层,夹在金属纳米颗粒和金属微米天线之间,形成纳米间隙,使金属纳米颗粒不仅在水平方向上具有纳米颗粒之间的模式耦合,同时在垂直方向上具有金属纳米颗粒与金属微米天线之间的耦合,从而可以极大增强器件的SERS性能。同时,石墨烯和分子之间的π-π堆叠和电荷转移引起的化学增强也对SERS具有一定的促进作用。Third, graphene, as a two-dimensional material, has a thickness of only 0.34nm. The present invention uses graphene as a sub-nanometer interlayer, which is sandwiched between metal nanoparticles and metal micro-antennas to form a nano-gap, so that the metal nanoparticles not only There is mode coupling between nanoparticles in the horizontal direction, and coupling between metal nanoparticles and metal micro-antennas in the vertical direction, which can greatly enhance the SERS performance of the device. Meanwhile, the chemical enhancement caused by π-π stacking and charge transfer between graphene and molecules also has a certain promotion effect on SERS.
第四,本发明在同一器件同时实现了痕量分子拉曼光谱和红外光谱信号的测量,避免了更换测量方法时还需重新制作器件及样本的步骤,能够实现痕量分子振动信息的完整测量,加快了样品检测速度,提高了工作效率。Fourth, the present invention realizes the measurement of trace molecular Raman spectrum and infrared spectrum signals at the same time in the same device, avoiding the steps of re-making devices and samples when changing the measurement method, and can realize the complete measurement of trace molecular vibration information , to speed up the sample detection speed and improve work efficiency.
可见,本发明能够同时实现表面拉曼光谱及表面红外光谱的双重增强作用,并具有灵敏度高,稳定性好,可大面积加工,宽波段增强探测等优点,具有广泛的应用前景。It can be seen that the present invention can realize the double enhancement of surface Raman spectrum and surface infrared spectrum at the same time, and has the advantages of high sensitivity, good stability, large-area processing, wide-band enhanced detection, etc., and has broad application prospects.
附图说明Description of drawings
图1为金属石墨烯多层谐振结构增强拉曼红外双光谱器件示意图;Fig. 1 is a schematic diagram of a metal graphene multilayer resonance structure enhanced Raman infrared dual-spectrum device;
图2为同一器件上包括多个不同区域的示意图;Fig. 2 is a schematic diagram including a plurality of different regions on the same device;
图3(a)-图3(f)为矩形,正方形,圆盘形,椭圆形,六边形,十字架形的金属微米天线示意图;Fig. 3 (a)-Fig. 3 (f) are rectangle, square, disc shape, ellipse, hexagon, the metal micron antenna schematic diagram of cross shape;
图3(g)为截面为正方形时金属微米天线的三维示意图;Fig. 3 (g) is the three-dimensional schematic diagram of the metal micron antenna when the cross section is a square;
图4为金属石墨烯多层谐振结构增强拉曼红外双光谱方法及器件的制备流程图;Fig. 4 is the preparation flowchart of metal graphene multilayer resonant structure enhanced Raman infrared double spectrum method and device;
图5(a)为微米矩形金光栅/氧化铝/金反射层反射型微米天线结构的SEM图片;Fig. 5 (a) is the SEM picture of micron rectangular gold grating/aluminum oxide/gold reflective layer reflective micron antenna structure;
图5(b)为石墨烯和银纳米颗粒覆盖后反射型微米天线结构的SEM图片;Fig. 5 (b) is the SEM picture of graphene and silver nanoparticles covering the reflective micro-antenna structure;
图6(a)为银纳米颗粒的粒径分布图;Fig. 6 (a) is the particle size distribution figure of silver nanoparticles;
图6(b)为不同粒径银纳米颗粒的紫外可见吸收光谱;Fig. 6 (b) is the ultraviolet-visible absorption spectrum of different size silver nanoparticles;
图7(a)为不同粒径银纳米颗粒之后双增强器件的拉曼光谱;Figure 7(a) is the Raman spectrum of the double-enhanced device after silver nanoparticles with different particle sizes;
图7(b)为不同分子浓度的罗丹明R6G溶液的平均拉曼光谱;Fig. 7 (b) is the average Raman spectrum of the rhodamine R6G solution of different molecular concentrations;
图8(a)为不同光栅线宽条件下双增强器件的反射光谱;Figure 8(a) is the reflectance spectrum of the dual enhancement device under different grating linewidth conditions;
图8(b)为旋涂环氧乙烷PEO后不同光栅线宽条件下双增强器件的反射光谱;Figure 8(b) is the reflectance spectrum of the double-enhanced device under different grating linewidth conditions after spin-coating ethylene oxide PEO;
图8(c)为基线处理后PEO分子的增强振动信号曲线。Figure 8(c) is the enhanced vibrational signal curve of PEO molecules after baseline treatment.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图对本发明的优选实例作进一步详细描述。附图中相同的附图标记代表相同或类似的部件。In order to make the purpose, technical solution and advantages of the present invention more clear, preferred examples of the present invention will be further described in detail below in conjunction with the accompanying drawings. The same reference numerals in the drawings represent the same or similar components.
参见图1,本发明设计的金属石墨烯多层谐振结构增强拉曼红外双光谱器件包括自下而上依次设置的衬底1、金属反射层2、介质层3、金属微米天线4、石墨烯薄膜5以及金属纳米颗粒6。测试时,待测检测物质7通过喷涂、旋涂等方式置于器件上。介质层3位于金属微米天线4和金属反射层2之间,形成金属-介质-金属反射型微米天线结构,介质层3的厚度范围为:20~1000nm,介质层的材料为红外透明材料,可选自:Al2O3,KBr,MgF2,CaF2,BaF2,AgCl,ZnSe,SiO2,类金刚石碳膜。石墨烯薄膜5的层数为1~10层,位于所述金属纳米颗粒6和所述金属微米天线4之间,形成纳米间隙,使金属纳米颗粒与金属微米天线发生耦合,提高器件的SERS性能。金属纳米颗粒6的粒径范围为10~300nm,金属材料选自金、银、铜、铝。Referring to Fig. 1, the metal graphene multilayer resonant structure enhanced Raman infrared dual-spectrum device designed by the present invention includes a substrate 1, a metal reflective layer 2, a dielectric layer 3, a metal micro-antenna 4, and a graphene Thin films 5 and metal nanoparticles 6 . During the test, the detection substance 7 to be tested is placed on the device by means of spray coating, spin coating or the like. The medium layer 3 is located between the metal micron antenna 4 and the metal reflective layer 2, forming a metal-medium-metal reflective micron antenna structure. The thickness of the medium layer 3 is in the range of 20 to 1000 nm, and the material of the medium layer is an infrared transparent material, which can be Selected from: Al 2 O 3 , KBr, MgF 2 , CaF 2 , BaF 2 , AgCl, ZnSe, SiO 2 , diamond-like carbon film. The number of layers of the graphene film 5 is 1 to 10 layers, located between the metal nanoparticles 6 and the metal micro-antenna 4, forming a nano-gap, coupling the metal nanoparticles and the metal micro-antenna, and improving the SERS performance of the device . The particle size range of the metal nanoparticles 6 is 10-300nm, and the metal material is selected from gold, silver, copper, and aluminum.
以上结构中,金属微米天线4可以在红外光波激发下产生天线谐振效应,从而在金属微米天线4边缘处产生强局域电场。进一步通过在介质层3上不同区域设计不同结构的微米天线阵列,使得金属微米天线4的谐振峰分布在3~16μm红外范围内。当天线谐振频率与待检测物质7的分子振动频率相一致时,可极大增强被测分子周围单位空间内的电磁场强度,从而在不同区域实现对待测分子不同振动模式的选择性增强和宽波段探测。金属纳米探颗粒6可以在可见光波激发下产生局域表面等离激元,从而在金属纳米颗粒6周围产生强局域电场,进一步利用石墨烯纳米间隙使得金属纳米颗粒6与金属微米天线4发生耦合,提高器件的SERS性能。通过分别探测待测物质7的红外振动信号和拉曼散射信号,即可对待测物质7的分子结构进行全面精确解析。In the above structure, the metal micro-antenna 4 can produce an antenna resonance effect under the excitation of infrared light waves, thereby generating a strong local electric field at the edge of the metal micro-antenna 4 . Further, by designing micro-antenna arrays with different structures in different regions on the dielectric layer 3, the resonant peaks of the metal micro-antenna 4 are distributed in the infrared range of 3-16 μm. When the resonance frequency of the antenna is consistent with the molecular vibration frequency of the substance to be detected, the electromagnetic field strength in the unit space around the molecule to be detected can be greatly enhanced, thereby achieving selective enhancement and wide band of different vibration modes of the molecule to be detected in different regions probing. The metal nanoprobe particle 6 can generate localized surface plasmons under the excitation of visible light waves, thereby generating a strong local electric field around the metal nanoparticle 6, and further utilizing the graphene nanogap to make the metal nanoparticle 6 and the metal micro-antenna 4 interact Coupling improves the SERS performance of the device. By separately detecting the infrared vibration signal and the Raman scattering signal of the substance 7 to be measured, the molecular structure of the substance 7 to be measured can be fully and accurately analyzed.
参见图2,所述的区域个数为2~10个,每个区域的面积范围在200μm*200μm~1mm*1mm之间;每个区域中的微米天线阵列图形一样,结构尺寸及周期参数不一样。每一个区域对应一种特定尺寸的微米天线,使得微米天线具有一个特定的谐振峰(对应谐振波长为λ)。通过设计多个参数递增变化的微米天线阵列区域。例如:区域1,区域2,……,区域10,分别对应于谐振波长λ1,λ2,……,λ10。来实现天线的谐振峰在3~16μm红外范围内分布。Referring to Figure 2, the number of regions is 2 to 10, and the area of each region ranges from 200μm*200μm to 1mm*1mm; the micron antenna array pattern in each region is the same, and the structure size and period parameters are different. Same. Each area corresponds to a micron antenna of a specific size, so that the micron antenna has a specific resonance peak (corresponding to a resonance wavelength of λ). By designing multiple micron antenna array areas with incrementally changing parameters. For example: area 1, area 2, ..., area 10, respectively corresponding to resonance wavelengths λ 1 , λ 2 , ..., λ 10 . To realize the distribution of the resonant peak of the antenna in the infrared range of 3-16 μm.
金属微米天线4的形状根据实际需要选择,可以为矩形、正方形、圆形、椭圆形、六边形、十字架形等的一种或者多种组合。其中图3(a)~图3(f)为金属微米天线在双增强器件的横切方向上的截面图,图3(g)给出了截面为正方形的微米天线结构的三维示意图。金属微米天线的尺寸和周期范围为1μm~10μm,厚度范围为20~200nm。The shape of the metal micro antenna 4 is selected according to actual needs, and can be one or more combinations of rectangle, square, circle, ellipse, hexagon, cross, etc. Figures 3(a) to 3(f) are cross-sectional views of the metal micro-antenna in the transverse direction of the dual booster device, and Figure 3(g) shows a three-dimensional schematic diagram of the micro-antenna structure with a square cross-section. The size and period of the metal micro antenna range from 1 μm to 10 μm, and the thickness ranges from 20 to 200 nm.
图4为制备金属石墨烯多层谐振结构增强拉曼红外双光谱器件的流程图:Fig. 4 is the flowchart of preparing metal graphene multilayer resonant structure enhanced Raman infrared dual-spectrum device:
步骤S1:制备金属反射层。利用磁控溅射或电子束蒸镀方法在衬底1上沉积一层金属层,作为金属反射层2。Step S1: preparing a metal reflective layer. A metal layer is deposited on the substrate 1 as the metal reflective layer 2 by means of magnetron sputtering or electron beam evaporation.
步骤S2:制备介质层。利用电子束蒸镀、原子沉积或分子束外延生长的方法在金属反射层2上沉积介质层3。Step S2: preparing a medium layer. The dielectric layer 3 is deposited on the metal reflective layer 2 by means of electron beam evaporation, atomic deposition or molecular beam epitaxy.
步骤S3:制备金属微米天线。利用紫外光刻、激光直写等微光刻技术,结合电子束蒸镀、磁控溅射、热蒸镀等方法在介质层上沉积金属微米天线4。金属微米天线4的形状可以选择矩形、正方形、圆形、椭圆形、六边形、十字架形等的其中一种或多种组合,金属微米天线的尺寸和周期范围为1μm~10μm,厚度范围为20~200nm。Step S3: preparing the metal micro-antenna. Using micro-lithography techniques such as ultraviolet lithography and laser direct writing, combined with methods such as electron beam evaporation, magnetron sputtering, and thermal evaporation, the metal micro-antenna 4 is deposited on the dielectric layer. The shape of the metal micro antenna 4 can be selected from one or more combinations of rectangle, square, circle, ellipse, hexagon, cross, etc. The size and period of the metal micro antenna range from 1 μm to 10 μm, and the thickness range is 20-200nm.
步骤S4:转移石墨烯薄膜。利用机械剥离工艺或者化学气相沉积法制备石墨烯薄膜5,并将制备得到的石墨烯转移到金属微米天线4上;石墨烯薄膜5的层数为1~10层,多层结构可以通过直接生长多层石墨烯或多次转移方式实现;Step S4: transferring the graphene film. Graphene thin film 5 is prepared by mechanical exfoliation process or chemical vapor deposition method, and the prepared graphene is transferred to the metal micro antenna 4; the number of layers of graphene thin film 5 is 1 to 10 layers, and the multilayer structure can be directly grown Realized by multi-layer graphene or multiple transfer methods;
步骤S5:制备金属纳米颗粒。利用电子束蒸镀、磁控溅射、热蒸镀等方法在石墨烯薄膜5上沉积金属纳米颗粒6。金属纳米颗粒6可通过电子束蒸镀、磁控溅射、热蒸镀以缓慢的速率沉积直接得到,沉积的金属厚度范围为3~20nm,也可进一步通过高温(300~500℃)退火方式控制金属纳米颗粒6的尺寸,粒径范围在10~300nm,金属材料选自金、银、铜、铝。Step S5: preparing metal nanoparticles. Metal nanoparticles 6 are deposited on the graphene film 5 by means of electron beam evaporation, magnetron sputtering, thermal evaporation and the like. Metal nanoparticles 6 can be deposited at a slow rate by electron beam evaporation, magnetron sputtering, thermal evaporation It is directly obtained by deposition, and the thickness of the deposited metal is in the range of 3-20nm. The size of the metal nanoparticles 6 can also be controlled by high-temperature (300-500°C) annealing. The particle size ranges from 10-300nm, and the metal material is selected from gold and silver. , copper, aluminum.
步骤S6:通过喷涂、旋涂等方式将待测物质7置于器件上。Step S6: placing the substance to be tested 7 on the device by means of spray coating, spin coating, or the like.
下面进一步结合实施例对本发明的实现原理和预期效果进行阐述。然而,本发明并不受限于以下公开的示范性实施例,相关领域技术人员可以通过不同形式来对其加以实现。说明书的实质仅仅是帮助相关领域技术人员综合理解本发明的具体细节。The implementation principles and expected effects of the present invention will be further described below in conjunction with the embodiments. However, the present invention is not limited to the exemplary embodiments disclosed below, and those skilled in the relevant art can implement it in various forms. The essence of the description is only to help those skilled in the relevant art comprehensively understand the specific details of the present invention.
本实施例以微米矩形金光栅和银纳米颗粒为例,首先基于磁控溅射在Si基底上沉积50nmAu和300nmAl2O3,然后利用标准光刻技术和电子束蒸镀在同一基片上制备了不同线宽的金矩形光栅,得到微米矩形金光栅-氧化铝-金反射层反射型微米天线结构。光栅的周期固定在6μm,线宽以0.4μm的步长从2.0μm逐渐增加到3.6μm,光栅厚度为20nm。图5(a)给出了周期为P=6μm,线宽为w=3μm的光栅SEM图。然后通过化学气相沉积(CVD)在Cu箔上生长单层石墨烯,并使用聚(甲基丙烯酸甲酯)(PMMA)作为转移试剂将石墨烯转移到反射型微米天线光栅结构的表面。最后,以的蒸发速率在石墨烯上沉积银纳米颗粒,通过控制沉积时间控制银纳米颗粒的粒径。图5(b)为蒸镀了5nm银之后基底的SEM图。从图中可以看出,银并没有连续成膜,而是成岛状的纳米颗粒。In this example, taking micron rectangular gold gratings and silver nanoparticles as examples, 50nm Au and 300nm Al 2 O 3 were first deposited on a Si substrate based on magnetron sputtering, and then prepared on the same substrate by standard photolithography and electron beam evaporation. Rectangular gold gratings with different line widths are used to obtain a micron rectangular gold grating-aluminum oxide-gold reflective layer reflective micron antenna structure. The period of the grating is fixed at 6 μm, the line width is gradually increased from 2.0 μm to 3.6 μm in steps of 0.4 μm, and the thickness of the grating is 20 nm. Figure 5(a) shows the SEM image of a grating with a period of P=6 μm and a line width of w=3 μm. Single-layer graphene was then grown on Cu foil by chemical vapor deposition (CVD), and poly(methyl methacrylate) (PMMA) was used as a transfer agent to transfer the graphene to the surface of the reflective micron antenna grating structure. Finally, with The evaporation rate of silver nanoparticles was deposited on graphene, and the particle size of silver nanoparticles was controlled by controlling the deposition time. Figure 5(b) is the SEM image of the substrate after 5nm silver was evaporated. It can be seen from the figure that silver does not form a continuous film, but forms island-shaped nanoparticles.
图6(a)为其中基底表面银纳米颗粒的粒径分布图。通过统计SEM图中大约300个银纳米颗粒的直径,我们计算得该基底表面银纳米颗粒的平均直径约为45nm。利用相同的方法,得到了粒径为35nm和55nm的银纳米颗粒。制备得到的银纳米颗粒在石英片基底上的紫外可见吸收光谱如图6(b)所示。从图中可以看出,银纳米颗粒在可见光波激发下产生局域表面等离激元,从而在可见光波段产生强烈的吸收。随着银纳米颗粒粒径的增加,其共振波长发生红移,当银纳米颗粒的平均直径为45nm时,银纳米颗粒的等离子体峰最接近拉曼测试激光波长532nm,从而在光谱测试中可以最大限制地提高器件的拉曼活性。Fig. 6(a) is a particle size distribution diagram of the silver nanoparticles on the surface of the substrate. By counting the diameters of about 300 silver nanoparticles in the SEM images, we calculated that the average diameter of the silver nanoparticles on the surface of the substrate was about 45 nm. Using the same method, silver nanoparticles with particle sizes of 35nm and 55nm were obtained. The ultraviolet-visible absorption spectrum of the prepared silver nanoparticles on the quartz substrate is shown in Fig. 6(b). It can be seen from the figure that the silver nanoparticles generate localized surface plasmons under the excitation of visible light waves, resulting in strong absorption in the visible light band. With the increase of the particle size of silver nanoparticles, its resonance wavelength red shifts. When the average diameter of silver nanoparticles is 45nm, the plasmon peak of silver nanoparticles is the closest to the Raman test laser wavelength of 532nm, so it can be used in the spectrum test. Maximize the Raman activity of the device.
图7(a)给出了蒸镀不同粒径银纳米颗粒之后双增强器件的拉曼光谱,从图中可以明显地观察到石墨烯的拉曼特征峰:1580cm-1处的G峰,2685cm-1处的2D峰,和1334cm-1处的D峰。2D峰与G峰的比值约为2左右,并且D峰不明显,说明器件中的石墨烯是单层石墨烯,并且没有因为在其表面沉积银纳米颗粒而引入较大的缺陷。同时,从图中可以看出,当银纳米颗粒的平均直径约为45nm时,银纳米颗粒对石墨烯拉曼特征峰的增强作用最大。Figure 7(a) shows the Raman spectrum of the double-enhanced device after evaporating silver nanoparticles with different particle sizes. From the figure, the Raman characteristic peaks of graphene can be clearly observed: the G peak at 1580cm -1 , the G peak at 2685cm 2D peak at −1 , and D peak at 1334 cm −1 . The ratio of the 2D peak to the G peak is about 2, and the D peak is not obvious, indicating that the graphene in the device is a single-layer graphene, and no large defects are introduced due to the deposition of silver nanoparticles on its surface. At the same time, it can be seen from the figure that when the average diameter of the silver nanoparticles is about 45nm, the enhancement effect of the silver nanoparticles on the Raman characteristic peaks of graphene is the greatest.
实施例采用典型的有机分析物罗丹明6G(R6G)作为探针分子,将其水溶液喷涂到样品上,然后在空气中干燥2分钟使分子固定在器件表面。图7(b)示出了不同分子浓度的R6G溶液喷涂在双增强器件上的平均拉曼光谱,银纳米颗粒的平均直径为45nm。从图中可以观察到R6G的各个拉曼特征峰,包括:1650,1574,1509,1362,1312,1182,772和612cm-1,其与文献中报道的结果一致。同时,当分子浓度低至10-12M时,仍然可观察到R6G的拉曼信号,计算得到SERS增强因子可达107,说明制备的双增强器件具有很好的拉曼增强效果。Example Rhodamine 6G (R6G), a typical organic analyte, was used as a probe molecule, its aqueous solution was sprayed onto the sample, and then dried in air for 2 minutes to immobilize the molecule on the surface of the device. Figure 7(b) shows the average Raman spectra of R6G solutions with different molecular concentrations sprayed on the double-enhancement device, and the average diameter of silver nanoparticles is 45 nm. Various Raman characteristic peaks of R6G can be observed from the figure, including: 1650, 1574, 1509, 1362, 1312, 1182, 772 and 612cm -1 , which are consistent with the results reported in the literature. At the same time, when the molecular concentration is as low as 10 -12 M, the Raman signal of R6G can still be observed, and the calculated SERS enhancement factor can reach 10 7 , which indicates that the prepared double-enhanced device has a good Raman enhancement effect.
图8(a)显示了不同光栅线宽条件下双增强器件的反射光谱。从图中可以看出,金矩形光栅在红外光波激发下产生天线谐振效应,从而在红外区域产生强烈的吸收;随着线宽w从2.0μm逐渐增加到3.6μm,等离子体峰从1350cm-1(7.4μm)红移到1050cm-1(9.5μm)。图8(b)对应显示了聚环氧乙烷(PEO)作为探针分子时双增强器件的反射光谱。从图中可以看出,表面旋涂PEO后器件的光谱曲线相对于裸器件的光谱曲线发生了少量红移。同时,在谐振峰上能够看到明显的一些凸起,这些凸起表示PEO分子的各种分子振动模式。进一步通过基线处理得到PEO分子本身的增强振动信号曲线,如图8(c)所示。从图中可以看出,制备的双增强器件在800~1500cm-1频率范围内可以对PEO分子各个振动模式进行增强,并且当PEO分子振动频率与金属微米天线的共振频率相近时,双增强器件对PEO分子振动信号增强效果最大。例如,对于1278cm-1处的振动模式,当光栅线宽为2.4um时,等离子体共振频率与该振动模式一致,双增强器件对该模式的增强效果最大。随着光栅线宽的增加,共振峰发生红移,导致等离子体共振频率远离该振动模式,增强效果逐渐降低。因而,通过控制光栅结构参数可以对PEO分子振动模式进行选择性增强,从而实现宽波段探测。计算得到双增强器件对PEO红外光谱信号的增强因子最高可达8×105。Figure 8(a) shows the reflectance spectra of the dual-enhancement device with different grating linewidths. It can be seen from the figure that the gold rectangular grating produces an antenna resonance effect under the excitation of infrared light waves, resulting in strong absorption in the infrared region; as the line width w gradually increases from 2.0 μm to 3.6 μm, the plasmon peak increases from 1350 cm -1 (7.4μm) red shifted to 1050cm -1 (9.5μm). Figure 8(b) shows the reflectance spectrum of the double-enhanced device when polyethylene oxide (PEO) is used as the probe molecule. It can be seen from the figure that the spectral curve of the device after spin-coating PEO on the surface has a small red shift relative to the spectral curve of the bare device. At the same time, some obvious protrusions can be seen on the resonance peaks, which represent various molecular vibration modes of PEO molecules. Further through the baseline processing, the enhanced vibration signal curve of the PEO molecule itself is obtained, as shown in Fig. 8(c). It can be seen from the figure that the prepared dual-enhancement device can enhance each vibration mode of PEO molecules in the frequency range of 800-1500 cm -1 , and when the vibration frequency of PEO molecules is close to the resonant frequency of the metal micro-antenna, the double-enhancement device It has the greatest effect on enhancing the vibration signal of PEO molecules. For example, for the vibration mode at 1278cm - 1, when the grating line width is 2.4um, the plasmon resonance frequency is consistent with this vibration mode, and the enhancement effect of the double enhancement device on this mode is the largest. As the linewidth of the grating increases, the resonance peak is red-shifted, causing the plasmon resonance frequency to move away from the vibration mode, and the enhancement effect gradually decreases. Therefore, by controlling the parameters of the grating structure, the vibrational modes of PEO molecules can be selectively enhanced to achieve broadband detection. It is calculated that the enhancement factor of the double enhancement device to the PEO infrared spectrum signal can reach up to 8×10 5 .
最后说明的是,以上实施例仅用于说明本发明的技术方案而非限制,尽管通过上述实施例已经对本发明进行了详细的描述,但是本领域技术人员应当理解,说明和实施例仅被认为是示例性的,可以在形式上和细节上做出各式各样的变化,本发明的真正范围和主旨均由权利要求所限定。Finally, it is noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not limit them. Although the present invention has been described in detail through the above embodiments, those skilled in the art should understand that the description and embodiments are only considered as Rather, various changes may be made in form and detail, and the true scope and spirit of the invention are defined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711482994.5A CN108226079B (en) | 2017-12-29 | 2017-12-29 | Metallic graphite carbon alkene multilayer resonance structure enhances the infrared double spectra devices of Raman and preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711482994.5A CN108226079B (en) | 2017-12-29 | 2017-12-29 | Metallic graphite carbon alkene multilayer resonance structure enhances the infrared double spectra devices of Raman and preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108226079A true CN108226079A (en) | 2018-06-29 |
CN108226079B CN108226079B (en) | 2019-03-12 |
Family
ID=62646174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711482994.5A Active CN108226079B (en) | 2017-12-29 | 2017-12-29 | Metallic graphite carbon alkene multilayer resonance structure enhances the infrared double spectra devices of Raman and preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108226079B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109612975A (en) * | 2018-12-07 | 2019-04-12 | 国家纳米科学中心 | A kind of surface enhanced Raman substrate and preparation method thereof |
CN109765650A (en) * | 2019-02-28 | 2019-05-17 | 上海师范大学 | A method for preparing SERS active substrate based on optical disc grating structure |
CN110098267A (en) * | 2019-04-09 | 2019-08-06 | 深圳激子科技有限公司 | A kind of graphene mid-infrared light detector and preparation method thereof based on the enhancing of phonon excimer |
CN110534608A (en) * | 2019-08-02 | 2019-12-03 | 苏州众为光电有限公司 | A kind of reinforced graphite alkene near-infrared broadband light absorption structure and preparation method thereof |
CN110927838A (en) * | 2018-09-20 | 2020-03-27 | 电子科技大学中山学院 | Metal micro-nano structure with absorption enhanced by graphene and preparation method thereof |
CN111007056A (en) * | 2019-12-04 | 2020-04-14 | 南京邮电大学 | A kind of broadband plasmon composite structure and preparation method thereof |
CN111060469A (en) * | 2019-12-31 | 2020-04-24 | 深圳大学 | Biological detection chip, biological sensor, preparation method and application thereof |
CN111337445A (en) * | 2019-12-02 | 2020-06-26 | 厦门大学 | Dielectric super surface based on angle scanning enhanced infrared spectrum absorption |
CN111912829A (en) * | 2020-08-28 | 2020-11-10 | 河海大学常州校区 | A Design Method of SERS Substrate Based on Surface Plasmon Effect |
CN113030026A (en) * | 2021-03-07 | 2021-06-25 | 天津理工大学 | LSPR multi-wavelength narrow-band tunable sensor |
CN114018304A (en) * | 2021-11-03 | 2022-02-08 | 北京理工大学 | Far infrared layered sensor and preparation method thereof |
CN114540786A (en) * | 2022-02-17 | 2022-05-27 | 山西大学 | Anti-reflection composite material and preparation method and application thereof |
CN114942240A (en) * | 2022-05-30 | 2022-08-26 | 武汉太赫光学科技有限公司 | Up-conversion Raman sensor and application |
CN115235623A (en) * | 2022-07-26 | 2022-10-25 | 中山大学 | A mid-infrared broadband detection device and system based on phase change materials |
CN115537745A (en) * | 2022-09-29 | 2022-12-30 | 中国科学院苏州纳米技术与纳米仿生研究所 | Colorful thin film for semiconductor surface enhanced Raman scattering and its preparation method and application |
CN117324753A (en) * | 2023-10-18 | 2024-01-02 | 广东工业大学 | Processing method of laser-induced silver-doped graphene communication device and communication device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030166297A1 (en) * | 1999-10-06 | 2003-09-04 | Surromed, Inc. | Surface enhanced spectroscopy-active composite nanoparticles |
CN103776790A (en) * | 2014-02-25 | 2014-05-07 | 重庆大学 | Infrared spectrum enhancement and detection method and infrared spectrum enhancement and detection device based on graphene nano antenna |
CN103887073A (en) * | 2014-03-31 | 2014-06-25 | 北京大学 | Solar cell based on surface plasma reinforcing principle and preparing method thereof |
CN105576344A (en) * | 2014-10-29 | 2016-05-11 | 三星电子株式会社 | Antenna device and electronic device having the same |
CN105699358A (en) * | 2016-04-29 | 2016-06-22 | 重庆大学 | Surface Raman and infrared spectroscopy double-enhanced detecting method based on graphene and nanogold compounding |
-
2017
- 2017-12-29 CN CN201711482994.5A patent/CN108226079B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030166297A1 (en) * | 1999-10-06 | 2003-09-04 | Surromed, Inc. | Surface enhanced spectroscopy-active composite nanoparticles |
CN103776790A (en) * | 2014-02-25 | 2014-05-07 | 重庆大学 | Infrared spectrum enhancement and detection method and infrared spectrum enhancement and detection device based on graphene nano antenna |
CN103887073A (en) * | 2014-03-31 | 2014-06-25 | 北京大学 | Solar cell based on surface plasma reinforcing principle and preparing method thereof |
CN105576344A (en) * | 2014-10-29 | 2016-05-11 | 三星电子株式会社 | Antenna device and electronic device having the same |
CN105699358A (en) * | 2016-04-29 | 2016-06-22 | 重庆大学 | Surface Raman and infrared spectroscopy double-enhanced detecting method based on graphene and nanogold compounding |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110927838A (en) * | 2018-09-20 | 2020-03-27 | 电子科技大学中山学院 | Metal micro-nano structure with absorption enhanced by graphene and preparation method thereof |
CN109612975A (en) * | 2018-12-07 | 2019-04-12 | 国家纳米科学中心 | A kind of surface enhanced Raman substrate and preparation method thereof |
CN109612975B (en) * | 2018-12-07 | 2021-11-02 | 国家纳米科学中心 | A kind of surface-enhanced Raman substrate and preparation method thereof |
CN109765650A (en) * | 2019-02-28 | 2019-05-17 | 上海师范大学 | A method for preparing SERS active substrate based on optical disc grating structure |
CN110098267A (en) * | 2019-04-09 | 2019-08-06 | 深圳激子科技有限公司 | A kind of graphene mid-infrared light detector and preparation method thereof based on the enhancing of phonon excimer |
CN110534608A (en) * | 2019-08-02 | 2019-12-03 | 苏州众为光电有限公司 | A kind of reinforced graphite alkene near-infrared broadband light absorption structure and preparation method thereof |
CN111337445A (en) * | 2019-12-02 | 2020-06-26 | 厦门大学 | Dielectric super surface based on angle scanning enhanced infrared spectrum absorption |
CN111007056A (en) * | 2019-12-04 | 2020-04-14 | 南京邮电大学 | A kind of broadband plasmon composite structure and preparation method thereof |
CN111060469A (en) * | 2019-12-31 | 2020-04-24 | 深圳大学 | Biological detection chip, biological sensor, preparation method and application thereof |
CN111912829B (en) * | 2020-08-28 | 2023-03-31 | 河海大学常州校区 | Surface plasmon effect-based SERS substrate design method |
CN111912829A (en) * | 2020-08-28 | 2020-11-10 | 河海大学常州校区 | A Design Method of SERS Substrate Based on Surface Plasmon Effect |
CN113030026A (en) * | 2021-03-07 | 2021-06-25 | 天津理工大学 | LSPR multi-wavelength narrow-band tunable sensor |
CN113030026B (en) * | 2021-03-07 | 2022-11-04 | 天津理工大学 | An LSPR multi-wavelength narrow-band tunable sensor |
CN114018304A (en) * | 2021-11-03 | 2022-02-08 | 北京理工大学 | Far infrared layered sensor and preparation method thereof |
CN114018304B (en) * | 2021-11-03 | 2024-05-07 | 北京理工大学 | Far infrared light layered sensor and preparation method thereof |
CN114540786A (en) * | 2022-02-17 | 2022-05-27 | 山西大学 | Anti-reflection composite material and preparation method and application thereof |
CN114942240A (en) * | 2022-05-30 | 2022-08-26 | 武汉太赫光学科技有限公司 | Up-conversion Raman sensor and application |
CN114942240B (en) * | 2022-05-30 | 2022-12-13 | 武汉太赫光学科技有限公司 | Up-conversion Raman sensor and application |
CN115235623A (en) * | 2022-07-26 | 2022-10-25 | 中山大学 | A mid-infrared broadband detection device and system based on phase change materials |
CN115235623B (en) * | 2022-07-26 | 2023-12-19 | 中山大学 | A mid-infrared wide spectrum detection device and system based on phase change materials |
CN115537745A (en) * | 2022-09-29 | 2022-12-30 | 中国科学院苏州纳米技术与纳米仿生研究所 | Colorful thin film for semiconductor surface enhanced Raman scattering and its preparation method and application |
CN117324753A (en) * | 2023-10-18 | 2024-01-02 | 广东工业大学 | Processing method of laser-induced silver-doped graphene communication device and communication device |
CN117324753B (en) * | 2023-10-18 | 2024-04-02 | 广东工业大学 | Processing method of laser-induced silver-doped graphene communication device and communication device |
Also Published As
Publication number | Publication date |
---|---|
CN108226079B (en) | 2019-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108226079A (en) | The infrared double spectra devices of metallic graphite carbon alkene multilayer resonance structure enhancing Raman and preparation method | |
Balčytis et al. | From fundamental toward applied SERS: shared principles and divergent approaches | |
US10627335B2 (en) | Structure for use in infrared spectroscopy and infrared spectroscopy method using same | |
CN105699358B (en) | Based on graphene and the double enhancing detection methods of the compound surface Raman of nanogold and infrared spectrum | |
Pal et al. | A generalized exponential relationship between the surface-enhanced Raman scattering (SERS) efficiency of gold/silver nanoisland arrangements and their non-dimensional interparticle distance/particle diameter ratio | |
CN104568849B (en) | Three-dimensional sub-wavelength metal cavity structure spectrum multi-band light perfect absorption plasmon sensor and preparation method and application thereof | |
Yao et al. | Theoretical and experimental research on terahertz metamaterial sensor with flexible substrate | |
US20150146180A1 (en) | Method for fabricating nanoantenna array, nanoantenna array chip and structure for lithography | |
US7898667B2 (en) | Optical element and method for preparing the same, sensor apparatus and sensing method | |
US20130286467A1 (en) | Multiscale light amplification structures for surface enhanced raman spectroscopy | |
CN108254353A (en) | The infrared double spectra devices of the conformal nano-probe enhancing Raman of graphene metal and preparation method | |
CN104020151A (en) | Preparation method of surface-enhanced Raman metal nano disk array substrate | |
Prasad et al. | Ripple mediated surface enhanced Raman spectroscopy on graphene | |
Augustine et al. | SERS based detection of Dichlorvos pesticide using silver nanoparticles arrays: Influence of array wavelength/amplitude | |
Jin et al. | Large-area nanogap plasmon resonator arrays for plasmonics applications | |
CN104764732A (en) | Surface-enhanced raman scattering base on basis of special-material superabsorbers and preparation method thereof | |
Liu et al. | Real-time Raman detection by the cavity mode enhanced Raman scattering | |
EP3966159A1 (en) | Substrates for surface-enhanced raman spectroscopy and methods for manufacturing same | |
WO2024054949A1 (en) | Sensors using liquid metal-based nanophotonic structures | |
Ke et al. | Preparation of SERS substrate with Ag nanoparticles covered on pyramidal Si structure for abamectin detection | |
Lertvachirapaiboon et al. | Transmission surface plasmon resonance signal enhancement via growth of gold nanoparticles on a gold grating surface | |
Tian et al. | Waveguide-coupled localized surface plasmon resonance for surface-enhanced Raman scattering: Antenna array as emitters | |
Ermina et al. | Plasmonic disordered array of hemispherical AgNPs on SiO2@ c-Si: their optical and SERS properties | |
CN103018167A (en) | Surface plasma resonance sample table and preparation method thereof | |
Cao et al. | Terahertz metamaterial sensors: design theory, optimization approach, and advancements in biosensing applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |