CN108187742A - 纳米粒子复合材料、其合成方法及用途 - Google Patents

纳米粒子复合材料、其合成方法及用途 Download PDF

Info

Publication number
CN108187742A
CN108187742A CN201810006036.9A CN201810006036A CN108187742A CN 108187742 A CN108187742 A CN 108187742A CN 201810006036 A CN201810006036 A CN 201810006036A CN 108187742 A CN108187742 A CN 108187742A
Authority
CN
China
Prior art keywords
synthetic method
solution
silicon oxide
mesopore silicon
dopamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810006036.9A
Other languages
English (en)
Inventor
陈进
宋翌琰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Nanjing Medical University
Original Assignee
Nanjing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Medical University filed Critical Nanjing Medical University
Priority to CN201810006036.9A priority Critical patent/CN108187742A/zh
Publication of CN108187742A publication Critical patent/CN108187742A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0325Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/26Organic substances containing nitrogen or phosphorus
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/28Organic substances containing oxygen, sulfur, selenium or tellurium, i.e. chalcogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Dentistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Emergency Management (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Business, Economics & Management (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及纳米粒子复合材料、其合成方法及用途。该纳米粒子复合材料的合成方法包括:介孔氧化硅和多巴胺超声混合,所得产物与可溶性银盐溶液搅拌混合,最终得到纳米粒子复合材料成品。该纳米粒子复合材料可用于有机染料催化降解或抗菌。本发明合成方法绿色、简单、快捷,所得纳米粒子复合材料能高效催化降解多种有机染料,实现在线催化,自动化程度高;同时,该纳米粒子复合材料对多种细菌真菌具有杀灭作用,达到广谱、高效、持续杀菌。

Description

纳米粒子复合材料、其合成方法及用途
技术领域
本发明涉及一种纳米粒子复合材料、其合成方法及用途,该材料能催化降解有机染料且广谱抗菌,属于绿色催化、抗菌材料合成技术领域。
背景技术
据发明人所知,现有复合材料中,能兼备催化降解有机染料能力和广谱抗菌能力的材料非常少见,而单独具备其一的材料又各自存在一些缺陷。具体而言,能催化降解有机染料的材料,其合成工艺较为复杂,需要消耗大量人力物力财力;在合成过程中需要使用有毒化学试剂,生物相容性较差,对环境有污染;无法进行多种染料的催化降解,催化降解耗时长、效率差;无法进行流动在线催化,自动化程度低。能抗菌的材料,其杀菌作用对象有限,只对某种细菌有杀灭作用;杀菌持续时间短,无法持续杀菌;大量使用易产生耐药菌株,威胁人类健康。
经检索发现,申请号CN201710059415.X、申请公布号CN106800375A的中国发明专利申请,公开了一种TiO2修饰多巴胺抗菌涂层的制备方法,包括:基底预处理;多巴胺处理;制备TiO2溶胶;固定TiO2,得TiO2修饰多巴胺抗菌涂层。以固体材料为基底,在其表面进行多巴胺自聚,再用TiO2进行修饰,合成具有抗菌性能的涂层。但是,该技术方案的制备过程还是比较复杂的,而且最终所得成品并没有催化降解有机染料的能力。
申请号CN201710301581.6、申请公布号CN106975426A的中国发明专利申请,公开了一种微通道反应器内高稳定性催化层及其制备方法,其方法包括:微通道内壁面预处理,聚多巴胺基底层制备,金属颗粒基底层制备,聚多巴胺载体层制备,催化剂颗粒层制备。所得成品以微通道的内壁面为基底,由下往上依次附着有聚多巴胺基底层、金属颗粒基底层、聚多巴胺载体层、催化剂颗粒层;其中,金属颗粒为钯或者铂或者铜或者银,催化剂颗粒为钯纳米颗粒或者铂纳米颗粒或者镍纳米颗粒。但是,该技术方案的制备过程也略微复杂,最终所得成品的催化性能由催化剂颗粒层中的催化剂种类决定,并没有确定的催化性能。
发明内容
本发明所要解决的技术问题是:克服现有技术存在的问题,提供一种纳米粒子复合材料的合成方法,过程简洁,所得材料兼具催化降解有机染料能力和广谱抗菌能力。同时提供该方法合成的复合材料、以及该复合材料的用途。
本发明解决其技术问题的技术方案如下:
一种纳米粒子复合材料的合成方法,其特征是,包括以下步骤:
第一步、将介孔氧化硅与多巴胺于缓冲液中超声混合,然后离心并收集沉淀;将沉淀洗涤、干燥后,得聚多巴胺修饰的介孔氧化硅;
第二步、将所述聚多巴胺修饰的介孔氧化硅与可溶性银盐溶液搅拌混合,然后离心并收集沉淀;将沉淀洗涤、干燥后,得固定有银纳米粒子的聚多巴胺修饰介孔氧化硅,即纳米粒子复合材料成品。
具体而言,第一步中,介孔氧化硅与多巴胺的质量比为1:0.2~1.2;缓冲液是pH为7.0-12.0的Tris-HCl缓冲液;超声混合时间为至少6小时。
第二步中,搅拌混合时溶液温度为60℃-100℃,溶液pH为7.0-12.0,搅拌混合时间为至少6小时。
同时,第一步中,Tris-HCl缓冲液的浓度为1-100mmol/L,介孔氧化硅与Tris-HCl缓冲液的质量体积比为1.6±1mg/ml;第二步中,所述聚多巴胺修饰的介孔氧化硅与可溶性银盐溶液的质量体积比为6.6±5mg/ml,可溶性银盐溶液中的银离子浓度为32±20mmol/L。
此外,第一、二步中,离心速率为8000±4000rpm,离心时间为至少3分钟;沉淀洗涤采用超纯水洗涤至少3次。
所述可溶性银盐溶液为硝酸银溶液;所述介孔氧化硅为SBA-15,且其制备过程为:S1.将P123溶于超纯水,搅拌后加入盐酸溶液并混匀,然后加入正硅酸乙酯并搅拌;S2.将所得混合物移至聚四氟乙烯高压反应釜中加热搅拌,然后过滤并将所得固体干燥;S3.将干燥后固体煅烧即得SBA-15。
具体地,P123与超纯水的质量体积比为0.05±0.03g/ml;加入盐酸溶液前搅拌至少1小时,盐酸溶液的浓度为3.4±0.5mol/L,P123与盐酸溶液的质量体积比为0.06±0.03g/ml;P123与正硅酸乙酯的质量体积比为0.44±0.25g/ml,加入正硅酸乙酯后搅拌至少12小时;S1步保持温度在36℃±10℃;S2步加热搅拌的温度为100℃±5℃且时间为至少24小时,干燥采用烘箱,干燥温度为80℃±20℃且时间为至少12小时;S3步煅烧温度为550℃±25℃且时间为至少5小时。
本发明还提供:前文所述合成方法制备得到的纳米粒子复合材料。
前文所述纳米粒子复合材料用于制备有机染料催化降解剂或制备抗菌剂的用途。其中,所述有机染料包括对硝基酚、亚甲蓝;所述抗菌剂针对的微生物包括大肠杆菌、金黄色葡萄球菌、烟曲霉。
本发明合成方法绿色、简单、快捷,所得纳米粒子复合材料能高效催化降解多种有机染料,实现在线催化,自动化程度高;同时,该纳米粒子复合材料对多种细菌真菌具有杀灭作用,达到广谱、高效、持续杀菌。
附图说明
图1为本发明实施例4的SEM扫描电镜图。
图2为本发明实施例4的HRTEM透射电镜图。
图3为本发明实施例4的X射线光电子能谱分析图,其中A为全谱,B为Ag的高分辨X射线光电子能谱。
图4为本发明实施例4的拉曼光谱图,其中a为SBA-15/PDA0.6,b为SBA-15/PDA0.6/Ag。
图5为本发明实施例5的结果示意图。图中右上角的两个比色皿,左侧比色皿盛有黄色的对硝基酚,右侧比色皿盛有无色透明的反应后液体。
图6为本发明实施例6的结果示意图。图中注射器内液体、右上角瓶内液体分别为蓝色的亚甲蓝溶液;注射器下方的小瓶及其旁边的小瓶中分别为反应后的无色透明液体。
图7为本发明实施例7的结果示意图,其中E.coli为大肠杆菌,S.aureus为金黄色葡萄球菌,A.fumigatus为烟曲霉。
具体实施方式
下面参照附图并结合实施例对本发明作进一步详细描述。但是本发明不限于所给出的例子。
实施例1、介孔氧化硅SBA-15的制备
本实施例基本制备过程如下:
S1.将P123溶于超纯水,搅拌后加入盐酸溶液并混匀,然后加入正硅酸乙酯并搅拌;其中,P123与超纯水的质量体积比为0.05±0.03g/ml;加入盐酸溶液前搅拌至少1小时,盐酸溶液的浓度为3.4±0.5mol/L,P123与盐酸溶液的质量体积比为0.06±0.03g/ml;P123与正硅酸乙酯的质量体积比为0.44±0.25g/ml,加入正硅酸乙酯后搅拌至少12小时。
此外,S1步整个过程保持温度在36℃±10℃。
S2.将所得混合物移至聚四氟乙烯高压反应釜中加热搅拌,然后过滤并将所得固体干燥;
其中,加热搅拌的温度为100℃±5℃且时间为至少24小时,干燥采用烘箱,干燥温度为80℃±20℃且时间为至少12小时。
S3.将干燥后固体煅烧即得SBA-15;煅烧温度为550℃±25℃且时间为至少5小时。
具体地,S1步中,取4.0g P123溶于80ml超纯水中,并搅拌3小时,然后加入70ml3.4mol/L的盐酸溶液;接着加入9.14ml正硅酸乙酯,然后再搅拌24小时。S1步整个过程中保持温度在36℃。
S2步中,将S1所得混合物移至聚四氟乙烯高压反应釜中,于100℃加热搅拌24小时,然后过滤并将所得固体置烘箱中于80℃干燥24小时。
S3步中,将干燥后固体于550℃煅烧6小时。
实施例2、聚多巴胺修饰介孔氧化硅的制备
将实施例1所得介孔氧化硅SBA-15与多巴胺于缓冲液中超声混合,介孔氧化硅SBA-15与多巴胺的质量比为1:0.2~1.2,缓冲液是pH为7.0-12.0、浓度为1-100mmol/L的Tris-HCl缓冲液,介孔氧化硅SBA-15与Tris-HCl缓冲液的质量体积比为1.6±1mg/ml,超声混合时间为至少6小时;然后离心并收集沉淀,离心速率为8000±4000rpm,离心时间为至少3分钟;将沉淀洗涤、干燥,沉淀洗涤采用超纯水洗涤至少3次;即得聚多巴胺修饰的介孔氧化硅。
具体地,介孔氧化硅SBA-15的质量为50mg,多巴胺的质量为10-60mg,缓冲液为30ml的pH 8.5、10mmol/L的Tris-HCl缓冲液,超声混合时间为24小时。离心速率为8000rpm,离心时间为5分钟,沉淀洗涤采用超纯水洗涤3次。
本实施例所得聚多巴胺修饰介孔氧化硅记为SBA-15/PDAX,其中角标x表示多巴胺对SBA-15的质量倍数。
实施例3、纳米粒子复合材料的制备
将实施例2所得聚多巴胺修饰介孔氧化硅与可溶性银盐溶液搅拌混合,然后离心并收集沉淀;将沉淀洗涤、干燥后,得固定有银纳米粒子的聚多巴胺修饰介孔氧化硅,即纳米粒子复合材料成品。
搅拌混合时溶液温度为60℃-100℃,溶液pH为7.0-12.0,搅拌混合时间为至少6小时。聚多巴胺修饰的介孔氧化硅与可溶性银盐溶液的质量体积比为6.6±5mg/ml,可溶性银盐溶液中的银离子浓度为32±20mmol/L。离心速率为8000±4000rpm,离心时间为至少3分钟;沉淀洗涤采用超纯水洗涤至少3次。
具体地,实施例2所得聚多巴胺修饰介孔氧化硅为SBA-15/PDA0.6,其用量为40mg;可溶性银盐溶液为硝酸银溶液,体积为6ml,浓度为32mmol/L;搅拌混合时溶液温度为80℃,溶液pH为8.5,搅拌混合时间为12小时。离心速率为8000rpm,离心时间为5分钟;沉淀洗涤采用超纯水洗涤3次。
本实施例所得产物记为SBA-15/PDA0.6/Ag。
实施例4、纳米粒子复合材料的特性鉴定
1、采用SEM扫描电镜对SBA-15/PDA0.6/Ag进行鉴定,结果如图1所示。从图中可以清晰地看到球状的银纳米粒子。
2、采用HRTEM透射电镜对SBA-15/PDA0.6/Ag进行鉴定,结果如图2所示。从图中看到介孔结构以及孔道内外的银纳米粒子。
3、对SBA-15/PDA0.6/Ag进行X射线光电子能谱分析,结果如图3所示,可见介孔氧化硅多巴胺银纳米粒子复合材料表面存在Ag、Si、O、N元素。
4、对SBA-15/PDA0.6、SBA-15/PDA0.6/Ag分别进行拉曼光谱分析,结果如图4所示,a存在芳香环的信号,证明SBA-15/PDA0.6中多巴胺已聚合到介孔氧化硅上,b中芳香环信号增加,间接证明银纳米粒子成功合成到聚多巴胺修饰介孔氧化硅上。
实施例5、纳米粒子复合材料降解对硝基酚
取SBA-15/PDA0.6/Ag加入含硼氢化钠的对硝基酚溶液中反应(该反应体系中含有:1100μl H2O,200μl 20mmol/L对硝基酚,660μl 3mol/L NaBH4,40μl 0.5mg/ml SBA-15/PDA0.6/Ag),分别在反应0、2、4、5、6、7min时用紫外-可见分光光度计检测对硝基酚的降解情况,结果如图5所示,表明SBA-15/PDA0.6/Ag能快速降解对硝基酚。
实施例6、纳米粒子复合材料降解亚甲蓝
将SBA-15/PDA0.6/Ag负载到商业化的滤膜上,用注射器抽取含硼氢化钠的亚甲蓝溶液,并使其通过前述制备好的滤膜,结果如图6所示,肉眼可见亚甲蓝溶液由蓝色变成无色,降解效果显著。
实施例7、纳米粒子复合材料的抗菌效果
取SBA-15/PDA0.6/Ag,将其配成10mg/ml悬液并取400μl均匀涂布于固体培养基上(对照组则直接采用固体培养基),再用表面涂布法分别接种大肠杆菌(200μl约105CFU/ml)、金黄色葡萄球菌(10μl约105CFU/ml)、烟曲霉(10μl约107CFU/ml),培养一段时间。结果如图7所示,在涂布了SBA-15/PDA0.6/Ag的培养基上可维持无大肠杆菌生长60小时、无金黄色葡萄球菌生长36小时、无烟曲霉生长60小时,由此可见该材料具有广谱长效杀菌效果。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (10)

1.一种纳米粒子复合材料的合成方法,其特征是,包括以下步骤:
第一步、将介孔氧化硅与多巴胺于缓冲液中超声混合,然后离心并收集沉淀;将沉淀洗涤、干燥后,得聚多巴胺修饰的介孔氧化硅;
第二步、将所述聚多巴胺修饰的介孔氧化硅与可溶性银盐溶液搅拌混合,然后离心并收集沉淀;将沉淀洗涤、干燥后,得固定有银纳米粒子的聚多巴胺修饰介孔氧化硅,即纳米粒子复合材料成品。
2.根据权利要求1所述的合成方法,其特征是,第一步中,介孔氧化硅与多巴胺的质量比为1:0.2~1.2;缓冲液是pH为7.0-12.0的Tris-HCl缓冲液;超声混合时间为至少6小时。
3.根据权利要求2所述的合成方法,其特征是,第二步中,搅拌混合时溶液温度为60℃-100℃,溶液pH为7.0-12.0,搅拌混合时间为至少6小时。
4.根据权利要求3所述的合成方法,其特征是,第一步中,Tris-HCl缓冲液的浓度为1-100mmol/L,介孔氧化硅与Tris-HCl缓冲液的质量体积比为1.6±1mg/ml;第二步中,所述聚多巴胺修饰的介孔氧化硅与可溶性银盐溶液的质量体积比为6.6±5mg/ml,可溶性银盐溶液中的银离子浓度为32±20mmol/L。
5.根据权利要求1至4任一项所述的合成方法,其特征是,第一、二步中,离心速率为8000±4000rpm,离心时间为至少3分钟;沉淀洗涤采用超纯水洗涤至少3次。
6.根据权利要求1至4任一项所述的合成方法,其特征是,所述可溶性银盐溶液为硝酸银溶液;所述介孔氧化硅为SBA-15,且其制备过程为:S1.将P123溶于超纯水,搅拌后加入盐酸溶液并混匀,然后加入正硅酸乙酯并搅拌;S2.将所得混合物移至聚四氟乙烯高压反应釜中加热搅拌,然后过滤并将所得固体干燥;S3.将干燥后固体煅烧即得SBA-15。
7.根据权利要求6所述的合成方法,其特征是,P123与超纯水的质量体积比为0.05±0.03g/ml;加入盐酸溶液前搅拌至少1小时,盐酸溶液的浓度为3.4±0.5mol/L,P123与盐酸溶液的质量体积比为0.06±0.03g/ml;P123与正硅酸乙酯的质量体积比为0.44±0.25g/ml,加入正硅酸乙酯后搅拌至少12小时;S1步保持温度在36℃±10℃;S2步加热搅拌的温度为100℃±5℃且时间为至少24小时,干燥采用烘箱,干燥温度为80℃±20℃且时间为至少12小时;S3步煅烧温度为550℃±25℃且时间为至少5小时。
8.权利要求1至7任一项所述合成方法制备得到的纳米粒子复合材料。
9.权利要求8所述纳米粒子复合材料用于制备有机染料催化降解剂或制备抗菌剂的用途。
10.根据权利要求9所述的用途,其特征是,所述有机染料包括对硝基酚、亚甲蓝;所述抗菌剂针对的微生物包括大肠杆菌、金黄色葡萄球菌、烟曲霉。
CN201810006036.9A 2018-01-03 2018-01-03 纳米粒子复合材料、其合成方法及用途 Pending CN108187742A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810006036.9A CN108187742A (zh) 2018-01-03 2018-01-03 纳米粒子复合材料、其合成方法及用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810006036.9A CN108187742A (zh) 2018-01-03 2018-01-03 纳米粒子复合材料、其合成方法及用途

Publications (1)

Publication Number Publication Date
CN108187742A true CN108187742A (zh) 2018-06-22

Family

ID=62587812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810006036.9A Pending CN108187742A (zh) 2018-01-03 2018-01-03 纳米粒子复合材料、其合成方法及用途

Country Status (1)

Country Link
CN (1) CN108187742A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354873A (zh) * 2021-06-16 2021-09-07 桂林理工大学 杂化介孔材料的制备方法及其产品和应用
CN115137669A (zh) * 2022-06-24 2022-10-04 金三江(肇庆)硅材料股份有限公司 一种二氧化硅负载纳米银复合材料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812678A (zh) * 2010-03-05 2010-08-25 北京化工大学 一种通过多巴胺制备表面包覆银的复合材料的方法
CN101864670A (zh) * 2010-06-23 2010-10-20 东华大学 一种以浸渍工艺制备载有纳米银抗菌织物的方法
CN102210324A (zh) * 2010-04-09 2011-10-12 中国科学院海洋研究所 一种复合纳米颗粒的选择性杀菌剂及其制备和应用
CN104888631A (zh) * 2015-06-18 2015-09-09 天津大学 一种聚多巴胺/银改性聚合物分离膜及制备方法
CN105195025A (zh) * 2015-09-09 2015-12-30 天津大学 采用载银纳米复合材料制备抗菌抗污染超滤膜的方法
KR20160077979A (ko) * 2014-12-24 2016-07-04 인천대학교 산학협력단 폴리도파민을 이용한 촉매 합성법, 이에 의해 제조된 촉매, 및 이를 이용한 연료전지
CN106620900A (zh) * 2017-01-06 2017-05-10 温州医科大学 一种基于仿生多巴胺原位还原纳米银的多层膜长效抗菌涂层的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812678A (zh) * 2010-03-05 2010-08-25 北京化工大学 一种通过多巴胺制备表面包覆银的复合材料的方法
CN102210324A (zh) * 2010-04-09 2011-10-12 中国科学院海洋研究所 一种复合纳米颗粒的选择性杀菌剂及其制备和应用
CN101864670A (zh) * 2010-06-23 2010-10-20 东华大学 一种以浸渍工艺制备载有纳米银抗菌织物的方法
KR20160077979A (ko) * 2014-12-24 2016-07-04 인천대학교 산학협력단 폴리도파민을 이용한 촉매 합성법, 이에 의해 제조된 촉매, 및 이를 이용한 연료전지
CN104888631A (zh) * 2015-06-18 2015-09-09 天津大学 一种聚多巴胺/银改性聚合物分离膜及制备方法
CN105195025A (zh) * 2015-09-09 2015-12-30 天津大学 采用载银纳米复合材料制备抗菌抗污染超滤膜的方法
CN106620900A (zh) * 2017-01-06 2017-05-10 温州医科大学 一种基于仿生多巴胺原位还原纳米银的多层膜长效抗菌涂层的制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
MINGWEI ZHANG ET AL.: ""General promoting effect of polydopamine on supported noble metal catalysts"", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
NING WANG ET AL.: ""Sustainable catalytic properties of silver nanoparticles supported montmorillonite for highly efficient recyclable reduction of methylene blue"", 《APPLIED CLAY SCIENCE》 *
YIJUN XIE ET AL.: ""Highly Regenerable Mussel-Inspired Fe3O4@Polydopamine-Ag Core-Shell Microspheres as Catalyst and Adsorbent for Methylene Blue Removal"", 《ACS APPLIED MATERIALS & INTERFACES》 *
张丹慧等: "《贵金属/石墨烯纳米复合材料的合成及性能》", 31 December 2015, 国防工业出版社 *
王艳薇等: ""聚多巴胺活化的纤维素材料用于贵金属离子的回收及有机染料催化"", 《齐鲁工业大学学报》 *
许枭然等: ""银纳米粒子/聚多巴胺微球的制备及催化性能"", 《浙江理工大学学报(自然科学版)》 *
贾丽华等: "《化学工程与工艺综合实验》", 30 September 2009, 哈尔滨工程大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354873A (zh) * 2021-06-16 2021-09-07 桂林理工大学 杂化介孔材料的制备方法及其产品和应用
CN115137669A (zh) * 2022-06-24 2022-10-04 金三江(肇庆)硅材料股份有限公司 一种二氧化硅负载纳米银复合材料的制备方法

Similar Documents

Publication Publication Date Title
Ghayempour et al. Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: A low cytotoxic photocatalyst with antibacterial and antifungal properties
Salari et al. Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity
Jiraroj et al. Silver ions and silver nanoparticles in zeolite A composites for antibacterial activity
CN102845471B (zh) 一种银基复合颗粒、其制备方法及含有该颗粒的抗菌剂
Ajitha et al. Lantana camara leaf extract mediated silver nanoparticles: antibacterial, green catalyst
Masurkar et al. Rapid biosynthesis of silver nanoparticles using Cymbopogan citratus (lemongrass) and its antimicrobial activity
CN101616737B (zh) 光催化二氧化钛溶胶,和使用其的涂料组合物和部件
Erazo et al. Synthesis of ZnO nanoparticles with different morphology: Study of their antifungal effect on strains of Aspergillus niger and Botrytis cinerea
Shah et al. Synthesis of AgNPs coated with secondary metabolites of Acacia nilotica: An efficient antimicrobial and detoxification agent for environmental toxic organic pollutants
Pragathiswaran et al. Synthesis and characterization of TiO2/ZnO–Ag nanocomposite for photocatalytic degradation of dyes and anti-microbial activity
US20080089839A1 (en) Preparation of Stable High Concentration Coloidal Metal Particulate System
Pal et al. Synthesis, characterization and photocatalytic properties of ZnO nanoparticles and cotton fabric modified with ZnO nanoparticles via in-situ hydrothermal coating technique: Dual response
Ye et al. Highly synergistic antimicrobial activity of spherical and flower-like hierarchical titanium dioxide/silver composites
Shah et al. Synthesis of high surface area AgNPs from Dodonaea viscosa plant for the removal of pathogenic microbes and persistent organic pollutants
Selvaraj et al. Antimicrobial and anticancer efficacy of antineoplastic agent capped gold nanoparticles
Textor et al. Deposition of durable thin silver layers onto polyamides employing a heterogeneous Tollens’ reaction
Anwar et al. Adopting a green method for the synthesis of gold nanoparticles on cotton cloth for antimicrobial and environmental applications
Şahin et al. Antibacterial activity against Escherichia coli and characterization of ZnO and ZnO–Al2O3 mixed oxide nanoparticles
Anwar et al. Imparting antibacterial, antifungal and catalytic properties to cotton cloth surface via green route
CN102639101A (zh) 涂敷抗菌剂的二氧化硅粉末的制法及包含该粉末的局部皮肤用组合物
CN108187742A (zh) 纳米粒子复合材料、其合成方法及用途
CN112588301A (zh) 一种复合金属纳米材料及其制备和应用
Wan et al. Bioreduction and stabilization of nanosilver using Chrysanthemum phytochemicals for antibacterial and wastewater treatment
Gnanamoorthy et al. Synthesis and effective performance of Photocatalytic and Antimicrobial activities of Bauhinia tomentosa Linn plants using of gold nanoparticles
Indumathi et al. Phytoextract-mediated synthesis of Cu doped NiO nanoparticle using cullon tomentosum plant extract with efficient antibacterial and anticancer property

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180622

RJ01 Rejection of invention patent application after publication