CN108181723B - 一种基于强耦合多芯光纤随机激光的无散斑成像光源 - Google Patents

一种基于强耦合多芯光纤随机激光的无散斑成像光源 Download PDF

Info

Publication number
CN108181723B
CN108181723B CN201810088674.XA CN201810088674A CN108181723B CN 108181723 B CN108181723 B CN 108181723B CN 201810088674 A CN201810088674 A CN 201810088674A CN 108181723 B CN108181723 B CN 108181723B
Authority
CN
China
Prior art keywords
optical fiber
close coupling
core
coupling multi
core optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810088674.XA
Other languages
English (en)
Other versions
CN108181723A (zh
Inventor
饶云江
马瑞
张伟利
胡波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201810088674.XA priority Critical patent/CN108181723B/zh
Publication of CN108181723A publication Critical patent/CN108181723A/zh
Priority to US16/035,722 priority patent/US10620448B2/en
Application granted granted Critical
Publication of CN108181723B publication Critical patent/CN108181723B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06737Fibre having multiple non-coaxial cores, e.g. multiple active cores or separate cores for pump and gain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1312Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1053Control by pressure or deformation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1055Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length one of the reflectors being constituted by a diffraction grating

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种基于强耦合多芯光纤随机激光的无散斑成像光源,涉及光纤激光照明光源领域,主要包括泵浦源和光纤环镜,还包括强耦合多芯光纤或单模光纤与强耦合多芯光纤,本发明中,直接采用强耦合多芯光纤或者结合单模光纤和强耦合多芯光纤作为照明光源,解决传统激光器作为照明光源空间相干性较高,不利于无散斑成像照明的问题,为高速、全场无散斑成像技术提供理想的照明光源。

Description

一种基于强耦合多芯光纤随机激光的无散斑成像光源
技术领域
本发明涉及光纤激光照明光源领域,尤其涉及一种基于强耦合多芯光纤随机激光的无散斑成像光源。
背景技术
照明成像光源是成像领域的研究热点,理想的照明成像光源需具有低相干性、高光谱密度和高亮度输出的特点。然而,传统照明成像光源具有诸多限制因素,如发光二极管(LED)的光谱密度和亮度较低,会限制成像速率和效率;激光二极管(LD)相干性较高,会导致由光源自身干涉带来的散斑效应,降低成像质量;放大自发辐射光源(ASE)的发射波长受限于稀土离子的能级结构,波长调谐性差。
传统随机激光光源具有低空间相干性和高光谱密度的特点,能实现无散斑成像照明。然而,传统随机激光光源具有无方向性的任意角度发射,输出功率低等不足,无法用于高效照明系统。光纤随机激光作为一种重要的新光源,可用于非线性光学、光通信、成像和传感等领域(参见文献S.K.Turitsyn,S.A.Babin,A.E.El-Taher,P.Harper,D.V.Churkin,S.I.Kablukov,J.D.V.Karalekas,and E.V.Podivilov,“Randomdistributed feedback fiber laser,”Nat.Photon.4,231–235(2010)第一页第一段第一句话,以及参见文献A.A.Fotiadi,“Random lasers:An incoherent fibre laser,”Nat.Photon.4,204–205(2010)第一页摘要部分),光纤随机激光输出具有较好的方向性、高亮度、低时间相干性等特点,在高速全场无散斑成像领域具有潜在的应用价值,但传统单模光纤随机激光为单横模输出,仍具有较高的空间相干性,不利于无散斑成像照明(参见文献J.W.Goodman,“Speckle Phenomena in Optics:Theory and Applications,”Roberts&Company,Englewood(2007)第163、164页,特别是公式5-137)。
发明内容
本发明的目的在于:提供一种基于强耦合多芯光纤随机激光的无散斑成像光源,直接采用强耦合多芯光纤或者结合单模光纤和强耦合多芯光纤作为照明光源,解决传统单模光纤随机激光作为照明光源空间相干性较高,不利于无散斑成像照明的问题。
本发明采用的技术方案如下:
一种基于强耦合多芯光纤随机激光的无散斑成像光源,主要包括泵浦源和光纤环镜,还包括与泵浦源和光纤环镜连接的强耦合多芯光纤。
本发明中,所述强耦合多芯光纤输入端连接泵浦源和光纤环镜,并由光纤环镜提供点式反馈,所述强耦合多芯光纤的受激拉曼散射和分布式瑞利散射为光纤随机激光激射过程提供放大增益和分布式反馈。通过采用强耦合多芯光纤构成光纤随机激光器,解决传统激光器作为照明光源空间相干性较高,不利于无散斑成像照明的问题。
进一步的,还包括分别与泵浦源和光纤环镜、强耦合多芯光纤连接的单模光纤。所述单模光纤输入端连接泵浦源和光纤环镜,并由光纤环镜提供点式反馈,所述单模光纤输出端与强耦合多芯光纤连接,并通过两种光纤的受激拉曼散射和分布式瑞利散射为光纤随机激光激射过程提供放大增益和分布式反馈。通过将单模光纤和强耦合多芯光纤结合,能够降低激光器体激射阈值。
进一步的,所述强耦合多芯光纤包括主纤芯、多个副纤芯和包层,所述主纤芯与副纤芯、副纤芯与副纤芯之间存在强耦合效应。用来有效地激发更多横向高阶模式,获得低空间相干性的多模光纤随机激光。
优选的,所述强耦合多芯光纤中写入长周期光纤光栅结构。用于进一步将主纤芯低阶模式转向高阶模式,激发足够多的横模,并通过对长周期光纤光栅结构施加拉力和进行弯曲,对多模光纤随机激光的空间相干性进行调控,以获得低空间相干的光纤随机激光。
进一步的,所述单模光纤为通信用标准单模光纤、色散补偿光纤、色散位移光纤和高非线性光纤中的一种。因此所述光纤随机激光结构具有激射带宽可调谐的特性。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明中,强耦合多芯光纤包括主纤芯、多个副纤芯和包层,所述主纤芯与副纤芯、副纤芯与副纤芯之间存在强耦合效应,用来有效地激发更多横向高阶模式,获得低空间相干性的多模光纤随机激光。
2、本发明中,通过将单模光纤与强耦合多芯光纤混合构成具有低相干性的光纤随机激光器结构,为高速、全场无散斑成像技术提供理想的照明光源。
3、本发明中,强耦合多芯光纤中写入长周期光纤光栅结构,用于进一步将主纤芯低阶模式转向高阶模式,激发足够多的横模,并通过对长周期光纤光栅结构施加拉力和进行弯曲,对多模光纤随机激光的空间相干性进行调控,以获得低空间相干的光纤随机激光。
4、本发明中,通过对单模光纤进行选择,使所述光纤随机激光结构具有激射带宽可调谐的特性。
5、本发明中,通过对泵浦源波长的选择,使所述光纤随机激光结构具有灵活可调的激射波长,以消除环境光背景噪声对成像的影响。
6、本发明中,通过控制强耦合多芯光纤长度及芯径大小获得低空间相干性的多模光纤随机激光。
附图说明
图1为本发明无散斑成像照明光源及其成像测试装置示意图;
图2为本发明强耦合多芯光纤结构示意图;
图3为本发明写入长周期光纤光栅调控光源空间相干性示意图;
图4为本发明光纤随机激光光谱图;
图5为本发明无散斑成像效果示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,无散斑成像照明光源及其成像测试装置示意图,包括无散斑成像照明光源及其成像测试装置,所述无散斑成像照明光源主要包括泵浦源和光纤环镜1,单模光纤2、强耦合多芯光纤3或者采用强耦合多芯光纤3替代单模光纤2和强耦合多芯光纤3组合结构。
所述单模光纤2输入端连接泵浦源和光纤环镜,通过光纤环镜提供反馈,本方案通过调节泵浦源的波长可以产生特定的光纤随机激光,使所述光纤随机激光结构具有灵活可调的激射波长,以消除环境光背景噪声对成像的影响。
所述单模光纤2输出端与强耦合多芯光纤3连接并通过受激拉曼散射和分布式瑞利散射提供放大增益和反馈,用于产生随机激光输出。
所述单模光纤2可以为通信用标准单模光纤、色散补偿光纤、色散位移光纤和高非线性光纤中的一种,通过结合特定单模光纤2可以调控激射光纤随机激光的带宽特性。
如图2所示,强耦合多芯光纤结构示意图,包括多个副纤芯10、主纤芯11和包层12。所述主纤芯11为大芯径多模纤芯,多个副纤芯10均匀分布于主纤芯11周围,所述副纤芯10与主纤芯11之间紧靠用以激发主纤芯11与副纤芯10之间光的强耦合,多个副纤芯10之间同样存在强耦合,用于有效地激发更多横向高阶模式,获得低空间相干性的多模光纤随机激光。
所述强耦合多芯光纤3可以用于产生多模光纤随机激光,所述强耦合多芯光纤可以由多模光纤结构替换,所述多模光纤包括大芯径阶跃折射率多模光纤、大芯径渐变折射率多模光纤、大芯径空心光纤中的一种,但采用强耦合多芯光纤3所需的光纤长度会更短,即强耦合多芯光纤更有利于获得低空间相干性。
所述强耦合多芯光纤3或多模光纤中写入长周期光纤光栅结构,并通过对长周期光纤光栅结构施加拉力和进行弯曲,对多模光纤随机激光的空间相干性进行调控,用于进一步优化多模光纤随机激光的空间相干性。
如图3所示,写入长周期光纤光栅调控光源空间相干性示意图,包括输入光场13、强耦合多芯光纤或多模光纤光栅14、输出光场激发的高阶模式15,所述强耦合多芯光纤或多模光纤光栅14用于将低阶模式转向高阶模式,激励足够多的横模,调控光纤随机激光的空间相干性,以获得低空间相干的光纤随机激光。
实施例1
如图1所示,包括无散斑成像照明光源及其成像测试装置,所示无散斑成像照明光源包括泵浦源和光纤环镜1,单模光纤2、大芯径阶跃折射率多模光纤3,所述成像测试装置包括透镜a(焦距为a mm)4、透镜b(焦距为b mm)5、毛玻璃6、分辨率板(USAF 1951)7、显微物镜8和相机(CCD)9,所述透镜a(焦距为a mm)4与透镜b(焦距为b mm)5构成经典柯勒照明系统,所述毛玻璃6用于给照明光源加入随机相位调制,分辨率板(USAF 1951)7用于调制后的光源成像以评价成像质量,所述显微物镜8和相机(CCD)9用于对分辨率板(USAF 1951)7进行成像。
所述泵浦源产生光纤随机激光中心波长为1555nm,带宽为1nm。
所述大芯径阶跃折射率多模光纤3纤芯直径105μm,数值孔径为0.24,长度为50m。
图4所示为本发明实施例中所述光纤随机激光光谱图,光纤随机激光中心波长1555nm,具有高的光谱密度。
图5所示为本发明实施例中所述无散斑成像效果示意图,该图为所述实施例中多模光纤随机激光透过散射体毛玻璃6后的成像效果,图中分辨率板7条纹清晰无散斑。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种基于强耦合多芯光纤随机激光的无散斑成像光源,主要包括泵浦源和光纤环镜,其特征在于:还包括与泵浦源和光纤环镜连接的强耦合多芯光纤。
2.根据权利要求1所述一种基于强耦合多芯光纤随机激光的无散斑成像光源,其特征在于:还包括分别与泵浦源和光纤环镜、强耦合多芯光纤连接的单模光纤。
3.根据权利要求1或2所述一种基于强耦合多芯光纤随机激光的无散斑成像光源,其特征在于:所述强耦合多芯光纤包括主纤芯、多个副纤芯和包层,所述主纤芯与副纤芯、副纤芯与副纤芯之间存在强耦合效应。
4.根据权利要求1或2所述一种基于强耦合多芯光纤随机激光的无散斑成像光源,其特征在于:所述强耦合多芯光纤中写入长周期光纤光栅结构。
5.根据权利要求2所述一种基于强耦合多芯光纤随机激光的无散斑成像光源,其特征在于:所述单模光纤为通信用标准单模光纤、色散补偿光纤、色散位移光纤和高非线性光纤中的一种。
CN201810088674.XA 2018-01-30 2018-01-30 一种基于强耦合多芯光纤随机激光的无散斑成像光源 Active CN108181723B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810088674.XA CN108181723B (zh) 2018-01-30 2018-01-30 一种基于强耦合多芯光纤随机激光的无散斑成像光源
US16/035,722 US10620448B2 (en) 2018-01-30 2018-07-16 Speckle-free imaging light source based on random fiber laser using strong-coupling multi-core optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810088674.XA CN108181723B (zh) 2018-01-30 2018-01-30 一种基于强耦合多芯光纤随机激光的无散斑成像光源

Publications (2)

Publication Number Publication Date
CN108181723A CN108181723A (zh) 2018-06-19
CN108181723B true CN108181723B (zh) 2019-09-03

Family

ID=62551756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810088674.XA Active CN108181723B (zh) 2018-01-30 2018-01-30 一种基于强耦合多芯光纤随机激光的无散斑成像光源

Country Status (2)

Country Link
US (1) US10620448B2 (zh)
CN (1) CN108181723B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808431B (zh) * 2018-07-11 2020-09-22 电子科技大学 一种基于弱掺铒光纤的混合随机激光分布式放大方法
JP7164026B2 (ja) * 2019-04-08 2022-11-01 日本電気株式会社 光増幅装置、光伝送システム、および光増幅方法
CN111211471B (zh) * 2019-12-28 2021-08-20 华为技术有限公司 光纤放大器
CN115190870A (zh) * 2020-02-25 2022-10-14 拜欧利泰克投资二代公司 用于具有结构化二氧化硅区段的无散斑输出光纤的预制件、这种预制件的制造方法和改进的无散斑输出光纤
CN113540945A (zh) * 2020-04-13 2021-10-22 中国科学院上海光学精密机械研究所 一种激光驱动装置和获得均匀光场的方法
CN111900602B (zh) * 2020-07-15 2021-10-22 太原理工大学 一种基于随机光纤激光器的长距离分布式拉曼传感装置
CN112186481A (zh) * 2020-11-09 2021-01-05 四川光盛物联科技有限公司 一种窄带低噪声随机光纤激光拉曼泵浦光源
CN114200667B (zh) * 2021-11-08 2022-08-05 电子科技大学 一种基于液晶空间光调制器的可定义光滤波方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5566196A (en) * 1994-10-27 1996-10-15 Sdl, Inc. Multiple core fiber laser and optical amplifier
CN101881854A (zh) * 2010-04-29 2010-11-10 哈尔滨工程大学 内壁融嵌式多芯单模保偏光纤光栅及制作方法
CN102967981A (zh) * 2012-12-18 2013-03-13 中国人民解放军国防科学技术大学 基于多芯光子晶体光纤的超连续谱光源
CN103378539A (zh) * 2012-04-17 2013-10-30 电子科技大学 一种环形腔宽带随机光纤激光器
CN104898199A (zh) * 2015-06-26 2015-09-09 深圳市通盛新材料有限公司 一种多芯光子晶体光纤与激光器光源的连接结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6792008B2 (en) * 2001-04-30 2004-09-14 Jds Uniphase Corporation Tracking error suppression and method of reducing tracking error
US7903696B2 (en) * 2008-12-31 2011-03-08 Ipg Photonics Corporation High-power narrowed-linewidth fiber laser system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5566196A (en) * 1994-10-27 1996-10-15 Sdl, Inc. Multiple core fiber laser and optical amplifier
CN101881854A (zh) * 2010-04-29 2010-11-10 哈尔滨工程大学 内壁融嵌式多芯单模保偏光纤光栅及制作方法
CN103378539A (zh) * 2012-04-17 2013-10-30 电子科技大学 一种环形腔宽带随机光纤激光器
CN102967981A (zh) * 2012-12-18 2013-03-13 中国人民解放军国防科学技术大学 基于多芯光子晶体光纤的超连续谱光源
CN104898199A (zh) * 2015-06-26 2015-09-09 深圳市通盛新材料有限公司 一种多芯光子晶体光纤与激光器光源的连接结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
High-power low spatial coherence random fiber laser;Rui Ma;《Optics Express》;20190318;第27卷(第6期);第8738-8744页 *

Also Published As

Publication number Publication date
US10620448B2 (en) 2020-04-14
CN108181723A (zh) 2018-06-19
US20180341120A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
CN108181723B (zh) 一种基于强耦合多芯光纤随机激光的无散斑成像光源
CN109564325B (zh) 采用涡旋光纤用于多模照明的光学成像系统
Aleshkina et al. Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm laser
US20150333473A1 (en) High Power Raman-Based Fiber Laser System and Method of Operating the Same
US20220190545A1 (en) Tandem pumped fiber amplifier
US10211591B2 (en) Tandem pumped fiber amplifier
US9256114B2 (en) Supercontinuum generation system
US10488297B2 (en) Characteristic-measuring apparatus and characteristic-measuring method for multi-core fiber
CN103858293A (zh) 利用单模钕光纤泵浦源的高功率单模镱光纤激光器系统
WO2015057482A1 (en) Method and apparatus for generating high power laser light
US10422487B2 (en) Fiber optic light source
US20060039418A1 (en) Wavelength locked fiber-coupled diode-laser bar
KR102078144B1 (ko) 초고출력 싱글모드 광섬유 레이저 시스템
HU214138B (en) Optical power amplifier with contaminated active optical fiber
Liu et al. High-power tunable red laser based on double-cladding Pr3+-doped fiber
EP3888202A1 (en) Tandem pumped fiber amplifier
FR3082062B1 (fr) Dispositif laser à fibre optique de maintien de polarisation avec rétroactiondistribuée et son procédé de fabrication
Hong et al. Wide-span multi-wavelength high-power diode-laser pumping of fiber Raman laser
CN112242640B (zh) 基于高功率多模激光器和超多芯高非线性光纤的超连续谱光源
CN106654827B (zh) 一种基于双泵浦的可实现c+l波段ase光源的实现方法
Kong et al. 2 W Yb-doped double-clad fiber superfluorescent source with 42 nm 3 dB bandwidth
Kurkov et al. Multimode fiber lasers based on Bragg gratings and double‐clad Yb‐doped fibers
Lee et al. Distributed and side-pumped fiber laser using a laser diode bar stack
Park et al. Uniform line sources based on a holed cavity and a laser
CN214069083U (zh) 一种一字特细线光斑半导体激光输出系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Rao Yunjiang

Inventor after: Ma Rui

Inventor after: Zhang Weili

Inventor after: Hu Bo

Inventor before: Zhang Weili

Inventor before: Ma Rui

Inventor before: Hu Bo

Inventor before: Rao Yunjiang

GR01 Patent grant
GR01 Patent grant