CN108195903A - 一种对砷检测的电化学传感材料的制备方法 - Google Patents

一种对砷检测的电化学传感材料的制备方法 Download PDF

Info

Publication number
CN108195903A
CN108195903A CN201711422209.7A CN201711422209A CN108195903A CN 108195903 A CN108195903 A CN 108195903A CN 201711422209 A CN201711422209 A CN 201711422209A CN 108195903 A CN108195903 A CN 108195903A
Authority
CN
China
Prior art keywords
solution
arsenic
dispersed
added
alcoholic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711422209.7A
Other languages
English (en)
Other versions
CN108195903B (zh
Inventor
赵振路
张梓微
王建荣
杨萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201711422209.7A priority Critical patent/CN108195903B/zh
Publication of CN108195903A publication Critical patent/CN108195903A/zh
Application granted granted Critical
Publication of CN108195903B publication Critical patent/CN108195903B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种对砷检测的电化学传感材料的制备方法,具体步骤是:步骤一:银纳米粒子的合成:(1)、将所有要使用的玻璃仪器用王水浸泡几分钟后,用二次水冲刷干净;(2)、将0.125ml AgNO3(0.2M)分散在50ml的去离子水中并用磁力搅拌;(3)、将上述溶液加热至沸腾后,加入3ml sodium citrate(W:1%)和2mlVC(0.1M);(4)、将混合溶液加热5‑10min后,用二次水离心洗涤数次并分散在去离子水中;本发明利用电化学传感技术,使合成的材料能够迅速、灵敏、准确的探测到被测物质中的砷的含量,从而及时的对被污染物质进行处理,另外在检测过程中,其他杂质离子对于目的检测物质不会产生干扰。

Description

一种对砷检测的电化学传感材料的制备方法
技术领域
本发明涉及的是电化学传感技术领域,具体的说是一种对砷检测的电化学传感材料的制备方法。
背景技术
砷,俗称砒,是一种类金属元素,在化学元素周期表中位于第4周期、第VA族,原子序数33,元素符号As,单质以灰砷、黑砷和黄砷这三种同素异形体的形式存在。砷元素广泛的存在于自然界,共有数百种的砷矿物是已被发现。砷与其化合物被运用在农药、除草剂、杀虫剂,与许多种的合金中。其化合物三氧化二砷被称为砒霜,是种毒性很强的物质。
现实生活中大量的物质都会不同程度的被砷污染,严重影响人类的健康,因此,需要对物质进行砷含量的检测,对污染物及时有效的处理,保障物质的使用安全。
发明内容
本发明的目的在于针对现有技术的缺陷和不足,提供一种对砷检测的电化学传感材料的制备方法,能够在极低浓度条件下的一定范围内,对砷的浓度进行定性定量的进行测定,便于及时对污染物质进行处理,且在检测过程中,不受其他金属离子的干扰。
为实现上述目的,本发明采用的技术方案是:
一种对砷检测的电化学传感材料的制备方法,具体步骤是:
步骤一:银纳米粒子的合成:1、将所有要使用的玻璃仪器用王水浸泡几分钟后,用二次水冲刷干净;2、将0.125ml AgNO3(0.2M)分散在50ml的去离子水中并用磁力搅拌;3、将上述溶液加热至沸腾后,加入3ml sodium citrate(W:1%)和2mlVC(0.1M);4、将混合溶液加热5-10min后,用二次水离心洗涤数次并分散在去离子水中;
步骤二:银金多空中空纳米壳的合成:1、取上述银纳米粒子50ml并加入50ml去离子水将其稀释;2、向稀释后的溶液中缓慢加入1ml NH2OH(0.1M)和2ml HAuCl4(W:0.1%),不断用磁力搅拌;3、将混合溶液冷凝并回流数分钟后冷却至室温;4、向冷却后的溶液中加入过量的H2O2(0.1M)0.2ml,使其反应几分钟;5、将所得溶液离心洗涤数次后分散在去离子水中;
步骤三:在金属粒子表面合成MOF:1、将所得金属粒子离心后加入10ml PVP(55000,20g/L),超声处理30min,然后重新分散在酒精中;2、将处理后的溶液离心去上清夜后加入10ml MAA(0.015M)酒精溶液——功能化,用磁力搅拌1h后,再超声处理40min,然后用酒精离心洗涤几次后分散在酒精溶液中;3、将功能化后的金属粒子离心后分散在4mlFeCl3-6H2O(2mM)的酒精溶液中,并将溶液在70度的水浴中加热15min,然后用酒精离心洗涤;4、将上述含金属粒子的酒精溶液离心后加入4ml H3btc(2mM)酒精溶液,并在70度的水浴中加热30min,然后离心洗涤;5、重复上述两个步骤8次后,将所得样品分散在酒精溶液中;
步骤四:样品的煅烧:将所得样品在60度的烘箱中烘干后,在500度的条件下(空气中)煅烧2h,并冷却至室温。
采用上述结构后,本发明的有益效果为:本发明利用电化学传感技术,使合成的材料能够迅速、灵敏、准确的探测到被测物质(例如:食品及生活用品,工业污水,矿石废水,生活用水等)中的砷的含量,从而及时的对被污染物质进行处理,另外在检测过程中,其他杂质离子对于目的检测物质不会产生干扰。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的砷的传感感应曲线图;
图2是本发明的砷的传感拟合直线图;
图3是本发明的干扰离子测试图;
图4是本发明的催化剂对砷的吸附测试图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施方式,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅用以解释本发明,并不用于限定本发明。
参看图1至图4所示,一种对砷检测的电化学传感材料的制备方法,具体步骤是:
步骤一:银纳米粒子的合成:
1、将所有要使用的玻璃仪器用王水浸泡几分钟后,用二次水冲刷干净;2、将0.125ml AgNO3(0.2M)分散在50ml的去离子水中并用磁力搅拌;3、将上述溶液加热至沸腾后,加入3ml sodium citrate(W:1%)和2mlVC(0.1M);4、将混合溶液加热5-10min后,用二次水离心洗涤数次并分散在去离子水中;
步骤二:银金多空中空纳米壳的合成:
1、取上述银纳米粒子50ml并加入50ml去离子水将其稀释;2、向稀释后的溶液中缓慢加入1ml NH2OH(0.1M)和2ml HAuCl4(W:0.1%),不断用磁力搅拌;3、将混合溶液冷凝并回流数分钟后冷却至室温;4、向冷却后的溶液中加入过量的H2O2(0.1M)0.2ml,使其反应几分钟;5、将所得溶液离心洗涤数次后分散在去离子水中;
步骤三:在金属粒子表面合成MOF:
1、将所得金属粒子离心后加入10ml PVP(55000,20g/L),超声处理30min,然后重新分散在酒精中;2、将处理后的溶液离心去上清夜后加入10ml MAA(0.015M)酒精溶液——功能化,用磁力搅拌1h后,再超声处理40min,然后用酒精离心洗涤几次后分散在酒精溶液中;3、将功能化后的金属粒子离心后分散在4ml FeCl3-6H2O(2mM)的酒精溶液中,并将溶液在70度的水浴中加热15min,然后用酒精离心洗涤;4、将上述含金属粒子的酒精溶液离心后加入4ml H3btc(2mM)酒精溶液,并在70度的水浴中加热30min,然后离心洗涤;5、重复上述两个步骤8次后,将所得样品分散在酒精溶液中;
步骤四:样品的煅烧:
将所得样品在60度的烘箱中烘干后,在500度的条件下(空气中)煅烧2h,并冷却至室温。
本具体实施方式能够在0.05ppb-16ppb(线性程度在0.995以上)的范围内定量的对砷浓度进行准确的检测,且不受到其他金属离子(例如:Cu2+、Fe3+等)的干扰。由于催化剂外表包有一层Fe3O4,所以增强了催化剂对砷的吸附,从而对更低浓度的砷化物进行检测。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (1)

1.一种对砷检测的电化学传感材料的制备方法,其特征在于:具体步骤是:
步骤一:银纳米粒子的合成
(1)、将所有要使用的玻璃仪器用王水浸泡几分钟后,用二次水冲刷干净;
(2)、将0.125ml AgNO3(0.2M)分散在50ml的去离子水中并用磁力搅拌;
(3)、将上述溶液加热至沸腾后,加入3ml sodium citrate(W:1%)和2mlVC(0.1M);
(4)、将混合溶液加热5-10min后,用二次水离心洗涤数次并分散在去离子水中;
步骤二:银金多空中空纳米壳的合成
(1)、取上述银纳米粒子50ml并加入50ml去离子水将其稀释;
(2)、向稀释后的溶液中缓慢加入1ml NH2OH(0.1M)和2ml HAuCl4(W:0.1%),不断用磁力搅拌;
(3)、将混合溶液冷凝并回流数分钟后冷却至室温;
(4)、向冷却后的溶液中加入过量的H2O2(0.1M)0.2ml,使其反应几分钟;
(5)、将所得溶液离心洗涤数次后分散在去离子水中;
步骤三:在金属粒子表面合成MOF
(1)、将所得金属粒子离心后加入10ml PVP(55000,20g/L),超声处理30min,然后重新分散在酒精中;
(2)、将处理后的溶液离心去上清夜后加入10ml MAA(0.015M)酒精溶液——功能化,用磁力搅拌1h后,再超声处理40min,然后用酒精离心洗涤几次后分散在酒精溶液中;
(3)、将功能化后的金属粒子离心后分散在4ml FeCl3-6H2O(2mM)的酒精溶液中,并将溶液在70度的水浴中加热15min,然后用酒精离心洗涤;
(4)、将上述含金属粒子的酒精溶液离心后加入4ml H3btc(2mM)酒精溶液,并在70度的水浴中加热30min,然后离心洗涤;
(5)、重复上述两个步骤8次后,将所得样品分散在酒精溶液中;
步骤四:样品的煅烧
将所得样品在60度的烘箱中烘干后,在500度的条件下(空气中)煅烧2h,并冷却至室温。
CN201711422209.7A 2017-12-25 2017-12-25 一种对砷检测的电化学传感材料的制备方法 Expired - Fee Related CN108195903B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711422209.7A CN108195903B (zh) 2017-12-25 2017-12-25 一种对砷检测的电化学传感材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711422209.7A CN108195903B (zh) 2017-12-25 2017-12-25 一种对砷检测的电化学传感材料的制备方法

Publications (2)

Publication Number Publication Date
CN108195903A true CN108195903A (zh) 2018-06-22
CN108195903B CN108195903B (zh) 2019-07-02

Family

ID=62583861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711422209.7A Expired - Fee Related CN108195903B (zh) 2017-12-25 2017-12-25 一种对砷检测的电化学传感材料的制备方法

Country Status (1)

Country Link
CN (1) CN108195903B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104774921A (zh) * 2015-01-27 2015-07-15 济南大学 一种检测三价砷的化学发光传感器及其制备方法
KR20170002787A (ko) * 2015-06-29 2017-01-09 충북대학교 산학협력단 음이온성 중금속 검출용 고감도 및 고선택성 센서
WO2017100823A1 (en) * 2015-12-18 2017-06-22 Macquarie University Biological detection system
CN107121480A (zh) * 2016-12-06 2017-09-01 百色学院 一种碳材料修饰的工作电极检测微量及痕量砷和重金属的电化学方法
CN107478635A (zh) * 2017-06-23 2017-12-15 中北大学 一种mof‑贵金属复合sers基底及其制备方法
US20170361300A1 (en) * 2016-06-17 2017-12-21 Battelle Memorial Institute System and process for continuous and controlled production of metal-organic frameworks and metal-organic framework composites

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104774921A (zh) * 2015-01-27 2015-07-15 济南大学 一种检测三价砷的化学发光传感器及其制备方法
KR20170002787A (ko) * 2015-06-29 2017-01-09 충북대학교 산학협력단 음이온성 중금속 검출용 고감도 및 고선택성 센서
WO2017100823A1 (en) * 2015-12-18 2017-06-22 Macquarie University Biological detection system
US20170361300A1 (en) * 2016-06-17 2017-12-21 Battelle Memorial Institute System and process for continuous and controlled production of metal-organic frameworks and metal-organic framework composites
CN107121480A (zh) * 2016-12-06 2017-09-01 百色学院 一种碳材料修饰的工作电极检测微量及痕量砷和重金属的电化学方法
CN107478635A (zh) * 2017-06-23 2017-12-15 中北大学 一种mof‑贵金属复合sers基底及其制备方法

Also Published As

Publication number Publication date
CN108195903B (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
Chaiyo et al. High sensitivity and specificity simultaneous determination of lead, cadmium and copper using μPAD with dual electrochemical and colorimetric detection
Bojdi et al. Synthesis, characterization and application of novel lead imprinted polymer nanoparticles as a high selective electrochemical sensor for ultra-trace determination of lead ions in complex matrixes
Maleki et al. Polyamidoamine dendrimer functionalized iron oxide nanoparticles for simultaneous electrochemical detection of Pb2+ and Cd2+ ions in environmental waters
Chaiyo et al. Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions
Xin et al. Colorimetric detection of Cr 3+ using tripolyphosphate modified gold nanoparticles in aqueous solutions
Li et al. Enhanced Cr (VI) removal by zero-valent iron coupled with weak magnetic field: role of magnetic gradient force
Cui et al. A promising gold nanocluster fluorescent sensor for the highly sensitive and selective detection of S2−
Yang et al. Separation and determination of silver nanoparticle in environmental water and the UV-induced photochemical transformations study of AgNPs by cloud point extraction combined ICP-MS
Jongjinakool et al. Gold nanoparticles-based colorimetric sensor for cysteine detection
Li et al. Highly sensitive label-free electrochemical aptasensor based on screen-printed electrode for detection of cadmium (II) ions
CN104165915B (zh) 一种用于检测银的生物传感器及其制备方法和应用
Tavallali et al. Preconcentration and speciation of Cr (III) and Cr (VI) in water and soil samples by spectrometric detection via use of nanosized alumina-coated magnetite solid phase
López-García et al. Ultrasound-assisted dispersive liquid–liquid microextraction for the speciation of traces of chromium using electrothermal atomic absorption spectrometry
Asgharinezhad et al. A novel 4-(2-pyridylazo) resorcinol functionalised magnetic nanosorbent for selective extraction of Cu (II) and Pb (II) ions from food and water samples
Roushani et al. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of zinc ions
Saracoglu et al. Carrier element-free coprecipitation (CEFC) method for separation and pre-concentration of some metal ions in natural water and soil samples
CN101334365B (zh) 钢板轧制用平整液中氯离子含量测定方法
Khajeh et al. Removal of molybdenum using silver nanoparticles from water samples: Particle swarm optimization–artificial neural network
CN103743735A (zh) 一种比色法检测、富集与分离水环境重金属Hg2+的方法
CN103226103B (zh) 一种汞离子比色检测探针及其应用方法
Jiang et al. Sorption of vanadium (V) on three typical agricultural soil of the Loess Plateau, China
Li et al. Fe2O3/BiVO4 heterogeneous photo-Fenton catalyst with excellent dye degradation performance prepared by ultrasonic-assisted calcination
Rebolledo-Perales et al. Electrochemical Determination of Heavy Metals in Food and Drinking Water Using Electrodes Modified with Ion-Imprinted Polymers
CN104090009B (zh) 一种基于石墨烯纳米片改性电极的电化学传感器的制备方法
Soylak et al. Magnetic solid‐phase extraction of nickel (II) as the 2‐(5‐bromo‐2‐pyridilazo)‐5‐(diethylamino) phenol chelate on magnetite@ methacrylic ester copolymer prior to high‐resolution–continuum source flame atomic absorption spectrometric detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190702

Termination date: 20201225