CN108176846B - 一种免离心制备纯化多肽或peg修饰的金纳米颗粒的方法 - Google Patents

一种免离心制备纯化多肽或peg修饰的金纳米颗粒的方法 Download PDF

Info

Publication number
CN108176846B
CN108176846B CN201711392440.6A CN201711392440A CN108176846B CN 108176846 B CN108176846 B CN 108176846B CN 201711392440 A CN201711392440 A CN 201711392440A CN 108176846 B CN108176846 B CN 108176846B
Authority
CN
China
Prior art keywords
gold nanoparticles
polypeptide
gold
modified
peg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711392440.6A
Other languages
English (en)
Other versions
CN108176846A (zh
Inventor
朱志军
唐建国
杜中林
王久兴
王世超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201711392440.6A priority Critical patent/CN108176846B/zh
Publication of CN108176846A publication Critical patent/CN108176846A/zh
Application granted granted Critical
Publication of CN108176846B publication Critical patent/CN108176846B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明公开了一种免离心制备纯化多肽或PEG修饰的金纳米颗粒的方法,首先制备金纳米颗粒;然后采用弱的保护剂对金纳米颗粒进行保护;再将弱的保护剂保护的金纳米颗粒通过多肽或PEG进行修饰,多肽或PEG修饰后的金纳米颗粒通过免离心的方法进行纯化;纯化方法为:向多肽或PEG修饰后的金纳米颗粒悬浮液中加入盐酸,调节pH值为酸性至其颜色变为蓝灰色,静置,待其沉淀,吸走上清液即完成纯化;该方法处理过程简单,耗时短,从根本上避免了长时间离心对纳米体系稳定性带来的破坏。

Description

一种免离心制备纯化多肽或PEG修饰的金纳米颗粒的方法
技术领域
本发明涉及的是一种免离心制备纯化多肽或PEG修饰的金纳米颗粒的方法。
背景技术
由于胶体金纳米颗粒具有独特的光学性质、极高的摩尔消光系数、良好的生物相容性、表面易修饰等特点,其在分析化学,生物化学,药物学临床医学、免疫标记检测、食品安全检测等领域得到了广泛的应用。
小尺寸的金纳米颗粒有更大的比表面积,更容易通过细胞膜甚至核孔,因此,小粒径的金纳米颗粒在生物研究中,如定向药物运输、X光增强治疗等研究中,有更好的应用前景。
用于生物方面的金纳米颗粒通常需要进行修饰,以赋予其稳定性和靶向性等。巯基多肽等小分子具有良好的生物相容性,含有两个甚至多个功能基团,常用于修饰金纳米颗粒。然而粒径较小的金纳米颗粒的分离是实验中最常遇到的难题之一。常用的分离功能化的小粒径金纳米颗粒的方法有离心、电泳、透析和色谱法等。然而这些方法有很多局限性,离心纯化的方法对于直径为10nm的金纳米颗粒,其分离转速通常在1.5万/分钟(以Eppendorf 5415R为例)以上,对于粒径小于5nm的金纳米颗粒,分离转速约为2-3万转/分钟,这往往超出了实验室离心机的最大转速,而透析发、电泳法和色谱法通常比较耗时,其分离所得产物仍需进一步纯化和浓缩。
发明内容
针对现有技术对多肽修饰的小尺寸金纳米颗粒分离费时费力的局限性,本发明要解决的问题是提供一种免离心制备纯化多肽或PEG修饰的金纳米颗粒的方法。
一种免离心制备纯化多肽或PEG修饰的金纳米颗粒的方法,其特征在于:首先制备金纳米颗粒(不包括通过一步法制备的巯基配体修饰的金纳米颗粒,因为巯基修饰的金纳米颗粒表面的配体不容易被取代);然后采用弱的保护剂对金纳米颗粒进行保护;再将弱的保护剂保护的金纳米颗粒通过多肽或PEG进行修饰,多肽或PEG修饰后的金纳米颗粒通过免离心的方法进行纯化;纯化方法为:向多肽或PEG修饰后的金纳米颗粒悬浮液中加入盐酸,调节pH值为酸性至其颜色变为蓝灰色,静置,待其沉淀,吸走上清液即完成纯化。
所述的方法,所述金纳米颗粒由柠檬酸钠还原法或硼氢化钠还原法制得。
所述的方法,金纳米粒子表面弱的保护剂为柠檬酸钠或碳酸钾,金纳米粒子粒径小于等于13nm。
所述的方法,金纳米粒子粒径为13nm和8nm。
所述的方法,多肽修饰的金纳米颗粒为谷胱甘肽和CALNN修饰的金纳米颗粒,多肽GSH和CALNN均为多功能配体,同时含有巯基和羧基,巯基通过形成稳定的Au-S键将多肽连接到金表面,而末端羧基可以为纳米粒子提供纯的负电荷。
所述的方法,配体限于同时含有巯基羧基双功能基团的多肽或PEG,且整体表现为负电荷。
该方法处理过程简单,耗时短,从根本上避免了长时间离心对纳米体系稳定性带来的破坏。
附图说明
图1为13nm的金纳米颗粒TEM图。
图2为13nm的金纳米颗粒经CALNN修饰后,在酸性溶液中的颜色,a为红色,b蓝灰色。
具体实施方式
以下结合具体实施例,对本发明进行详细说明。
实施例1:
13nm金纳米颗粒制备方法:
1)取100mL milli-Q水于三颈瓶中,油浴加热磁力搅拌并回流,待煮沸后依次向其中加入2mL 1wt%HAuCl4和4mL柠檬酸钠溶液(物质的量为30mmol),溶液颜色从淡黄色变为浅灰色,蓝色,最终变成酒红色。继续加热20min,搅拌冷却至室温,得到13nm的金纳米颗粒,TEM图见图1。
2)将1mL吸光度(optical density,OD)为1的柠檬酸钠保护的13nm金颗粒中加入100μL 1mg/mL CALNN,混匀,室温放置2小时以上,CALNN修饰的金纳米表面电荷为-38.6mV。
3)加0.1M HCl到溶液颜色变为蓝灰色,静置,待金纳米粒子沉淀,小心移走上清液。
4)向沉淀中加入10μL 10mM磷酸盐缓冲液(pH为7.4),可以观察到沉淀由灰变红(图2中a图),补充水到500μL。
5)重复上述步骤,继续向红色悬浮液中加入盐酸,至其颜色变为蓝灰色(如图2中b图),静置,待其沉淀,吸走上清液。
6)加100μL 10mM PBS,得到纯化的CALNN修饰的13nm的金纳米粒子溶液,待用。
实施例2:
8nm的金颗粒制备方法:100mL milli-Q水中依次加入375μL 4wt%HAuCl4和500μL0.2M碳酸钾,冰水浴中搅拌均匀,将5mL新配制的硼氢化钠(0.5mg/mL)逐滴加入到上述混合液中,溶液颜色从蓝紫色逐渐变为亮红色,继续搅拌30min。
向1mL吸光度为1的碳酸钾保护的8nm的金颗粒中加入100μL 1mg/mL GSH,混匀,室温放置2小时以上,GSH修饰的金纳米颗粒平均表面电荷为-28.2mV。
加0.1M HCl到溶液颜色变为蓝灰色,静置,待金纳米粒子沉淀,小心移走上清液。
向沉淀中加入10μL 10mM磷酸盐缓冲液(pH为7.4),可以观察到沉淀由灰变红,补充水到500μL。
重复上述步骤,继续向红色悬浮液中加入盐酸,至其颜色变为蓝灰色,静置,待其沉淀,吸走上清液。
加100uL 10mM PBS,待用。
该方法可以用于常见多肽(通常为一端为巯基和另一端为羧基的多肽,且整体表现为负电荷)修饰的金纳米粒子体系的纯化,但配体不限于多肽,如巯基羧基双功能化的PEG等。
注意:该方法不适用于HS-PEG(末端为羟基或甲氧基等)修饰的金纳米粒子体系,由于中性PEG对金纳米颗粒的保护来自体积效应而非电荷保护,同时该配体为电中性,受pH影响较小。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (1)

1.免离心制备纯化多肽或PEG修饰的金纳米颗粒的方法,其特征在于:首先制备金纳米颗粒;然后采用弱的保护剂对金纳米颗粒进行保护;再将弱的保护剂保护的金纳米颗粒通过多肽或PEG进行修饰,多肽或PEG修饰后的金纳米颗粒通过免离心的方法进行纯化;纯化方法为:向多肽或PEG修饰后的金纳米颗粒悬浮液中加入盐酸,调节pH值为酸性至其颜色变为蓝灰色,静置,待其沉淀,吸走上清液即完成纯化;配体限于同时含有巯基羧基双功能基团的多肽或PEG,且整体表现为负电荷;多肽修饰的金纳米颗粒为谷胱甘肽和CALNN修饰的金纳米颗粒,多肽GSH和CALNN均为多功能配体,同时含有巯基和羧基,巯基通过形成稳定的Au-S键将多肽连接到金表面,而末端羧基可以为纳米粒子提供纯的负电荷;所述金纳米颗粒由柠檬酸钠还原法或硼氢化钠还原法制得;金纳米粒子表面弱的保护剂为柠檬酸钠或碳酸钾,金纳米粒子粒径为13 nm;具体步骤为:
1)取100 mL milli-Q水于三颈瓶中,油浴加热磁力搅拌并回流,待煮沸后依次向其中加入2 mL 1 wt % HAuCl4和4 mL柠檬酸钠溶液,溶液颜色从淡黄色变为浅灰色,蓝色,最终变成酒红色;继续加热20 min,搅拌冷却至室温,得到13 nm的金纳米颗粒;
2)将1 mL吸光度(optical density, OD)为1的柠檬酸钠保护的13nm金颗粒中加入100μL 1 mg/mL CALNN,混匀,室温放置2小时以上,CALNN修饰的金纳米表面电荷为-38.6 mV;
3)加0.1 M HCl到溶液颜色变为蓝灰色,静置,待金纳米粒子沉淀,小心移走上清液;
4)向沉淀中加入10 μL 10 mM 磷酸盐缓冲液,pH为7.4,可以观察到沉淀由灰变红,补充水到500 μL;
5)重复上述步骤,继续向红色悬浮液中加入盐酸,至其颜色变为蓝灰色,静置,待其沉淀,吸走上清液;
6)加100 μL 10 mM PBS,得到纯化的CALNN修饰的13 nm的金纳米粒子溶液,待用。
CN201711392440.6A 2017-12-21 2017-12-21 一种免离心制备纯化多肽或peg修饰的金纳米颗粒的方法 Active CN108176846B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711392440.6A CN108176846B (zh) 2017-12-21 2017-12-21 一种免离心制备纯化多肽或peg修饰的金纳米颗粒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711392440.6A CN108176846B (zh) 2017-12-21 2017-12-21 一种免离心制备纯化多肽或peg修饰的金纳米颗粒的方法

Publications (2)

Publication Number Publication Date
CN108176846A CN108176846A (zh) 2018-06-19
CN108176846B true CN108176846B (zh) 2020-11-10

Family

ID=62546906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711392440.6A Active CN108176846B (zh) 2017-12-21 2017-12-21 一种免离心制备纯化多肽或peg修饰的金纳米颗粒的方法

Country Status (1)

Country Link
CN (1) CN108176846B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5581025B2 (ja) * 2009-09-09 2014-08-27 公立大学法人首都大学東京 金ナノ粒子の製造方法
CN104528636B (zh) * 2014-12-18 2016-04-27 上海纳米技术及应用国家工程研究中心有限公司 一种磁性颗粒表面修饰金纳米颗粒的功能化方法
CN106010513B (zh) * 2016-06-02 2018-02-16 中国石油大学(华东) 一种kck多肽修饰的金纳米簇及其制备方法
CN106924764A (zh) * 2017-04-24 2017-07-07 南京邮电大学 一种基于金纳米颗粒组装的功能性光声探针的制备方法及其应用

Also Published As

Publication number Publication date
CN108176846A (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
Ding et al. Multivalent aptamer functionalized Ag2S nanodots/hybrid cell membrane‐coated magnetic nanobioprobe for the ultrasensitive isolation and detection of circulating tumor cells
Sonmez et al. Synthesis and applications of Fe3O4/SiO2 core-shell materials
Zhang et al. Uniform magnetic core/shell microspheres functionalized with Ni2+–iminodiacetic acid for one step purification and immobilization of his-tagged enzymes
Hadipour Moghaddam et al. Redox-responsive polysulfide-based biodegradable organosilica nanoparticles for delivery of bioactive agents
Urata et al. Aqueous colloidal mesoporous nanoparticles with ethenylene-bridged silsesquioxane frameworks
Guerrero‐Martínez et al. Recent progress on silica coating of nanoparticles and related nanomaterials
Zhang et al. Adsorption of DNA by using polydopamine modified magnetic nanoparticles based on solid-phase extraction
Cheung-Lau et al. Engineering a well-ordered, functional protein-gold nanoparticle assembly
Madhyastha et al. c-Phycocyanin primed silver nano conjugates: Studies on red blood cell stress resilience mechanism
CN110448696B (zh) 基于盐藻外泌体靶向药物递送载体的制备方法与应用
Escudero-Francos et al. Cellular uptake and tissue biodistribution of functionalized gold nanoparticles and nanoclusters
Lee et al. Preparation of iron oxide silica particles for Zika viral RNA extraction
EP1915423A2 (en) Silylamine modified nanoparticulate carriers
CN107108261B (zh) 一种经修饰的超顺磁性氧化铁的制备方法
Hou et al. Preparation of functionalized Fe3O4@ SiO2 magnetic nanoparticles for monoclonal antibody purification
Oladimeji et al. Co-polymer functionalised gold nanoparticles show efficient mitochondrial targeted drug delivery in cervical carcinoma cells
Akinyelu et al. Lactobionic acid-chitosan functionalised gold-coated poly (lactide-co-glycolide) nanoparticles for hepatocyte targeted gene delivery
CN108176846B (zh) 一种免离心制备纯化多肽或peg修饰的金纳米颗粒的方法
Petean et al. Cysteine mediated assembly of gold nanoparticles
Tanaka et al. Design of functionalized nanoparticles for the applications in nanobiotechnology
Tokmedash et al. Synthesis of smart carriers based on tryptophan-functionalized magnetic nanoparticles and its application in 5-fluorouracil delivery
Horovitz et al. Lysine mediated assembly of gold nanoparticles
CN112675312B (zh) 一种脑靶向纳米递释系统及其制备方法
Rudakovskaya et al. Synthesis of magnetite-gold nanoparticles with core-shell structure
Mohammad-Beigi et al. Comparison of different strategies for the assembly of gold colloids onto Fe3O4@ SiO2 nanocomposite particles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant