CN108217940A - 一种微氧条件下综合脱氮污泥的培养方法 - Google Patents

一种微氧条件下综合脱氮污泥的培养方法 Download PDF

Info

Publication number
CN108217940A
CN108217940A CN201711405593.XA CN201711405593A CN108217940A CN 108217940 A CN108217940 A CN 108217940A CN 201711405593 A CN201711405593 A CN 201711405593A CN 108217940 A CN108217940 A CN 108217940A
Authority
CN
China
Prior art keywords
reactor
concentration
sludge
comprehensive
reflux ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711405593.XA
Other languages
English (en)
Other versions
CN108217940B (zh
Inventor
岳秀萍
赵博玮
张潇
周爱娟
马骁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201711405593.XA priority Critical patent/CN108217940B/zh
Publication of CN108217940A publication Critical patent/CN108217940A/zh
Application granted granted Critical
Publication of CN108217940B publication Critical patent/CN108217940B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/307Nitrification and denitrification treatment characterised by direct conversion of nitrite to molecular nitrogen, e.g. by using the Anammox process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/004Apparatus and plants for the biological treatment of water, waste water or sewage comprising a selector reactor for promoting floc-forming or other bacteria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2

Abstract

一种微氧条件下综合脱氮污泥的培养方法,本发明涉及一种短程硝化反硝化,厌氧氨氧化,全程硝化反硝化,部分反硝化的多种脱氮途径的污泥的培养方法。它解决了现有污水处理中碳源不足,微氧条件下曝气不均匀,机械曝气产生能耗,溶解氧难控制等的问题。培养方法:一、添加城市污水处理厂浓缩池污泥通培养液;二、调控反应器回流比;三、改变反应器回流比运行条件,即得到综合脱氮污泥。使用过程中具有降低能耗,反应器进水溶解氧浓度均匀,反应器内可形成溶解氧浓度梯度,提供有利于综合脱氮途径的反应微环境,节省有机碳源等优点。本发明适用于污水处理领域。

Description

一种微氧条件下综合脱氮污泥的培养方法
技术领域
本发明涉及一种综合脱氮污泥的培养方法。
背景技术
目前,城市污水处理的主流工艺为A2O工艺,A2O工艺起主要脱氮功能的是传统脱氮过程,即第一阶段为硝化反应,有氧条件下氨氧化菌AOB和亚硝酸盐氧化菌NOB把氨氮依次转化为亚硝态氮和硝态氮,此过程无需有机碳的参与;第二阶段为反硝化反应,无氧条件下反硝化菌以亚硝态氮和硝态氮为电子受体,以有机物和电子受体进行无氧呼吸,还原为氮气或一氧化二氮的过程。运行过程中存在曝气能耗高和碳源不足的问题。除了A2O工艺,城市污水处理还有氧化沟工艺等,但起脱氮功能的均为传统脱氮过程。以短程硝化反硝化,同步硝化反硝化,厌氧氨氧化等新型脱氮技术为主的工艺应用较少,在已投入使用的新型脱氮工艺污水处理厂中,存在启动时间长,管理复杂等问题。
微氧是一种介于好氧和厌氧状态之间的低氧状态,生物处理系统中DO为0.3-1.0mg/L。微氧环境可为污泥絮体提供微环境,即污泥絮体外层为好氧菌,内层为缺氧菌和厌氧菌,这是因为微量氧气在污泥絮体表面被好氧菌消耗,絮体内部形成缺氧或无氧环境,为反硝化菌提供了无氧环境。微氧工艺具有耗氧量低,氧利用率高,剩余污泥产量低的优点。目前微氧工艺中溶解氧的提供主要依靠机械曝气,存在曝气不均和耗能的缺点。本发明提供的一种综合脱氮污泥的培养方法,可通过调整外循环回流比的方式有效控制反应器中溶解氧条件形成微氧环境,通过改变回流比参数,逐步培养集短程硝化反硝化,厌氧氨氧化,全程硝化反硝化,部分反硝化为主流脱氮途径的的混合污泥。
发明内容
本发明是为了解决现有污水处理中微氧条件下曝气不均匀,机械曝气产生能耗,溶解氧难控制等的问题,而提供的一种通过改变反应器外回流比调控的综合脱氮污泥的培养方法。
综合脱氮污泥按照以下步骤进行培养:
一、在外循环-升流式微氧污泥床反应器(其结构见公布号CN106630150A的中国专利)内添加城市污水处理厂浓缩池污泥,然后通入培养液,反应器外循环回流比设置为10:1,在温度30±2℃,水力停留时间24h,进水流量0. 183L /h的条件下培养40天;
二、将反应器外循环回流比设置为3:1,在温度30±2℃,水力停留时间24h,进水流量0.183L /h的条件下培养70天;
三、将反应器外循环回流比设置为5:1,在温度30±2℃,水力停留时间24h,进水流量0.183L /h的条件下培养30天,即得到综合脱氮污泥。
进一步的,培养液中的氨氮的浓度为50.0~200 mg/L、亚硝态氮和硝态氮的浓度为0 mg/L、KHCO3的浓度为1000mg/L、KH2PO4的浓度为50 mg/L、MgSO4.7H2O的浓度为200 mg/L、CaCl2.2H2O的浓度为150 mg/L、微量元素的浓度为0.31 mg/L。
进一步的,步骤一中较高的反应器的外回流比为反应器内提供充足的溶解氧富集硝化菌,步骤二中较低的反应器的外回流比为反应器内提供微量溶解氧,富集反硝化途径的菌群。为了形成污泥絮体微环境,使得污泥絮体外层为好氧硝化菌,内层为厌氧自养与异养反硝化菌。
步骤三中的反应器的外回流比为反应器内提供介于步骤一二之间的溶解氧。
根据图2观察本发明步骤一刚开始反应器出水氨氮的浓度去除率较低,经过10d的培养,反应器出水氨氮的浓度降低至20 mg/L左右,相同条件下继续运行30d,反应器出水氨氮的浓度降低至10 mg/L以下,氨氮去除率达到85%以上,第一阶段硝化菌富集完毕。刚开始反应器出水亚硝态氮浓度较低,反应器出水硝态氮浓度很低,约3天后出水硝态氮浓度增加至5mg/L,一周后出水硝态氮浓度增加至10mg/L,40天后出水硝态氮浓度增加至35mg/L左右。分析认为,接种污泥通培养液后,由于反应器的外循环回流比设置为10:1,较高的回流比为反应器提供较高的溶解氧溶度,同时,进水中70 mg/L的氨氮浓度为AOB提供了充足的同化和异化的代谢基础,经过一个月的高溶解氧的培养,氨氧化菌得到富集,但是由于DO浓度高,反应无法停留在亚硝态氮产生阶段,亚硝态氮得不到积累,且高溶解氧条件下反硝化菌处于抑制状态,使得出水硝态氮浓度逐步提高,出水硝态氮并不是迅速增至35mg/L,是因为反硝化菌的反应过程较慢,当反应条件改变,反应不能及时的做出反馈机制,导致反硝化菌抑制反应滞后,硝态氮逐步累积。
本发明步骤二主要是为了富集成熟的反硝化途径的菌群,调低回流比,导致反应器内DO不足,进水C/N约为1,碳源不足,经过70天的培养,出水COD为30mg/L,出水硝态氮由第一阶段35mg/L降低至10mg/L左右,说明反硝化菌得到富集。COD得到降解说明有传统厌氧异养反硝化菌群存在,同时,由于碳源不足,菌群结构中还存在自养反硝化菌。根据图2观察该低溶解氧条件下氨氮去除率降低,硝化菌得到抑制。
本发明步骤三主要是通过提高外回流比,适当提高反应器内溶解氧的浓度,确定反应器内可形成微环境的适当回流比参数,在反应器内形成溶解氧浓度梯度。微环境可为污泥絮体提供溶解氧浓度梯度,使得污泥絮体外层硝化菌有充分的的溶解氧环境反应,污泥絮体内部溶解氧已被消耗至缺厌氧环境,有利于反硝化菌的反应。经过30天的培养,根据图2观察,出水氨氮的浓度降低至10 mg/L以下,氨氮去除率达到90%以上,亚硝态氮和硝态氮浓度为3mg/L以下,总氮去除率达85%以上,微氧条件下综合脱氮污泥培养成功。
本发明培养的微氧条件下综合脱氮污泥可添加至任何微氧污泥反应器中进行污水处理。
本发明培养出的微氧条件下综合脱氮污泥,是一种集短程硝化反硝化,厌氧氨氧化,全程硝化反硝化,部分反硝化的混合污泥。具有良好沉降性能,抗水力冲击性能,保证高效运行。
本发明提供的培养方法没有机械曝气装置,节省机械暴气能耗,节省有机碳源,采用调控回流比控制溶解氧条件,操作简便易于控制,且通过跌水曝气方式获得的溶解氧浓度更为均匀。
附图说明
图1是综合脱氮污泥生成系统示意图,其中1为微氧污泥床体,2为跌水引流槽,3为富氧水回流池,4为沉淀池,5为温控装置,6为富氧泥水回流蠕动泵,7为富氧泥水回流管,8为回流池出水口,9为回流池进水口,10为剩余污泥排放口,11为沉淀池出水口,12为进水口。
图2是本发明综合脱氮污泥培养过程中进水和出水的氨氮,亚硝态氮,硝态氮的浓度曲线图。
图3是本发明综合脱氮污泥培养过程中总氮的浓度曲线和去除率图。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:结合图1说明本实施方式,本实施方式综合脱氮污泥按照以下步骤进行培养:
一、在外循环-升流式微氧污泥床反应器内添加城市污水处理厂浓缩池污泥,然后通入培养液,反应器外循环回流比设置为10:1,在温度30±2℃,水力停留时间24h,进水流量0.183L/h的条件下培养40天。
二、将反应器外循环回流比设置为3:1,在温度30±2℃,水力停留时间24h,进水流量0. 183L/h的条件下培养70天。
三、将反应器外循环回流比设置为5:1,在温度30±2℃,水力停留时间24h,进水流量0. 183L /h的条件下培养30天。即得到综合脱氮污泥。
步骤一中保持培养液的氨氮浓度为65±5mg/L, 保持培养液的亚硝态氮和硝态氮的浓度为0mg/L, 保持培养液的COD浓度为65±5mg/L。
步骤二中保持培养液的氨氮浓度为65±5mg/L, 保持培养液的亚硝态氮和硝态氮的浓度为0mg/L, 保持培养液的COD浓度为65±5mg/L。
步骤三中保持培养液的氨氮浓度为65±5mg/L, 保持培养液的亚硝态氮和硝态氮的浓度为0mg/L, 保持培养液的COD浓度为65±5mg/L。
培养液中的氨氮的浓度为50.0~200 mg/L、亚硝态氮和硝态氮的浓度为0 mg/L、KHCO3的浓度为1000mg/L、KH2PO4的浓度为50 mg/L、MgSO4.7H2O的浓度为200 mg/L、CaCl2.2H2O的浓度为150 mg/L、微量元素的浓度为0.31 mg/L。
步骤一中较高的反应器的外回流比为反应器内提供充足的溶解氧,步骤二中较低的反应器的外回流比为反应器内提供微量溶解氧,步骤三中的反应器的外回流比为反应器内提供介于步骤一二之间的溶解氧。

Claims (3)

1.一种微氧条件下综合脱氮污泥的培养方法,其特征在于综合脱氮污泥按照以下步骤进行培养:
一、在外循环-升流式微氧污泥床反应器内添加城市污水处理厂浓缩池污泥,然后通入培养液,反应器外循环回流比设置为10:1,在温度30±2℃,水力停留时间24h,进水流量0.183L/h的条件下培养40天;
二、将反应器外循环回流比设置为3:1,在温度30±2℃,水力停留时间24h,进水流量0.183L /h的条件下培养70天;
三、将反应器外循环回流比设置为5:1,在温度30±2℃,水力停留时间24h,进水流量0.183L /h的条件下培养30天,即得到综合脱氮污泥。
2.根据权利要求1所述的一种微氧条件下综合脱氮污泥的培养方法,其特征在于培养液中的氨氮的浓度为50.0~200 mg/L、亚硝态氮和硝态氮的浓度为0 mg/L、KHCO3的浓度为1000mg/L、KH2PO4的浓度为50 mg/L、MgSO4.7H2O的浓度为200 mg/L、CaCl2.2H2O的浓度为150mg/L、微量元素的浓度为0.31 mg/L。
3.根据权利要求1所述的一种微氧条件下综合脱氮污泥的培养方法,其特征在于步骤一中较高的反应器的外回流比为反应器内提供充足的溶解氧,步骤二中较低的反应器的外回流比为反应器内提供微量溶解氧,步骤三中的反应器的外回流比为反应器内提供介于步骤一二之间的溶解氧。
CN201711405593.XA 2017-12-22 2017-12-22 一种微氧条件下综合脱氮污泥的培养方法 Active CN108217940B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711405593.XA CN108217940B (zh) 2017-12-22 2017-12-22 一种微氧条件下综合脱氮污泥的培养方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711405593.XA CN108217940B (zh) 2017-12-22 2017-12-22 一种微氧条件下综合脱氮污泥的培养方法

Publications (2)

Publication Number Publication Date
CN108217940A true CN108217940A (zh) 2018-06-29
CN108217940B CN108217940B (zh) 2021-04-06

Family

ID=62648495

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711405593.XA Active CN108217940B (zh) 2017-12-22 2017-12-22 一种微氧条件下综合脱氮污泥的培养方法

Country Status (1)

Country Link
CN (1) CN108217940B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110054299A (zh) * 2019-05-31 2019-07-26 河南师范大学 一种无需曝气的外循环全程自养脱氮装置
CN112358118A (zh) * 2020-06-09 2021-02-12 青岛颐和水务有限公司 一种磁生物强化污水处理方法
CN112723537A (zh) * 2020-12-30 2021-04-30 吉林化工学院 一种低温厌氧污泥的培养方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805094A (zh) * 2010-03-24 2010-08-18 重庆大学 一种单级自养脱氮反应器的启动方法
CN102642924A (zh) * 2012-04-26 2012-08-22 北京工业大学 一种常温低氨氮污水全程自养脱氮工艺的快速启动方法
CN106630150A (zh) * 2017-01-20 2017-05-10 太原理工大学 跌水富氧式微氧污泥床工艺及其废水处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805094A (zh) * 2010-03-24 2010-08-18 重庆大学 一种单级自养脱氮反应器的启动方法
CN102642924A (zh) * 2012-04-26 2012-08-22 北京工业大学 一种常温低氨氮污水全程自养脱氮工艺的快速启动方法
CN106630150A (zh) * 2017-01-20 2017-05-10 太原理工大学 跌水富氧式微氧污泥床工艺及其废水处理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110054299A (zh) * 2019-05-31 2019-07-26 河南师范大学 一种无需曝气的外循环全程自养脱氮装置
CN112358118A (zh) * 2020-06-09 2021-02-12 青岛颐和水务有限公司 一种磁生物强化污水处理方法
CN112723537A (zh) * 2020-12-30 2021-04-30 吉林化工学院 一种低温厌氧污泥的培养方法

Also Published As

Publication number Publication date
CN108217940B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
CN104986923B (zh) 一种基于城市污水短程硝化‑厌氧氨氧化的多级a/o生物脱氮的装置与方法
CN107162193B (zh) 低氧硝化耦合短程反硝化厌氧氨氧化处理生活污水的装置及方法
CN102642924B (zh) 一种常温低氨氮污水全程自养脱氮工艺的快速启动方法
CN101628772B (zh) 以颗粒污泥为介质短程反硝化除磷双污泥工艺与装置
CN105540846B (zh) 低碳源城市污水改良uct自养脱氮除磷装置的应用方法
CN110002591B (zh) 一种缺氧/好氧交替条件下实现城市生活污水短程硝化耦合反硝化除磷的装置与方法
CN107162186A (zh) 一种基于颗粒污泥的城市污水厌氧氨氧化自养脱氮的装置和方法
CN107487845A (zh) 基于细菌包埋固定化的4a污水处理装置和工艺
CN113666496A (zh) 分段进水双短程厌氧氨氧化工艺实现低碳氮比生活污水深度脱氮除磷的方法与装置
CN108217940A (zh) 一种微氧条件下综合脱氮污泥的培养方法
CN105753155B (zh) 一种城市污水snad生物膜工艺的优化脱氮方法
CN112028243B (zh) 一种生物膜系统的快速启动方法
CN112919627A (zh) 一种利用铁碳材料快速启动自养型氨氧化的方法
CN106348444B (zh) 一种canon脱氮工艺的快速启动方法
CN103936154A (zh) 曝气生物滤池系统及其污水处理方法
CN110002689B (zh) 一种实现连续流短程硝化-厌氧氨氧化处理城市污水的装置及方法
CN103951057B (zh) 一种常温下低c/n比污水连续流短程硝化启动方法
CN112390358B (zh) 一种厌氧产甲烷耦合短程硝化厌氧氨氧化强化生活污水脱氮的装置及方法
CN202322490U (zh) A-a2o连续流污水生物脱氮除磷系统
CN110171904A (zh) 基于连续流aao除磷及部分脱氮串联复合式固定生物膜活性污泥自养脱氮装置和方法
CN102259977B (zh) 一种对含有氨氮的废水进行脱氮的方法
CN102198978A (zh) 膜生物反应器实现短程硝化的装置和方法
CN106904732A (zh) 一种膜生物反应器快速启动短程硝化的方法
CN102992477B (zh) 一种低氨氮污水部分亚硝化的非限氧启动方法
CN115893655A (zh) 一种利用生物炭作为填料进行微生物厌氧氨氧化脱氮的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant