CN108196231A - 一种基于新型频控阵技术的s形干扰波束实现方法 - Google Patents

一种基于新型频控阵技术的s形干扰波束实现方法 Download PDF

Info

Publication number
CN108196231A
CN108196231A CN201810250921.1A CN201810250921A CN108196231A CN 108196231 A CN108196231 A CN 108196231A CN 201810250921 A CN201810250921 A CN 201810250921A CN 108196231 A CN108196231 A CN 108196231A
Authority
CN
China
Prior art keywords
frequency
interfering beam
signal
shaped
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810250921.1A
Other languages
English (en)
Other versions
CN108196231B (zh
Inventor
陈慧
胡全
崔延硕
邵怀宗
王文钦
潘晔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201810250921.1A priority Critical patent/CN108196231B/zh
Publication of CN108196231A publication Critical patent/CN108196231A/zh
Application granted granted Critical
Publication of CN108196231B publication Critical patent/CN108196231B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/38Jamming means, e.g. producing false echoes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种基于新型频控阵技术的S形干扰波束实现方法,在以半波长为阵元间距的均匀线性阵列中,利用单频正弦形式信号作为发射信号,首先设定待干扰区域,根据理论计算出频偏及补偿相位相应参数,将各自频偏和补偿相位参数分别调制到单频正弦信号中形成各通道单频正弦形式基带信号,并分别利用模数芯片AD9361对各通道基带信号做上变频,将基带信号搬移至特定射频频率,此后可通过混频将信号搬移到终端射频频率,最后设计阵列加权向量来弥补通道增益误差,完成S形干扰波束的发射。本发明采用了新型频控阵技术,在获得相同干扰性能的条件下降低了成本,并在同等实验环境的条件下能够获得更高的隐蔽性。

Description

一种基于新型频控阵技术的S形干扰波束实现方法
技术领域
本发明属于电子干扰技术领域,具体涉及一种基于新型频控阵技术的S形干扰波束实现方法的设计。
背景技术
电子干扰是电子战的主要内容之一,旨在大幅削弱敌方的作战能力。随着现代抗干扰技术的提高,对电子主动干扰方提出了巨大挑战:首先,实施电子干扰的前提是电子侦察设备能够有效获取敌方目标的态势信息;其次,在电子侦察设备获取态势信息后,要实现有效干扰,干扰机必须保证针对性的干扰信号、足够大的发射功率和天线增益等,保证干扰信号能进入敌方目标区域并影响其工作。
现代干扰技术在干扰信号样式、干扰方式、干扰设备、干扰载体等许多方面有了飞跃性的发展。现代干扰设备采用了很多先进的数字电子技术,如数字储频、直接数字频率合成等,并与雷达信号分析、处理能力结合,使其成为对抗现代雷达的主要干扰方法。特别是随着大规模、超高速集成电路等的发展,对雷达信号采集、存储、信号处理等瓶颈问题得到一定程度的解决,目前对干扰设备的复杂度和成本有待进一步下降,可靠性有待进一步提高。
目前,干扰主要分为压制性干扰和欺骗性干扰。压制性干扰使敌方设备探测能力下降或彻底丧失工作能力;欺骗性干扰使敌方设备无法准确分辨目标,主要有角度欺骗、距离欺骗、速度欺骗和假目标欺骗等方式。压制性干扰随着距离的增大,波形因素不变,但信噪比逐渐减小,这对干扰机的功率提出了较高的要求,干扰距离受制于功率的大小。距离欺骗式干扰使雷达距离波门从目标脱离,通过干扰让雷达两个距离波门中的信号强度不同,从而影响雷达的分辨能力,但实际信号频率成分不受到影响。角度欺骗式干扰在单脉冲雷达分辨角内设置两个或以上的干扰源,对单脉冲雷达的角跟踪系统精度和准确度实施干扰,具有一定的局限性。速度欺骗式干扰发送两个不同频移的干扰信号,从而让雷达速度跟踪波门误测目标的移动速度。与现有干扰方法不同,新型频控阵发射的波束具有角度-距离相关特性,这不仅可以产生虚拟的角度欺骗效果,而且可以通过改变频偏参数控制波束的形状,实现多种用途。
发明内容
本发明的目的是提出一种基于新型频控阵技术的S形干扰波束实现方法,利用新型频控阵列技术发射具有角度-距离相关性特点的波束,对干扰区域内实现条带干扰,以实现对干扰区域内目标的虚拟辐射,降低自身暴露的风险及干扰的成本,实现有效干扰的目的。
本发明的技术方案为:一种基于新型频控阵技术的S形干扰波束实现方法,包括以下步骤:
S1、确定待干扰区域的角度范围和径向距离范围。
将待干扰区域分为三段,则三段待干扰区域的起始和结束位置分别表示为(r01)-(r0+r12),(r0+r12)-(r0+r1+r21),(r0+r1+r21)-(r0+r1+r2+r32),其中θ1和θ2分别为待干扰区域的起始角度和终止角度,r0为待干扰区域的起始径向距离,r1为第一段待干扰区域的径向距离,r2为第二段待干扰区域的径向距离,r3为第三段待干扰区域的径向距离,每段待干扰区域对应于S形干扰波束的一段干扰波束。
S2、根据待干扰区域的角度范围和径向距离范围计算S形干扰波束各通道的频偏增量和补偿相位增量,计算公式为:
其中分别为三段干扰波束的补偿相位增量,Δf1,Δf2,Δf3分别为三段干扰波束的频偏增量,c为电磁波空间传播速度。
S3、通过调制将各通道的频偏增量和补偿相位增量分别加载到单频正弦信号中,得到各通道的基带信号。
S4、采用模数芯片AD9361对各通道的基带信号进行上变频处理,将基带信号搬移至特定射频频段并进行滤波处理,得到射频信号。
S5、通过混频处理将射频信号搬移至终端射频频段,得到终端射频信号,表示为:
其中t=1,2,…,T,T为离散时间点数,s(t)为原始基带信号,A为信号幅度,为第i段干扰波束在第m阵元对应的补偿相位,表示为:
M为阵元总数,为第i段干扰波束对应的补偿相位增量,fmi为第i段干扰波束在第m阵元相应的载波频率,表示为:
fmi=f0+mΔfi,m=0,...,M-1,i=1,2,3
f0为雷达初始载波频率,即第一个阵元的辐射频率,Δfi为第i段干扰波束对应的频率增量。
S6、设定阵列加权向量A=[1 … 1]∈1×M,弥补终端射频信号中各通道的增益误差,完成S形干扰波束的发射。
本发明的有益效果是:本发明采用了新型频控阵技术,在获得相同干扰性能的条件下降低了成本,并在同等实验环境的条件下能够获得更高的隐蔽性。
附图说明
图1所示为本发明实施例提供的一种基于新型频控阵技术的S形干扰波束实现方法流程图。
图2所示为本发明实施例提供的S形干扰波束干扰效果图。
具体实施方式
现在将参考附图来详细描述本发明的示例性实施方式。应当理解,附图中示出和描述的实施方式仅仅是示例性的,意在阐释本发明的原理和精神,而并非限制本发明的范围。
本发明实施例以天线阵列的工作波长3cm、在10.5cm的孔径范围内设置8个阵元的均匀线性频控阵阵列为例,提供了一种基于新型频控阵技术的S形干扰波束实现方法,如图1所示,包括以下步骤S1-S6:
S1、确定待干扰区域的角度范围和径向距离范围。
S形干扰波束信号由三段波束构成,因此将待干扰区域分为三段,则三段待干扰区域的起始和结束位置分别表示为(r01)-(r0+r12),(r0+r12)-(r0+r1+r21),(r0+r1+r21)-(r0+r1+r2+r32),其中θ1和θ2分别为待干扰区域的起始角度和终止角度,r0为待干扰区域的起始径向距离,r1为第一段待干扰区域的径向距离,r2为第二段待干扰区域的径向距离,r3为第三段待干扰区域的径向距离,每段待干扰区域对应于S形干扰波束的一段干扰波束信号。
本发明实施例中,以二维平面为例,在给定孔径范围内首先确定一个相邻阵元间隔为d=1.5cm、阵元数M=8、全向天线均位于一条水平直线x轴上的均匀线形频控阵阵列,阵列中的8个阵元从左至右等间隔依次均匀排列,水平坐标依次为0cm,1.5cm,3cm,4.5cm,6cm,7.5cm,9cm,10.5cm,待干扰区域角度范围(-20°~40°),距离范围(2.4km~5km),θ1=-20°,θ2=40°,r0=24000m,r1=800m,r2=1000m,r3=800m,整个干扰区域角度步进设为1°,距离步进设为40米,则整个干扰区域按40×40米间隔设置观测点、共650个节点。本发明实施例中,每个天线阵元均对应一个单通道。
S2、根据待干扰区域的角度范围和径向距离范围计算S形干扰波束各通道的频偏增量和补偿相位增量。
计算频偏增量和补偿相位增量的方法如下:
由信号源发射的信号sm(t)到达任意空间点目标(r,θ)(r为距离,θ为水平方位角)可写为:
其中,A为信号幅度,c为电磁波空间传播速度,rm为第m阵元到空间点目标距离,当目标位于远场时,可近似为rm≈r-mdsinθ,d为阵元间间距,sin(·)为正弦操作,为第i段干扰波束在第m阵元对应的补偿相位,fmi为第i段干扰波束在第m阵元相应的载波频率。为避免波束出现栅瓣效应,通常天线阵列的阵元间距满足d≤λmin/2,λmin为各天线发射信号的最小波长。第i段干扰波束第m阵元与第0阵元(即参考阵元)所发射的信号到达目标时相位差为:
由于Δfim2dsinθ<<f0mdsinθ,Δfim2dsinθ<<mΔfir,相位差可简化为:
根据上式中的相位差,可得出频控阵的导向矢量:
其中,[]T表示矢量的转置操作。
令信号幅度A=1,因而采用频控阵列技术发射干扰波束在空间点目标(r,θ)处的阵列因子为:
然后通过设计补偿相位使其满足关系式:
使得阵列方向图出现峰值。根据步骤S1中S形波束干扰波束中的三段波束起始和结束位置,构造波束相位补偿表达式:
其中,设定时刻参数t1=r2/c,t2=r3/c,t3=r4/c,将其代入上式,获得三段波束对应的补偿相位增量和频偏增量为:
其中分别为三段干扰波束的补偿相位增量,Δf1,Δf2,Δf3分别为三段干扰波束的频偏增量。
本发明实施例中,根据三段干扰波束的补偿相位增量和频偏增量表达式,计算得到干扰波束所需参数:
S3、通过调制将各通道的频偏增量和补偿相位增量分别加载到单频正弦信号中,得到各通道的基带信号。
S4、采用模数芯片AD9361对各通道的基带信号进行上变频处理,将基带信号搬移至特定射频频段并进行滤波处理,得到射频信号。本发明实施例中,采用内插的方式将基带信号搬移至3GHz特定射频频段,内插后提高了时域分辨率和输出频率,但内插后频谱由于搬移会出现重叠,因而需要进行滤波处理。
S5、通过混频处理将射频信号搬移至终端射频频段(本发明实施例中为10GHz频段),得到终端射频信号,表示为:
其中t=1,2,…,T,T为离散时间点数,本发明实施例中,T=120,s(t)为原始基带信号,A为信号幅度,为第i段干扰波束在第m阵元对应的补偿相位,表示为:
M为阵元总数,为第i段干扰波束对应的补偿相位增量,fmi为第i段干扰波束在第m阵元相应的载波频率,表示为:
fmi=f0+mΔfi,m=0,...,M-1,i=1,2,3
f0为雷达初始载波频率,即第一个阵元的辐射频率,Δfi为第i段干扰波束对应的频率增量。
本发明实施例中,每一段干扰波束的具体数值如下:
第一段干扰波束中:
第二段干扰波束中:
第三段干扰波束中:
S6、设定阵列加权向量A=[1 … 1]∈1×M,弥补终端射频信号中各通道的增益误差,完成S形干扰波束的发射。本发明实施例中,根据8个阵元所对应的射频信号幅度值依次确定各通道所需加载的信道增益参数为A=[1 … 1]∈1×8
本发明实施例中,最终生成的S形干扰波束干扰效果如图2所示,经验证,当存在多个敌方目标条状分布的情况下,S形干扰可用于实现多目标干扰。起始节点对应峰值点数据近似算出为-19.68°和-20.62°,与期望起始角-20°误差在1°以内。另外,针对单目标或多目标实施干扰时,S形干扰波束信号的距离相关性使得敌方无法通过传统的测角技术发现发射机的位置,大大提高了隐蔽性。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (7)

1.一种基于新型频控阵技术的S形干扰波束实现方法,其特征在于,包括以下步骤:
S1、确定待干扰区域的角度范围和径向距离范围;
S2、根据待干扰区域的角度范围和径向距离范围计算S形干扰波束各通道的频偏增量和补偿相位增量;
S3、通过调制将各通道的频偏增量和补偿相位增量分别加载到单频正弦信号中,得到各通道的基带信号;
S4、对各通道的基带信号进行上变频处理,将基带信号搬移至特定射频频段并进行滤波处理,得到射频信号;
S5、通过混频处理将射频信号搬移至终端射频频段,得到终端射频信号;
S6、设定阵列加权向量弥补终端射频信号中各通道的增益误差,完成S形干扰波束的发射。
2.根据权利要求1所述的S形干扰波束实现方法,其特征在于,所述步骤S1具体为:
将待干扰区域分为三段,则三段待干扰区域的起始和结束位置分别表示为(r01)-(r0+r12),(r0+r12)-(r0+r1+r21),(r0+r1+r21)-(r0+r1+r2+r32),其中θ1和θ2分别为待干扰区域的起始角度和终止角度,r0为待干扰区域的起始径向距离,r1为第一段待干扰区域的径向距离,r2为第二段待干扰区域的径向距离,r3为第三段待干扰区域的径向距离,每段待干扰区域对应于S形干扰波束的一段干扰波束。
3.根据权利要求2所述的S形干扰波束实现方法,其特征在于,所述步骤S2中计算S形干扰波束各通道的频偏增量和补偿相位增量的公式为:
其中分别为三段干扰波束的补偿相位增量,Δf1,Δf2,Δf3分别为三段干扰波束的频偏增量,c为电磁波空间传播速度。
4.根据权利要求1所述的S形干扰波束实现方法,其特征在于,所述步骤S4中采用模数芯片AD9361对各通道的基带信号进行上变频处理。
5.根据权利要求1所述的S形干扰波束实现方法,其特征在于,所述步骤S4中的特定射频频段为3GHz频段,所述步骤S5中的终端射频频段为10GHz频段。
6.根据权利要求3所述的S形干扰波束实现方法,其特征在于,所述步骤S5中得到的终端射频信号表示为:
其中t=1,2,…,T,T为离散时间点数,s(t)为原始基带信号,A为信号幅度,为第i段干扰波束在第m阵元对应的补偿相位,表示为:
M为阵元总数,为第i段干扰波束对应的补偿相位增量,fmi为第i段干扰波束在第m阵元相应的载波频率,表示为:
fmi=f0+mΔfi,m=0,...,M-1,i=1,2,3
f0为雷达初始载波频率,即第一个阵元的辐射频率,Δfi为第i段干扰波束对应的频率增量。
7.根据权利要求1所述的S形干扰波束实现方法,其特征在于,所述步骤S6中设定的阵列加权向量为A=[1 … 1]∈1×M,M为阵元总数。
CN201810250921.1A 2018-03-26 2018-03-26 一种基于新型频控阵技术的s形干扰波束实现方法 Expired - Fee Related CN108196231B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810250921.1A CN108196231B (zh) 2018-03-26 2018-03-26 一种基于新型频控阵技术的s形干扰波束实现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810250921.1A CN108196231B (zh) 2018-03-26 2018-03-26 一种基于新型频控阵技术的s形干扰波束实现方法

Publications (2)

Publication Number Publication Date
CN108196231A true CN108196231A (zh) 2018-06-22
CN108196231B CN108196231B (zh) 2021-09-28

Family

ID=62596109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810250921.1A Expired - Fee Related CN108196231B (zh) 2018-03-26 2018-03-26 一种基于新型频控阵技术的s形干扰波束实现方法

Country Status (1)

Country Link
CN (1) CN108196231B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108984942A (zh) * 2018-08-01 2018-12-11 桂林电子科技大学 基于随机频偏的频控阵雷达通信一体化波形设计方法
CN109975752A (zh) * 2019-03-25 2019-07-05 深圳市联智物联网科技有限公司 一种相位式测距方法
CN111355517A (zh) * 2020-03-17 2020-06-30 电子科技大学 一种面向高速移动用户的频控阵基站协作传输方法
CN111614432A (zh) * 2020-05-26 2020-09-01 电子科技大学 一种设定阈值带惩罚项的干扰波形生成方法
CN113595677A (zh) * 2021-07-28 2021-11-02 湖北三江航天险峰电子信息有限公司 一种相控阵干扰机的收发及控制装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217854A (ja) * 2012-04-11 2013-10-24 Mitsubishi Electric Corp 周波数変調発振源およびレーダ装置
CN105044689A (zh) * 2015-04-14 2015-11-11 电子科技大学 一种基于频控阵的射频隐身方法及设备
CN205861897U (zh) * 2016-07-25 2017-01-04 桂林电子科技大学 双边带频率分集阵列雷达系统
CN107037410A (zh) * 2017-04-17 2017-08-11 电子科技大学 一种对雷达进行干扰的方法、装置及频控阵干扰机
CN107064879A (zh) * 2017-06-05 2017-08-18 上海航天测控通信研究所 一种适用于相控阵雷达中的收发模块
US20170302282A1 (en) * 2015-06-18 2017-10-19 Yekutiel Josefsberg Radar target detection system for autonomous vehicles with ultra-low phase noise frequency synthesizer
CN107356921A (zh) * 2017-08-11 2017-11-17 桂林电子科技大学 一种频率分集阵列雷达基于一次频偏目标定位的方法
CN107508623A (zh) * 2017-08-14 2017-12-22 电子科技大学 一种基于频控分布式电磁矢量传感器的稳健波束形成方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217854A (ja) * 2012-04-11 2013-10-24 Mitsubishi Electric Corp 周波数変調発振源およびレーダ装置
CN105044689A (zh) * 2015-04-14 2015-11-11 电子科技大学 一种基于频控阵的射频隐身方法及设备
US20170302282A1 (en) * 2015-06-18 2017-10-19 Yekutiel Josefsberg Radar target detection system for autonomous vehicles with ultra-low phase noise frequency synthesizer
CN205861897U (zh) * 2016-07-25 2017-01-04 桂林电子科技大学 双边带频率分集阵列雷达系统
CN107037410A (zh) * 2017-04-17 2017-08-11 电子科技大学 一种对雷达进行干扰的方法、装置及频控阵干扰机
CN107064879A (zh) * 2017-06-05 2017-08-18 上海航天测控通信研究所 一种适用于相控阵雷达中的收发模块
CN107356921A (zh) * 2017-08-11 2017-11-17 桂林电子科技大学 一种频率分集阵列雷达基于一次频偏目标定位的方法
CN107508623A (zh) * 2017-08-14 2017-12-22 电子科技大学 一种基于频控分布式电磁矢量传感器的稳健波束形成方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YIN, DA R 等: "" Enhanced Back Projection Algorithm for Linear Frequency Diverse Array Synthetic Aperture Radar Imaging"", 《EUSAR: EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR. VDE》 *
崔延硕 等: ""一种基于频控阵的S形干扰波束形成方法"", 《中国电子学会》 *
陈慧 等: ""基于稀疏表示的频控阵MIMO雷达多目标定位"", 《雷达科学与技术》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108984942A (zh) * 2018-08-01 2018-12-11 桂林电子科技大学 基于随机频偏的频控阵雷达通信一体化波形设计方法
CN109975752A (zh) * 2019-03-25 2019-07-05 深圳市联智物联网科技有限公司 一种相位式测距方法
CN111355517A (zh) * 2020-03-17 2020-06-30 电子科技大学 一种面向高速移动用户的频控阵基站协作传输方法
CN111614432A (zh) * 2020-05-26 2020-09-01 电子科技大学 一种设定阈值带惩罚项的干扰波形生成方法
CN113595677A (zh) * 2021-07-28 2021-11-02 湖北三江航天险峰电子信息有限公司 一种相控阵干扰机的收发及控制装置
CN113595677B (zh) * 2021-07-28 2023-07-25 湖北三江航天险峰电子信息有限公司 一种相控阵干扰机的收发及控制装置

Also Published As

Publication number Publication date
CN108196231B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
CN108196231A (zh) 一种基于新型频控阵技术的s形干扰波束实现方法
Zhao et al. Improved method for synthetic aperture radar scattered wave deception jamming
CN106772337B (zh) 一种基于music算法的频率分集阵列两层介质目标定位方法
Khristenko et al. Magnitude and spectrum of electromagnetic wave scattered by small quadcopter in $ X $-band
CN106707253B (zh) 一种试验室内组网雷达与组网干扰机对抗试验装置及方法
CN107271970B (zh) 一种基于分布式平台的雷达协同干扰方法
Xu et al. Beampattern analysis of planar frequency diverse array
Wan et al. Accurate estimation the scanning cycle of the reconnaissance radar based on a single unmanned aerial vehicle
Chen et al. Synthetic impulse and aperture radar (SIAR): a novel multi-frequency MIMO radar
CN105974390B (zh) 基于多普勒信息的机扫米波雷达质量中心测角方法
CN108627828A (zh) 一种毫米波雷达广域远距离目标探测的方法
Liu et al. Dual‐radar coherently combining: generalised paradigm and verification example
CN105891799A (zh) 适用于机械扫描雷达的有源干扰侦察方法
CN107907860A (zh) 一种利用频控阵技术抗时差测量的定位欺骗方法
RU2348053C1 (ru) Способ распознавания ложных воздушных целей
Yu et al. Transmitting strategy with high degrees of freedom for pulsed‐coherent FDA radar
US6950057B1 (en) Complex radar target simulator
Iqbal et al. Accuracy improvement in amplitude comparison‐based passive direction finding systems by adaptive squint selection
Shi et al. Multipath effect analysis and pre‐distortion processing for jamming on wideband ground radar through antenna sidelobe
Li et al. Study of moving targets tracking methods for a multi-beam tracking system in terahertz band
Hao et al. Passive radar source localisation based on PSAAA using single small size aircraft
CN108896970A (zh) 一种基于多元矢量合成技术的雷达干扰方法
CN108594229A (zh) 星载sar脉内多普勒效应二维补偿方法、装置及存储介质
Bhamre et al. GMTI STAP performance under space‐time impaired clutter environment
Cheng et al. A Study of Interference Analysis Between mmWave Radars and IEEE 802.11 AD at 60 GHz Bands

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210928