CN108197387B - 一种电力机车再生制动能量存储装置的选址方法 - Google Patents

一种电力机车再生制动能量存储装置的选址方法 Download PDF

Info

Publication number
CN108197387B
CN108197387B CN201711493973.3A CN201711493973A CN108197387B CN 108197387 B CN108197387 B CN 108197387B CN 201711493973 A CN201711493973 A CN 201711493973A CN 108197387 B CN108197387 B CN 108197387B
Authority
CN
China
Prior art keywords
energy
electric locomotive
speed
regenerating braking
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711493973.3A
Other languages
English (en)
Other versions
CN108197387A (zh
Inventor
胡海涛
陈偲
王科
孙文静
何正友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201711493973.3A priority Critical patent/CN108197387B/zh
Publication of CN108197387A publication Critical patent/CN108197387A/zh
Application granted granted Critical
Publication of CN108197387B publication Critical patent/CN108197387B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06Q50/40

Abstract

本发明公开了一种电力机车再生制动能量存储装置的选址方法,包括步骤:计算定时工况下电力机车的最低能耗运行速度曲线;以该速度曲线为目标速度,进行牵引计算,获得一辆电力机车在一次完整运行过程中的再生制动能量时空分布特性;计及行车运行图,获得线路全天再生制动能量的时空分布特性;根据再生制动能量的分布情况,进行再生能量存储装置的选址。本发明的有益效果在于,以控制向量参数化方法得到的速度曲线为基础目标速度,结合牵引计算得到更加准确的电力机车实际运行过程,相比目前电力机车仅使用牵引计算得到的运行结果更加节能。

Description

一种电力机车再生制动能量存储装置的选址方法
技术领域
本发明涉及轨道交通能量规划管理领域,特别是一种电力机车再生制动能量存储装置的选址方法。
背景技术
在高铁快速发展的现实背景下,高速电气化铁路的节能降耗是近年来关注的热点。新型的高速电力机车普遍采用以再生制动为主的制动方式,在制动过程中会产生再生能量,由于高速电力机车质量大、速度高的特点,这部分能量可以占到总牵引能耗的10~20%。再生制动能量的有效存储与高效利用将大大提升高速铁路能量的利用率,是高铁节能降耗的重要手段之一。
在城市轨道交通领域,电力机车启动制动频繁,运行期间会产生大量的再生制动能量,而由于其运行区间较短,在存储再生制动能量时主要考虑存储装置的容量问题,对安装位置要求不高。高速电力机车的运行区间较长,速度较高,制动频率低,再生制动功率大,与传统的城市轨道交通频繁制动的特性有较大区别,再生制动能量分布特性有所不同,因此在能量存储装置的选址设计上需要另行考虑。
发明内容
本发明的目的是提供一种电力机车再生制动能量存储装置的选址方法,该方法有效提高了再生制动能量的存储效率。
实现本发明目的的技术方案是:
一种电力机车再生制动能量存储装置的选址方法,包括:
步骤1.计算定时工况下电力机车的最低能耗运行速度曲线,包括:
1-1.以运行里程为基本步长,建立单质点电力机车的动力学模型:
式(1)中,t为运行时刻,s为运行公里标,κ为单位动能,v为电力机车运行速度;
式(2)中,M为电力机车总质量,ρ为旋转质量系数,μt为牵引力系数,Ft为牵引力,μb为制动力系数,Fb为制动力,Fr为基本阻力,Fa为附加阻力;
1-2.以线路坡段为基准,参数化控制向量:
式(3)中,F为全运行区间控制变量向量集,Fn为第n个子区间的控制变量常数向量,由牵引力Ft和制动力Fb构成;
1-3.建立能耗目标模型,求取实际牵引能耗,并取最小值:
式(4)中,J为实际牵引能耗,S1为线路起始位置,S2为线路结束位置,η为再生制动能量利用率,Frb为再生制动力;
1-4.采用控制向量参数化方法求解电力机车最低能耗运行的速度曲线;
步骤2.以最低能耗运行速度曲线为目标速度,进行牵引计算,获得一辆电力机车在一次完整运行过程中的再生制动能量时空分布特性,包括:
2-1.加速过程:电力机车从静止发车,以最大牵引力恒转矩加速运行,直至到达目标速度或者坡段限速,结束加速状态;坡段坡度较大时,电力机车速度会下降,当速度降至允许范围以下时,电力机车再次以最大牵引力恒功率加速运行,直至到达目标速度或者坡段限速;加速过程中电力机车消耗牵引能量,不产生再生制动能量,单步长能量为:
Efu(s,t)=Fft(v(s,t))·Δs (5)
式(5)中,Efu为包含位置和时刻信息的全力牵引能量,Fft为最大牵引力,Δs为位移步长;
2-2.匀速过程:电力机车到达目标速度或坡段限速后,进入匀速状态,运行速度保持在允许范围内;匀速过程中电力机车消耗牵引能量,不产生再生制动能量,单步长能量为:
Epu(s,t)=Fpt(v(s,t))·Δs (6)
式(6)中,Epu为包含位置和时刻信息的部分牵引能量,Fpt为部分牵引力;
2-3.惰行过程:电力机车在进入长大下坡道时,牵引力无需做功速度也可以保持在允许范围内,此时电力机车处于惰行状态;电力机车进入制动状态前会惰行减速一段距离,充分利用动能,这段时间电力机车处于惰行状态;惰行过程中电力机车不消耗能量,不产生再生制动能量,单步长能量为:
E0(s,t)=0 (7)
式(7)中,E0为包含位置和时刻信息的牵引能量;
2-4.制动过程:电力机车即将停站时,再生制动力和空气制动力共同作用全力减速直至电力机车速度为0;电力机车速度超过坡段限速时,会优先使用再生制动降低速度,同时产生再生制动能量;制动过程中电力机车不消耗能量,产生再生制动能量,单步长能量:
Er(s,t)=Frb(v(s,t))·Δs (8)
式(8)中,Er为包含位置和时刻信息的再生制动能量;
步骤3.根据行车运行图提供的各个车站的地理空间、各个车次发车和到站的时间信息,结合电力机车在一个完整运行过程中的再生能量时空分布特性,构建线路全天24小时再生制动能量的时空分布特性;
步骤4.根据线路全天24小时再生制动能量的时空分布特性,结合线路牵引变电所的位置,统计单个牵引变电所产生的再生能量和牵引变电所从电网侧获取的电量,进而求解再生制动能量存储装置的安装位置,包括:
4-1.根据线路全天24小时再生制动能量的时空分布特性,求解牵引变电所供电区间内可以被存储的再生能量,其计算公式为:
式(9)中,Ersum为牵引变电所供电区间内可存储的再生能量总和,T为线路单日最终运行时刻,Er为供电区间范围内某时刻单列电力机车的再生制动能量,Eu为同一区间同一时刻牵引电力机车消耗的能量;Sstart为供电区间起始位置;Send为供电区间结束位置;
4-2.牵引变电所全天24小时从电网侧获取的电量Esum为:
式(10)中,UA(t)为t时刻电力系统A相电压有效值,IA(t)为t时刻电力系统A相电流有效值,UB(t)为t时刻电力系统B相电压有效值,IB(t)为t时刻电力系统B相电流有效值,UC(t)为t时刻电力系统C相电压有效值,IC(t)为t时刻电力系统C相电流有效值;
4-3.牵引变电所可存储再生能量比率ξ为:
当ξ超过10%时,在该牵引变电所设置能量存储装置。
与现有技术相比,本发明的有益效果在于:
本发明以控制向量参数化方法得到的速度曲线为基础目标速度,结合牵引计算得到更加准确的电力机车实际运行过程,相比目前电力机车仅使用牵引计算得到的运行结果更加节能。结合行车运行图,以所述结合控制向量参数化方法的牵引计算对全线电力机车运行进行计算,获得全线一天内牵引能量与再生制动能量的时空分布特性,并据此选取再生制动能量存储装置的最优安装位置,具有较好的效果,可以有效提升高速铁路的能量利用率。
具体实施方式
以下对本发明进行进一步的详细说明。
本发明提供一种电力机车再生制动能量存储装置的选址方法,包括以下步骤:
步骤1.计算定时工况下电力机车的最低能耗运行速度曲线;
步骤2.以该速度曲线为目标速度,进行牵引计算,获得一辆电力机车在一次完整运行过程中的再生制动能量时空分布特性;
步骤3.计及行车运行图,获得线路全天再生制动能量的时空分布特性;
步骤4.根据再生制动能量的分布情况,进行再生能量存储装置的选址。
其中,
步骤1,计算定时工况下电力机车的最低能耗运行速度曲线,具体包括:
1-1.以运行里程为基本步长,建立单质点电力机车的动力学模型:
式(1)中,t为运行时刻,s为运行公里标,κ为单位动能,v为电力机车运行速度;
式(2)中,M为电力机车总质量,ρ为旋转质量系数,μt为牵引力系数,Ft为牵引力,μb为制动力系数,Fb为制动力,Fr为基本阻力,Fa为附加阻力;
1-2.以线路坡段为基准,参数化控制向量:
式(3)中,F为全运行区间控制变量向量集,Fn为第n个子区间的控制变量常数向量,由牵引力Ft和制动力Fb构成;
1-3.建立能耗目标模型,求取实际牵引能耗,并取最小值:
式(4)中,J为实际牵引能耗,S1为线路起始位置,S2为线路结束位置,η为再生制动能量利用率,Frb为再生制动力;
1-4.采用控制向量参数化方法求解电力机车最低能耗运行的速度曲线。
步骤2,以最低能耗运行速度曲线为目标速度,进行牵引计算,获得一辆电力机车在一次完整运行过程中的再生制动能量时空分布特性,包括:
2-1.加速过程:电力机车从静止发车,以最大牵引力恒转矩加速运行,直至到达目标速度或者坡段限速,结束加速状态;坡段坡度较大时,电力机车速度会下降,当速度降至允许范围以下时,电力机车再次以最大牵引力恒功率加速运行,直至到达目标速度或者坡段限速;加速过程中电力机车消耗牵引能量,不产生再生制动能量,单步长能量为:
Efu(s,t)=Fft(v(s,t))·Δs (5)
式(5)中,Efu为包含位置和时刻信息的全力牵引能量,Fft为最大牵引力,Δs为位移步长;2-2.匀速过程:电力机车到达目标速度或坡段限速后,进入匀速状态,运行速度保持在允许范围内;匀速过程中电力机车消耗牵引能量,不产生再生制动能量,单步长能量为:
Epu(s,t)=Fpt(v(s,t))·Δs (6)
式(6)中,Epu为包含位置和时刻信息的部分牵引能量,Fpt为部分牵引力;
2-3.惰行过程:电力机车在进入长大下坡道时,牵引力无需做功速度也可以保持在允许范围内,此时电力机车处于惰行状态;电力机车进入制动状态前会惰行减速一段距离,充分利用动能,这段时间电力机车处于惰行状态;惰行过程中电力机车不消耗能量,不产生再生制动能量,单步长能量为:
E0(s,t)=0 (7)
式(7)中,E0为包含位置和时刻信息的牵引能量;
2-4.制动过程:电力机车即将停站时,再生制动力和空气制动力共同作用全力减速直至电力机车速度为0;电力机车速度超过坡段限速时,会优先使用再生制动降低速度,同时产生再生制动能量;制动过程中电力机车不消耗能量,产生再生制动能量,单步长能量:
Er(s,t)=Frb(v(s,t))·Δs (8)
式(8)中,Er为包含位置和时刻信息的再生制动能量。
步骤3,计及行车运行图,获得线路全天再生制动能量的时空分布特性,其具体方法为:根据行车运行图提供的各个车站的地理空间、各个车次发车和到站的时间信息,结合电力机车在一个完整运行过程中的再生能量时空分布特性,构建线路全天24小时再生制动能量的时空分布特性。
步骤4,根据再生制动能量的分布情况,进行再生能量存储装置的选址,其具体实施方法为:根据线路全天24小时再生制动能量的时空分布特性,结合线路牵引变电所的位置,统计单个牵引变电所产生的再生能量和牵引变电所从电网侧获取的电量,进而求解再生制动能量存储装置的安装位置,包括
4-1.根据线路全天24小时再生制动能量的时空分布特性,求解牵引变电所供电区间内可以被存储的再生能量,其计算公式为:
式(9)中,Ersum为牵引变电所供电区间内可存储的再生能量总和,T为线路单日最终运行时刻,Er为供电区间范围内某时刻单列电力机车的再生制动能量,Eu为同一区间同一时刻牵引电力机车消耗的能量;Sstart为供电区间起始位置;Send为供电区间结束位置;
4-2.牵引变电所全天24小时从电网侧获取的电量Esum为:
式(10)中,UA(t)为t时刻电力系统A相电压有效值,IA(t)为t时刻电力系统A相电流有效值,UB(t)为t时刻电力系统B相电压有效值,IB(t)为t时刻电力系统B相电流有效值,UC(t)为t时刻电力系统C相电压有效值,IC(t)为t时刻电力系统C相电流有效值;
4-3.牵引变电所可存储再生能量比率ξ为:
当ξ超过10%时,在该牵引变电所设置能量存储装置。

Claims (1)

1.一种电力机车再生制动能量存储装置的选址方法,其特征在于,包括:
步骤1.计算定时工况下电力机车的最低能耗运行速度曲线,包括:
1-1.以运行里程为基本步长,建立单质点电力机车的动力学模型:
式(1)中,t为运行时刻,s为运行公里标,κ为单位动能,v为电力机车运行速度;
式(2)中,M为电力机车总质量,ρ为旋转质量系数,μt为牵引力系数,Ft为牵引力,μb为制动力系数,Fb为制动力,Fr为基本阻力,Fa为附加阻力;
1-2.以线路坡段为基准,参数化控制向量:
式(3)中,F为全运行区间控制变量向量集,Fn为第n个子区间的控制变量常数向量,由牵引力Ft和制动力Fb构成;
1-3.建立能耗目标模型,求取实际牵引能耗,并取最小值:
式(4)中,J为实际牵引能耗,S1为线路起始位置,S2为线路结束位置,η为再生制动能量利用率,Frb为再生制动力;
1-4.采用控制向量参数化方法求解电力机车最低能耗运行的速度曲线;
步骤2.以最低能耗运行速度曲线为目标速度,进行牵引计算,获得一辆电力机车在一次完整运行过程中的再生制动能量时空分布特性,包括:
2-1.加速过程:电力机车从静止发车,以最大牵引力恒转矩加速运行,直至到达目标速度或者坡段限速,结束加速状态;坡段坡度较大时,电力机车速度会下降,当速度降至允许范围以下时,电力机车再次以最大牵引力恒功率加速运行,直至到达目标速度或者坡段限速;加速过程中电力机车消耗牵引能量,不产生再生制动能量,单步长能量为:
Efu(s,t)=Fft(v(s,t))·Δs (5)
式(5)中,Efu为包含位置和时刻信息的全力牵引能量,Fft为最大牵引力,Δs为位移步长;
2-2.匀速过程:电力机车到达目标速度或坡段限速后,进入匀速状态,运行速度保持在允许范围内;匀速过程中电力机车消耗牵引能量,不产生再生制动能量,单步长能量为:
Epu(s,t)=Fpt(v(s,t))·Δs (6)
式(6)中,Epu为包含位置和时刻信息的部分牵引能量,Fpt为部分牵引力;
2-3.惰行过程:电力机车在进入长大下坡道时,牵引力无需做功速度也可以保持在允许范围内,此时电力机车处于惰行状态;电力机车进入制动状态前会惰行减速一段距离,充分利用动能,这段时间电力机车处于惰行状态;惰行过程中电力机车不消耗能量,不产生再生制动能量,单步长能量为:
E0(s,t)=0 (7)
式(7)中,E0为包含位置和时刻信息的牵引能量;
2-4.制动过程:电力机车即将停站时,再生制动力和空气制动力共同作用全力减速直至电力机车速度为0;电力机车速度超过坡段限速时,会优先使用再生制动降低速度,同时产生再生制动能量;制动过程中电力机车不消耗能量,产生再生制动能量,单步长能量:
Er(s,t)=Frb(v(s,t))·Δs (8)
式(8)中,Er为包含位置和时刻信息的再生制动能量;
步骤3.根据行车运行图提供的各个车站的地理空间、各个车次发车和到站的时间信息,结合电力机车在一个完整运行过程中的再生能量时空分布特性,构建线路全天24小时再生制动能量的时空分布特性;
步骤4.根据线路全天24小时再生制动能量的时空分布特性,结合线路牵引变电所的位置,统计单个牵引变电所产生的再生能量和牵引变电所从电网侧获取的电量,进而求解再生制动能量存储装置的安装位置,包括:
4-1.根据线路全天24小时再生制动能量的时空分布特性,求解牵引变电所供电区间内可以被存储的再生能量,其计算公式为:
式(9)中,Ersum为牵引变电所供电区间内可存储的再生能量总和,T为线路单日最终运行时刻,Er为供电区间范围内某时刻单列电力机车的再生制动能量,Eu为同一区间同一时刻牵引电力机车消耗的能量;Sstart为供电区间起始位置;Send为供电区间结束位置;
4-2.牵引变电所全天24小时从电网侧获取的电量Esum为:
式(10)中,UA(t)为t时刻电力系统A相电压有效值,IA(t)为t时刻电力系统A相电流有效值,UB(t)为t时刻电力系统B相电压有效值,IB(t)为t时刻电力系统B相电流有效值,UC(t)为t时刻电力系统C相电压有效值,IC(t)为t时刻电力系统C相电流有效值;
4-3.牵引变电所可存储再生能量比率ξ为:
当ξ超过10%时,在该牵引变电所设置能量存储装置。
CN201711493973.3A 2017-12-31 2017-12-31 一种电力机车再生制动能量存储装置的选址方法 Active CN108197387B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711493973.3A CN108197387B (zh) 2017-12-31 2017-12-31 一种电力机车再生制动能量存储装置的选址方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711493973.3A CN108197387B (zh) 2017-12-31 2017-12-31 一种电力机车再生制动能量存储装置的选址方法

Publications (2)

Publication Number Publication Date
CN108197387A CN108197387A (zh) 2018-06-22
CN108197387B true CN108197387B (zh) 2019-09-06

Family

ID=62587410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711493973.3A Active CN108197387B (zh) 2017-12-31 2017-12-31 一种电力机车再生制动能量存储装置的选址方法

Country Status (1)

Country Link
CN (1) CN108197387B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390111A (zh) * 2013-07-29 2013-11-13 北京交通大学 一种面向城市轨道交通单列车运行能耗的计算方法
CN103840477A (zh) * 2014-01-03 2014-06-04 南车株洲电力机车研究所有限公司 电气化铁路牵引供电储能装置及其方法
CN104260759A (zh) * 2014-10-08 2015-01-07 北京交通大学 一种城市轨道交通节能优化方法及系统
CN104986190A (zh) * 2015-06-30 2015-10-21 北京交通大学 轨道列车的再生能量的利用方法和系统
CN106651009A (zh) * 2016-11-23 2017-05-10 北京交通大学 城市轨道交通任意多车协作的节能优化控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123601A1 (en) * 2009-01-27 2010-10-28 Kuhn Ira F Jr Purebred and hybrid electric vtol tilt rotor aircraft
WO2013016538A2 (en) * 2011-07-26 2013-01-31 Gogoro, Inc. Thermal management of components in electric motor drive vehicles
CN103253143A (zh) * 2013-05-16 2013-08-21 哈尔滨理工大学 电动汽车再生制动的瞬时功率控制与能量存储方法
CN103872839B (zh) * 2014-03-18 2016-06-01 上海交通大学 一种基于磁悬浮飞轮的能量收集储存系统及方法
CN104764955B (zh) * 2015-03-24 2017-07-25 西南交通大学 轨道车非接触式电能传输系统的试验装置及其试验方法
CN106410799B (zh) * 2016-11-27 2019-04-16 东北电力大学 用于光伏高渗透率配电网中电动汽车充电站的选址方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390111A (zh) * 2013-07-29 2013-11-13 北京交通大学 一种面向城市轨道交通单列车运行能耗的计算方法
CN103840477A (zh) * 2014-01-03 2014-06-04 南车株洲电力机车研究所有限公司 电气化铁路牵引供电储能装置及其方法
CN104260759A (zh) * 2014-10-08 2015-01-07 北京交通大学 一种城市轨道交通节能优化方法及系统
CN104986190A (zh) * 2015-06-30 2015-10-21 北京交通大学 轨道列车的再生能量的利用方法和系统
CN106651009A (zh) * 2016-11-23 2017-05-10 北京交通大学 城市轨道交通任意多车协作的节能优化控制方法

Also Published As

Publication number Publication date
CN108197387A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
Douglas et al. An assessment of available measures to reduce traction energy use in railway networks
CN103963805A (zh) 一种城市轨道交通列车运行的节能方法
CN107704950A (zh) 一种基于出行需求与系统节能的城轨列车运行图优化方法
CN111244982A (zh) 一种轨道交通地面式超级电容储能系统容量配置方案
CN102951165A (zh) 轨道列车节省电能运行控制方法
CN104401370A (zh) 多列车协同控制的节能优化方法
CN104346525B (zh) 城轨交通供电系统牵引变电所多列车次累计功率计算方法
Kebede et al. A research on regenerative braking energy recovery: A case of Addis Ababa light rail transit
CN104192176B (zh) 一种减少地铁牵引能耗的方法
Xie et al. Optimization of train energy-efficient operation using simulated annealing algorithm
CN202827195U (zh) 城市轨道交通工程供电分区内上、下行并联直流牵引网结构
CN108197387B (zh) 一种电力机车再生制动能量存储装置的选址方法
CN104163175A (zh) 一种城市轨道交通系统
CN102064666B (zh) 轨道列车的动能发电及应用系统
CN106143535B (zh) 一种基于免疫算法的地铁列车运行参数优化方法
Xin et al. Railway vertical alignment optimisation at stations to minimise energy
CN203670108U (zh) 用于地铁隧道的风力发电利用系统
CN109109913A (zh) 一种用于轨道交通系统能效行车组织的信息处理方法
CN108437808A (zh) 铁路轨道运载车辆储能系统
Calderaro et al. Deterministic vs heuristic algorithms for eco-driving application in metro network
Gu et al. A survey on energy-saving operation of railway transportation systems
CN109131451A (zh) 无惰行工况的高速列车快速并节能运行控制方法
Su et al. Cooperative train control for energy-saving
Li et al. An improved cellular automata model for train operation simulation with dynamic acceleration
Sengor et al. Determination of Potential Regenerative Braking Energy in Railway Systems: A Case Study for Istanbul M1A Light Metro Line

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant