CN108172646A - 透明光电元件以及用于制造透明光电元件的方法 - Google Patents

透明光电元件以及用于制造透明光电元件的方法 Download PDF

Info

Publication number
CN108172646A
CN108172646A CN201711265779.XA CN201711265779A CN108172646A CN 108172646 A CN108172646 A CN 108172646A CN 201711265779 A CN201711265779 A CN 201711265779A CN 108172646 A CN108172646 A CN 108172646A
Authority
CN
China
Prior art keywords
transparent
photoelectric element
film
transparent photoelectric
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711265779.XA
Other languages
English (en)
Inventor
金俊东
马尔凯什库马尔·帕特尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industry Academic Cooperation Foundation of INU
Original Assignee
Industry Academic Cooperation Foundation of INU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industry Academic Cooperation Foundation of INU filed Critical Industry Academic Cooperation Foundation of INU
Publication of CN108172646A publication Critical patent/CN108172646A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10201Dielectric coatings
    • B32B17/10211Doped dielectric layer, electrically conductive, e.g. SnO2:F
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

提供了一种透明光电元件和用于制造该透明光电元件的方法。该方法包括;提供透明衬底;在室温下在透明衬底上形成透明导电薄膜;在透明导电薄膜上形成n型氧化物半导体薄膜;并且在室温下通过反应溅射在n型氧化物半导体薄膜上形成具有量子点结构的p型氧化镍薄膜,反应溅射包括氧气和氩气,氧气的比率小于氩气的比率。

Description

透明光电元件以及用于制造透明光电元件的方法
本申请要求于2016年12月5日在韩国知识产权局提交的韩国专利申请No.10-2016-0164143的优先权,其公开内容通过引用整体并入本文中。
技术领域
本发明涉及透明光电元件以及用于制造该透明光电元件的方法。更具体地,本发明涉及具有高透明度和高转换效率的透明光电元件以及用于制造该透明光电元件的方法。
背景技术
全球变暖是生活在地球上的人类的关键问题。过去能量生产已经主要伴随有温室气体的生成,其中地球的大气的组成比率已经显著增大,并且这种温室气体已经导致海平面升高以及负责过滤紫外线的臭氧的破坏。由于温室气体的增加,人类正在经历生活的地球的面积的短缺和呼吸氧气的短缺。另外,多余的紫外辐射变得直接与人体接触,这引起诸如皮肤色素减退、免疫功能下降、光老化以及皮肤癌的严重风险。
使用太阳能电池的能量生产是在不产生温室气体的情况下执行发电的最终形式之一。然而,由于传统普通太阳能电池包括黑色半导体薄膜(或晶片),所以它们在对建筑物或车辆的现场能量生成的直接应用中具有明显透明度限制。
发明内容
本发明的一方面提供一种具有改善的操作性能的透明光电元件。
本发明的另一方面提供一种用于制造具有改善的操作性能的透明光电元件的方法。
要由本发明解决的方面不限于上述方面,并且本领域技术人员从下面的描述中能够清楚地理解未提到的其他方面。
根据本发明构思的一方面,提供了一种用于制造透明光电元件的方法,该方法包括;提供透明衬底;在室温下在透明衬底上形成透明导电薄膜;在透明导电薄膜上形成n型氧化物半导体薄膜;以及在室温下通过反应溅射在n型氧化物半导体薄膜上形成具有量子点结构的p型氧化镍薄膜,反应溅射包括氧气和氩气,氧气的比率小于氩气的比率。
根据本发明构思的另一方面,提供了一种透明光电元件,其包括:透明柔性PET(聚对苯二甲酸乙二醇酯)衬底;形成在透明柔性PET衬底上的透明导电薄膜,透明导体包括ITO(氧化铟锡)或FTO(氟掺杂氧化锡);在透明导电薄膜上形成的n型氧化物半导体薄膜;以及在n型氧化物半导体薄膜上形成的并且与n型氧化物半导体薄膜形成异质结的p型氧化镍薄膜,其中,激子出现在异质结中,并且p型氧化镍薄膜具有量子点结构。
根据本发明构思的再一方面,提供了一种透明光电元件,其包括:第一层压结构,其包括第一玻璃衬底、形成在第一玻璃衬底上的第一透明导体薄膜、形成在第一透明导体薄膜上的第一FTO薄膜以及形成在第一FTO薄膜上的并且与第一FTO薄膜形成异质结的第一NiO薄膜;第二层压结构,其包括第二玻璃衬底、形成在第二玻璃衬底上的第二透明导体薄膜、形成在第二透明导体薄膜上的第二FTO薄膜以及形成在第二FTO薄膜上的并且与第二FTO薄膜形成异质结的第二NiO薄膜;以及焊丝,其连接第一层压结构和第二层压结构。
根据本发明的实施例,获得至少以下效果。
即,根据本发明的一些实施例的透明光电元件整体上是完全透明的、柔性的且可切割的。
此外,根据本发明的一些实施例的透明光电元件能够具有高开路电压和非常快的反应速率。
另外,根据本发明的一些实施例的透明光电元件能够具有透明太阳能电池的最高效率。
本发明的效果不受以上例示的内容限制,并且各种效果被进一步包括在本说明书中。
附图说明
本发明的以上方面和其他方面以及特征将通过参考附图详细描述其示例性实施例而变得更明显,在附图中:
图1至图3是用于解释根据本发明的第一示例的用于制造透明光电元件的方法的中间状态图;
图4是使用图1至图3的用于制造透明光电元件的方法制造的第一示例的透明光电元件的数字照片;
图5是采用图1至图3的用于制造透明光电元件的方法形成的氧化镍薄膜的表面的FESEM(场发射扫描电子显微镜)照片;
图6是通过反应溅射方法制造的氧化镍薄膜的HRTEM(高分辨透射电子显微镜)照片;
图7是采用图1至图3的用于制造透明光电元件的方法形成的ITO(氧化铟锡)薄膜的表面的FESEM照片;
图8是采用图1至图3的用于制造透明光电元件的方法形成的氧化锌薄膜的表面的FESEM照片;
图9是根据本发明的第一示例的透明光电元件的透射率光谱、反射率光谱和吸收率光谱的绘图;
图10是用于解释根据本发明的第一示例的透明光电元件的切割方法的示意图;
图11是图示了根据本发明的第一示例的透明光电元件的横截面分析的TEM(透射电子显微镜)和EDS(能量弥散X射线光谱)的示意图;
图12是图示了其中365nm的紫外线入射在根据本发明的第一示例的透明光电元件上的测试场景的示意图;
图13是图示了在脉冲入射光条件下根据图12的测试的透明光电元件的电流电压特性的绘图;
图14是图示了根据本发明的第一示例的透明光电元件的零偏压设备操作和瞬时光响应的光强度的效果的绘图;
图15是根据本发明的第一示例的透明光电元件的瞬时光响应分析的绘图;
图16是用于解释根据本发明的第一示例的透明光电元件的光响应和偏压效果的绘图;
图17是用于解释根据本发明的第一示例的透明光电元件的瞬时光响应的绘图;
图18是用于解释根据本发明的第一示例的透明光电元件的电流电压特性的绘图;
图19是用于解释本发明的第二示例的透明光电元件的布置的数字照片;
图20是用于解释根据本发明的第二示例的透明光电元件的串联连接的示意图;
图21是用于解释根据本发明的第二示例的透明光电元件的并联连接的示意图;
图22是图示了根据本发明的第二示例的透明光电元件的透射率的绘图;
图23是用于解释本发明的第二示例的透明光电元件单元的电压电流特性的示意图;
图24是用于解释根据本发明的一些实施例的透明光电元件的激子的生成的概念图;
图25是用于解释根据本发明的一些实施例的透明光电元件的紫外线的利用的概念图;
图26是用于解释在根据本发明的一些实施例的透明光电元件的平衡条件下的能级的能带图;
图27是用于解释当根据本发明的一些实施例的透明光电元件形成激子时的能级的能带图;以及
图28是用于解释根据本发明的一些实施例的透明光电元件的光致发光谱的绘图。
具体实施方式
在下文中,将参考图1至图3描述根据本发明的一些实施例的用于制造透明光电元件的方法。
图1至图3是用于解释根据本发明的一些实施例的用于制造透明光电元件的方法的中间状态图。
参考图1,提供了透明衬底100。
透明衬底100可以例如为柔性衬底。即,透明衬底100可以具有被自由弯曲并且之后恢复的特性。在这种情况下,透明衬底100可以为塑料衬底。此时,透明衬底100可以例如为PET(聚对苯二甲酸乙二醇酯)衬底。
透明衬底100可以不是柔性衬底。透明衬底100还可以是透明玻璃衬底。透明衬底100的材料可以取决于设备的性能和目的而变化。
透明衬底100可以是没有任何颜色的衬底。
随后,透明导电薄膜200被形成在透明衬底100上。
透明导电薄膜200可以包括ITO或FTO。透明导电薄膜200可以通过在室温下溅射来形成。
随后,参考图2,在透明导电薄膜200上形成n型氧化物半导体薄膜300。
n型氧化物半导体薄膜300可以包括以下中的至少一个:ZnO、AZO、TiO和SnS。n型氧化物半导体薄膜300还可以为透明薄膜材料。n型氧化物半导体薄膜300可以通过RF溅射来形成。形成n型氧化物半导体薄膜300的过程还可以在室温下执行。
随后,参考图3,在n型氧化物半导体薄膜300上形成p型氧化镍薄膜400。
p型氧化镍薄膜400可以通过反应溅射方法来形成。具体地,p型氧化镍薄膜400可以使用纯镍或NiO目标以及使用氩气(Ar)和氧气(O2)来形成。此时,氩气和氧气的比率可以彼此不同。即,氩气的比率可以高于氧气的比率。此时,相较于氩气,氧气可以具有1%至20%的比率。
当氧气相较于氩气超过20%时,可能难以形成氧化镍薄膜的量子点,即,量子点结构。当氧气相较于氩气少于1%时,氧化镍薄膜的氧化物薄膜成分可能不能被恰当地形成。
量子点,即,以上描述的量子点结构可以在与氧化镍薄膜接触的氧化锌薄膜的表面上执行保护薄膜(表面钝化)的功能。因此,可能出现在过去尚未出现的激子或激子现象。
透明导电薄膜200、n型氧化物半导体薄膜300和p型氧化镍薄膜400中的全部可以被原位沉积。即,透明导电薄膜200、n型氧化物半导体薄膜300和p型氧化镍薄膜400可以被连续形成在相同溅射腔室中。
通过图1至图3的方法形成的透明光电元件可以采用与以下第一示例和第二示例中的形式相同的形式。然而,本发明不限于此,并且其他可能修改自然是可能的。
第一示例
PET柔性衬底用于透明衬底100。PET柔性衬底没有颜色并且具有100μm的厚度。PET柔性衬底通过蒸馏水的超声处理来清洁。
透明导电薄膜200被沉积为ITO薄膜。ITO薄膜可以以3.7W/cm2的输出密度在PET柔性衬底上执行ITO目标(包含In2O2的10wt.%SnO2)的溅射过程。在ITO溅射期间,氩气和氧气可以分别以30sccm和0.3sccm被供应。ITO薄膜被沉积有300nm的厚度。
n型氧化物半导体薄膜300被沉积为ZnO薄膜。ZnO薄膜可以通过RF溅射系统来沉积。此时,RF功率可以为3.58W/cm2。ZnO目标能够具有99.99%的纯度。ZnO薄膜被沉积到100nm的厚度。
最终,p型氧化镍薄膜400通过在氩气和氧气气体存在的情况下以3.70W/cm2的输出对具有99.999%的纯度的Ni目标进行反应溅射来形成。此时,氩气和氧气气体分别以30sccm和1sccm被供应。操作压力阀可以被维持在5mTorr处。在工作压力之前的基本压力可以被维持在5×10-5Torr处。氧化镍薄膜被沉积有30nm的厚度。
图4是使用图1至图3的用于制造透明光电元件的方法制造的第一示例的透明光电元件的数字照片。参考图4,能够检查第一示例的透明光电元件是完全透明且容易弯曲的。
第一比较示例
氧化镍薄膜通过反应溅射以30nm的厚度被直接沉积在PET柔性衬底上。
第一实验示例
为了调查第一示例和第一比较示例的界面(interface)的特性,分析了相应界面的FESEM和HRTEM照片。
图5是采用图1至图3的用于制造透明光电元件的方法形成的氧化镍薄膜的表面的FESEM(场发射扫描电子显微镜)照片,并且图6是通过反应溅射方法制造的氧化镍薄膜的HRTEM(高分辨透射电子显微镜)照片。图7是采用图1至图3的用于制造透明光电元件的方法形成的ITO(氧化铟锡)薄膜的表面的FESEM照片,并且图8是采用图1至图3的用于制造透明光电元件的方法形成的氧化锌薄膜的表面的FESEM照片。
参考图5至图8,能够理解ITO薄膜、ZnO薄膜和NiO薄膜中的全部具有均匀多晶结构。具体地,参考图6,能够检查NiO薄膜具有纳米晶结构并且具有量子点结构。此时,量子点结构的平均直径可以为7nm至9nm。
由于NiO薄膜具有量子点结构,所以NiO薄膜的能级(或状态)可以具有被划分成若干区段(section)的离散密度。具有离散密度的能级可以非常快速地促进通过入射光从激子分离的空穴的转移。因此,作为光电检测器的本发明的第一示例的透明光电元件的光反应速率能够被大大改善。
另外,由于NiO薄膜具有量子点结构,所以在NiO薄膜与ZnO薄膜之间的界面的表面能量状态可以被减少。即,NiO薄膜的量子点结构可以用作ZnO薄膜的表面上的钝化薄膜。因此,在室温下形成的NiO薄膜和ZnO薄膜的异质结的界面特性能够被大大改善。
第二实验示例
为了检查光学特性,检查了第一示例的透明光电元件的透射率(T)、反射率(R)和吸收率(A)。
图9是根据本发明的第一示例的透明光电元件的透射率光谱、反射率光谱和吸收率光谱的绘图。
参考图9,具有NiO和ZnO的异质结的第一示例的透明光电元件具有非常高的透射率(可见光区域:74.8%,红外区域:81.8%)。另外,该示例的透明光电元件具有针对UV光子的强吸收率。即,第一示例的透明光电元件可以为无颜色的透明光电元件,其强烈地吸收紫外光子能量并且还同时发射可见光。
另一方面,为了调查图9,第一示例的透明光电元件可以被切割成合适的大小。图10是用于解释根据本发明的第一示例的透明光电元件的切割方式的示意图。
参考图10,的第一示例的透明光电元件可以利用剪刀容易地切割。当然,透明光电元件可以容易地利用诸如刀以及剪刀的简单切割工具来容易地切割。因此,本发明的第一示例的透明光电元件可以被大规模生产并且之后被容易地切割成期望大小。另外,透明光电元件还可以通过轻量级且容易切割的特性以期望大小容易地被附接在期望位置处。
第三实验示例
TEM(透射电子显微镜)和EDS(能量弥散X射线光谱)被分析以检查第一示例的透明光电元件的界面特性。
图11是图示了根据本发明的第一示例的透明光电元件的横截面分析的TEM(透射电子显微镜)和EDS(能量弥散X射线光谱)的示意图。
参考图11,能够理解ITO薄膜、ZnO薄膜和NiO薄膜的厚度分别被明确表示为30nm、100nm和300nm。另外,能够检查每个成分被清楚地图示出。
第四实验示例
为了调查紫外光电检测器的特性,第一示例的透明光电元件被安装在紫外线源(365nm波长、3mW/cm2)上。
图12是图示了其中365nm的紫外线入射在根据本发明的第一示例的透明光电元件上的测试场景的示意图。
参考图12,能够通过将第一示例的透明光电元件安装在紫外线源上来使探头分别与透明导电薄膜200和NiO薄膜400接触。此时,作为透明导电薄膜200的ITO薄膜阴极可以被用作阴极,并且NiO薄膜400可以被用作阳极。
探头500包括分别对应于阳极和阴极的第一探头510和第二探头520。此时,可以使第一探头510与ITO薄膜接触,并且可以使第二探头520与NiO薄膜接触。
此时,第一示例的透明光电元件不包括任何不透明电极,并且探头500可以包括涂覆有Au的钨,但是不限于此。
图13是图示了在脉冲入射光条件下根据图12的测试的透明光电元件的电流电压特性的绘图。
参考图13,第一示例的透明光电元件可以在零偏压条件下呈现明显光响应。
第五实验示例
为了将第一示例的透明光电元件评估作为自偏压光电检测器,紫外线的强度从10μW/cm2被改变为3mW/cm2
图14是图示了根据本发明的第一示例的透明光电元件的零偏压设备操作和瞬时光响应的光强度效果的绘图。
光反应比率PR(其是光电检测器中的重要因素)是开灯电流ION与关灯电流IOFF的比率。即,光反应比率被定义为PR=ION/IOFF
参考图14,ION增大稳定噪声电流(IOFF~1.8pA),其按比例被维持为UV升高的强度。当光强度为3mW/cm2时,可以获得1944的高PR值。
另外,根据第一示例的自偏压光电检测器是非常敏感的,并且可以检测极小的紫外线,例如10μW/cm2
为了评估第一示例的透明光电元件的瞬时光反应,检测光反应时间。图15是根据本发明的第一示例的透明光电元件的瞬时光响应分析的绘图。
参考图15,上升时间τr和极点时间τf分别在脉冲UV(3mW/cm2)被测量为41μs和71μs。这可以被理解为解析由于强激子光学吸收和与氧气相关联的光反应的金属氧化物的不良光反应的结果。
第六实验示例
各种电压被应用到第一示例的透明光电元件以便评估第一示例的透明光电元件的偏压响应。图16是用于解释根据本发明的第一示例的透明光电元件的光响应和偏压效果的绘图,并且图17是用于解释根据本发明的第一示例的透明光电元件的瞬时光响应的绘图。
参考图16和图17,光反应可以在正向偏压条件(0.25V)下被改善为τr=19μs和τf=24μs。这可以是NiO/ZnO结的光电检测器中的最快光反应。
快速光反应可以归因于空间电荷区域的调控效果。当电场被应用到激子时,分开的电荷和空穴在相反方向上移动。根据涌模型,自由激子的能量与在基态下的2RX/(qax)相同。这里,RX是激子的rydberg能量,q是电子的电荷,并且ax是多晶ZnO的孔半径。如果电场超过自由激子的值,则激子可以通过场致电离来分离。
在本发明的第一示例的透明光电元件中,当调节施加的偏压时,能够通过自由激子的生成的有效形成和根据场致电离的有效分离来采集快得多的光反应。
光电检测器的重要评估因素是反应R*和检测D*。反应由R*=Iph/Pin定义,其中Iph和Pin分别意指光电流和光强度。检测由D*=R*/(2qJd)1/2定义,其中Jd意指背景电流密度。
三种类型的偏压条件(在自操作模式中的零偏压,在场致电离模式中的正向偏压,以及在光导电模式中的反向偏压)可以使用第一示例的透明光电元件被给予光电检测器。
在零偏压条件下,反应和检测分别被呈现为20μA/W和7.2×1011琼斯。在光导电模式中获得增强的反应(1mA/W)和检测(4.58×1012琼斯)的性能。然而,不像场致电离模式的快速光反应,光反应(τr=370μs和τf=840μs)可以通过它自己的内在操作模式而被延迟。即,本发明的第一示例的透明光电元件的光电检测器可以具有优良光检测特性和在特殊模式中有意选择的增强的性能。
第七实验示例
为了评估作为太阳能电池的第一示例的透明光电元件的特性,测量在黑暗条件下和照明条件下的电压电流特性。
图18是用于解释根据本发明的第一示例的透明光电元件的电流电压特性的绘图。
参考图18,能够理解根据第一示例的透明光电元件具有以0.1nA的非常低的饱和电流的非常干净的整流特性。超过7000的非常高的整流比率在+2V至-2V出现。此时,整流比率可以意指通过将在2V的电流值处除以在-2V的电流值而获得的值。
在紫外线(λ=365nm,3mW/cm2)的入射处,第一示例的透明光电元件明显提供1.33V的非常大的开路电压(VOC)、27.2μA/cm2的短路电流密度(JSC)以及77.3%的填充因素(FF)的光伏特性。
根据本发明的第一示例的光电元件是光电检测器和太阳能电池,其具有超快光反应,不需要金属接触,完全透明,被柔性弯曲并且之后恢复,并且非常轻。因此,通过这些优点,光电元件可以以各种方式被应用在太阳能电池的领域中。例如,本发明的第一示例的光电元件可以被用作集成在建筑物或车辆的窗口中的透明薄膜。这种透明薄膜能够实现能量管理的最终目标以生成现场功率。
第二示例
玻璃衬底被用作透明衬底。透明导电薄膜200被沉积为FTO薄膜。FTO薄膜被涂覆在玻璃衬底上。n型氧化物半导体薄膜300被沉积为ZnO薄膜,并且p型氧化镍薄膜400被沉积在其上。换言之,NiO/ZnO/FTO/玻璃结构被最终形成。
图19是用于解释本发明的第二示例的透明光电元件的布置的数字照片,并且图20是用于解释根据本发明的第二示例的透明光电元件的串联连接的示意图。图21是用于解释根据本发明的第二示例的透明光电元件的并联连接的示意图。
参考图19,第二示例的透明光电元件可以通过金刚石片被划分成扇区以便彼此电分离。结果,彼此绝缘的九个太阳能电池可以被汇集以形成单个太阳能电池模块。分离的太阳能电池单元可以利用镍丝来连接。
此时,透明光电元件在分离之前可以具有但不限于3mm×3mm的大小。
参考图20,本发明的第二示例的透明光电元件可以包括多个单元。例如,本发明的第二示例的透明光电元件可以包括第一透明光电元件单元10、第二透明光电元件单元11、第三透明光电元件单元12和第四透明光电元件单元13。尽管在附图中图示了四个单元,但是这仅仅是示例但不限于此。
第一透明光电元件单元10可以包括第一透明衬底100、第一透明导电薄膜200、第一n型氧化物半导体薄膜300以及第一p型氧化镍薄膜400。第二透明光电元件单元11可以包括第二透明衬底101、第二透明导电薄膜201、第二n型氧化物半导体薄膜301以及第二p型氧化镍薄膜401。第三透明光电元件单元12可以包括第三透明衬底102、第三透明导电薄膜202、第三n型氧化物半导体薄膜302以及第三p型氧化镍薄膜402。第四透明光电元件单元13可以包括第四透明衬底103、第四透明导电薄膜203、第四n型氧化物半导体薄膜303以及第四p型氧化镍薄膜403。
第一透明光电元件单元10至第四透明光电元件单元13可以被串联连接到彼此。此时,第一透明光电元件单元10的第一p型氧化镍薄膜400和第二透明光电元件单元11的第二透明导电薄膜201可以通过第一焊丝600连接到彼此。
类似地,第三透明光电元件单元12的第三p型氧化镍薄膜402和第一透明光电元件单元10的第一透明导电薄膜200可以通过第三焊丝602连接到彼此。
第二透明光电元件单元11的第二p型氧化镍薄膜401和第四透明光电元件单元13的第四透明导电薄膜203可以通过第二焊丝601连接到彼此。
第四焊丝603可以将第三透明光电元件单元12的第三透明导电薄膜202和(-)电极互相连接,并且第五焊丝604可以将第四透明光电元件单元13的第四p型氧化镍薄膜403和(+)电极互相连接。此时,第四焊丝603和第五焊丝604可以被省略。
如图20中图示的,第二示例的透明光电元件可以被串联连接。与此不同,参考图21,还能够将第二示例的透明光电元件并联连接。
此时,第一透明光电元件单元10的第一p型氧化镍薄膜400和第二透明光电元件单元11的第二p型氧化镍薄膜401可以通过第一焊丝600连接到彼此。
另外,第二透明光电元件单元11的第二透明导电薄膜201和第四透明光电元件单元13的第四p型氧化镍薄膜403可以通过第二焊丝601连接到彼此。另外,第五焊丝604可以将第四透明光电元件单元13的第四透明导电薄膜203和(+)电极互相连接。
参考图19,3×3的九个单元可以被汇集以形成单个模块。此时,每个单元可以根据需要通过串联连接或并联连接的自由方式被连接。
第八实验示例
测量第二示例的透明光电元件模块的透射率。图22是图示了本发明的第二示例的透明光电元件的透射率的绘图。参考图22,能够检查本发明的第二示例的透明光电元件具有69.6%的高透射率。
另外,为了在串联连接之前调查第二示例的光电元件单元的性能,紫外线(λ=365nm,10mW/cm2)在串联连接或并联连接之前被应用到第二示例的光电元件单元。图23是用于解释本发明的第二示例的透明光电元件单元的电压电流特性的示意图。
参考图23,能够获得Voc=532mV和Jsc=2.7mA/cm2的优良电流电压特性。
以这种方式,本发明的第二示例的透明光电元件是透明太阳能电池模块,其可以被用作安装在建筑物或车辆的窗户、移动电话的玻璃壳等等中的功率生成太阳能电池。
图24是用于解释根据本发明的一些实施例的透明光电元件的激子的出现的概念图,并且图25是用于解释根据本发明的一些实施例的透明光电元件的紫外线的利用的概念图。图26是用于解释在根据本发明的一些实施例的透明光电元件的平衡条件下的能级的能带图,并且图27是用于图示当根据本发明的一些实施例的透明光电元件形成激子时的能级的能带图。
参考图24至图26,通过库仑力相互结合的电子空穴对的自由激子可以以相同的组速度在晶格单元布置内移动,直到自由激子被分离成自由电子和自由空穴。根据在本发明的ITO或TCO透明导电薄膜200上形成透明NiO/ZnO异质结的设计(图25),透明导电薄膜200可以用作透明导电层,ZnO薄膜可以用作紫外光子吸收薄膜,并且NiO薄膜可以用作空穴的透射薄膜,同时与ZnO薄膜形成异质结。
图26中图示的能带边缘图示了如下配置:其中多晶ZnO薄膜在平衡带中和在导电带中具有逐步能级,并且同时,NiO薄膜在形成多晶NiO薄膜的量子点中具有状态的离散密度。
当NiO薄膜和ZnO薄膜被接合时,NiO薄膜形成ZnO薄膜的0.8eV的势垒(图27)。这种势垒在黑暗条件下提供非常小的范围的暗电流(<0.1nA)。在紫外线入射的情况下,紫外光子吸收生成能够移动到ZnO薄膜的晶格的自由激子。由于相对大的结合能量,自由激子可以甚至在较少热化的损失的情况下存活。
紫外反应ZnO/NiO异质结诱发场致电离以将自由载体的激子分离。此时,NiO薄膜可以主动地收集空穴。
另一方面,透明导电薄膜200在太阳能电池的操作期间允许高VOC,其能够抽取电子。即,尽管分开的自由电子由于势垒的存在难以移动到NiO薄膜,但是由于自由电子容易地搜索较低能级,所以它们移动到透明导电薄膜200。此时,NiO薄膜的离散能级加速空穴移动并且可以引起非常快速的瞬时反应。因此,根据本发明的一些实施例的透明光电元件能够具有高透射率和快速光反应。
第九实验示例
为了调查多晶质量和激子结构,在室温下利用355nm的激光测量ZnO/NiO异质结的光致发光(PL)并将其记录为反射模式。图28是用于解释根据本发明的一些实施例的透明光电元件的光致发光谱的绘图。
参考图28,当PL被图示在半导体对数标度上时在3.28eV处形成最高峰。该密集且尖锐的峰对应于ZnO的中性施主束缚,其影响辐射复合。
在高能量区域中,自由激子(FX)明显地出现并且在3.351eV处呈现强FXn=1峰。在FXn=2=3.423eV处明显观察到第一激发状态发射激子。除了这种峰,D0X的较高能量区域还呈现由于在3.315eV处的施主状表面激子(SX)的复合的一些山。
考虑到ZnO的激子结合能量(60meV),激子容易在室温下维持。显性D0X发射的纵光(LO)光子复制线示出规则阵列形状。D0X发射的初级(1LO)、次级(2LO)以及第三级(3LO)的复制线在比主D0X发射低大约72meV的能量的方向上移动。PL峰的位置可以为在低温测量条件下的高质量ZnO薄膜或一维纳米结构的证据。多晶ZnO明显地在室温下提供PL峰。由于NiO的量子点结构,NiO薄膜可以用作ZnO薄膜的表面保护性薄膜。结果,在室温下诱发明显Pl峰,并且能够根据ZnO/NiO表面的形成例证减少的表面状态。
尽管已经特别地参考本发明的示例性实施例说明和描述了本发明,但是本领域普通技术人员将理解,可以在不脱离由随附权利要求的本发明的精神和范围的情况下在其中进行形式和细节上的各种变化。示例性实施例应当在仅仅描述性意义上而不是为了限制的目的来考虑。

Claims (21)

1.一种用于制造透明光电元件的方法,所述方法包括;
提供透明衬底;
在室温下在透明衬底上形成透明导电薄膜;
在所述透明导电薄膜上形成n型氧化物半导体薄膜;以及
在室温下通过反应溅射在所述n型氧化物半导体薄膜上形成具有量子点结构的p型氧化镍薄膜,
所述反应溅射包括氧气和氩气,
氧气的比率小于氩气的比率。
2.根据权利要求1所述的方法,其中,所述透明导电薄膜与所述衬底和所述n型氧化物半导体薄膜直接接触,并且
所述p型氧化镍薄膜与所述n型氧化物半导体薄膜直接接触。
3.根据权利要求1所述的方法,其中,氧气的比率对应于氩气的比率的1%至20%。
4.根据权利要求1所述的方法,其中,所述衬底是柔性衬底。
5.根据权利要求4所述的方法,其中,所述衬底是塑料衬底,并且所述方法还包括:
将所述透明光电元件切割到特定大小;以及
将所述透明光电元件附接到目标对象。
6.根据权利要求1所述的方法,其中,所述衬底是玻璃衬底,
所述透明光电元件包括具有相同结构的第一透明光电元件和第二透明光电元件,并且
所述第一透明光电元件和所述第二透明光电元件电连接到彼此。
7.根据权利要求6所述的方法,其中,将所述第一透明光电元件和所述第二透明光电元件电连接包括:
将所述第一透明光电元件的所述透明导电薄膜和所述第二透明光电元件的所述p型氧化镍薄膜电连接。
8.根据权利要求6所述的方法,其中,将所述第一透明光电元件和所述第二透明光电元件电连接包括:
将所述第一透明光电元件的所述p型氧化镍薄膜和所述第二透明光电元件的所述p型氧化镍薄膜电连接。
9.根据权利要求6所述的方法,其中,将所述第一透明光电元件和所述第二透明光电元件电连接包括:
将所述第一透明光电元件和所述第二透明光电元件经由焊丝电连接到彼此。
10.根据权利要求1所述的方法,其中,所述n型氧化物半导体薄膜包括以下中的至少一个:ZnO、AZO、TiO和SnS。
11.根据权利要求1所述的方法,其中,所述透明导电薄膜为ITO或FTO。
12.根据权利要求1所述的方法,其中,所述透明导电薄膜、所述n型氧化物半导体薄膜以及所述p型氧化镍薄膜的形成被原位执行。
13.一种透明光电元件,包括:
透明柔性PET(聚对苯二甲酸乙二醇酯)衬底;
形成在所述透明柔性PET衬底上的透明导电薄膜,所述透明导体包括ITO(氧化铟锡)或FTO(氟掺杂氧化锡);
在所述透明导电薄膜上形成的n型氧化物半导体薄膜;以及
在所述n型氧化物半导体薄膜上形成的并且与所述n型氧化物半导体薄膜形成异质结的p型氧化镍薄膜,
其中,激子出现在所述异质结中,并且
所述p型氧化镍薄膜具有量子点结构。
14.根据权利要求13所述的透明光电元件,其中,所述量子点结构的平均直径为1nm至30nm。
15.一种透明光电元件,包括:
第一层压结构,其包括第一玻璃衬底、形成在所述第一玻璃衬底上的第一透明导体薄膜、形成在所述第一透明导体薄膜上的第一FTO薄膜以及形成在所述第一FTO薄膜上的并且与所述第一FTO薄膜形成异质结的第一NiO薄膜;
第二层压结构,其包括第二玻璃衬底、形成在所述第二玻璃衬底上的第二透明导体薄膜、形成在所述第二透明导体薄膜上的第二FTO薄膜以及形成在所述第二FTO薄膜上的并且与所述第二FTO薄膜形成异质结的第二NiO薄膜;以及
焊丝,其连接所述第一层压结构和所述第二层压结构。
16.根据权利要求15所述的透明光电元件,其中,所述第一NiO薄膜和所述第二NiO薄膜具有纳米多晶结构。
17.根据权利要求16所述的透明光电元件,其中,所述第一NiO薄膜和所述第二NiO薄膜具有量子点结构。
18.根据权利要求17所述的透明光电元件,其中,所述量子点结构的平均直径为1nm至30nm。
19.根据权利要求15所述的透明光电元件,其中,所述焊丝连接所述第一NiO薄膜和所述第二FTO薄膜。
20.根据权利要求15所述的透明光电元件,其中,所述焊丝连接所述第一NiO薄膜和所述第二NiO薄膜。
21.根据权利要求15所述的透明光电元件,还包括:
第三层压结构至第九层压结构,其具有与第一层压结构和第二层压结构相同的结构,
所述第一层压结构至所述第九层压结构以三行和三列对齐。
CN201711265779.XA 2016-12-05 2017-12-05 透明光电元件以及用于制造透明光电元件的方法 Pending CN108172646A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0164143 2016-12-05
KR1020160164143A KR101701192B1 (ko) 2016-12-05 2016-12-05 투명 광전 소자 및 그 제조 방법

Publications (1)

Publication Number Publication Date
CN108172646A true CN108172646A (zh) 2018-06-15

Family

ID=58109487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711265779.XA Pending CN108172646A (zh) 2016-12-05 2017-12-05 透明光电元件以及用于制造透明光电元件的方法

Country Status (3)

Country Link
US (1) US20180158971A1 (zh)
KR (1) KR101701192B1 (zh)
CN (1) CN108172646A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265504A (zh) * 2019-07-01 2019-09-20 哈尔滨工业大学 一种紫外光电探测器及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160111668A1 (en) * 2014-10-03 2016-04-21 Tuskegee University Photovoltaic cells based on donor and acceptor nano-particulate conjugates in conductive polymer blends
KR102285454B1 (ko) * 2019-06-11 2021-08-02 인천대학교 산학협력단 광전소자를 제조하는 방법 및 광전소자

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256036A (ja) * 1988-04-05 1989-10-12 Toshiba Corp 情報記録媒体及びその製造方法
US20100186804A1 (en) * 2009-01-29 2010-07-29 Emcore Solar Power, Inc. String Interconnection of Inverted Metamorphic Multijunction Solar Cells on Flexible Perforated Carriers
CN102130297A (zh) * 2010-12-17 2011-07-20 天津理工大学 基于p/n型氧化物叠层结构的阻变存储器及其制备方法
US20150287871A1 (en) * 2012-11-05 2015-10-08 University Of Florida Research Foundation, Inc. Solution-processed ultraviolet light detector based on p-n junctions of metal oxides

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100934732B1 (ko) * 2007-06-01 2009-12-30 한국기계연구원 양자점을 이용한 태양전지 및 이의 제조방법
WO2011041407A1 (en) * 2009-09-29 2011-04-07 Research Triangle Institute, International Quantum dot-fullerene junction optoelectronic devices
KR101103330B1 (ko) * 2010-06-25 2012-01-11 한국표준과학연구원 InP의 강제도핑에 의한 고농도 P 도핑 양자점 태양전지 및 제조방법
US9136408B2 (en) 2013-11-26 2015-09-15 Hunt Energy Enterprises, Llc Perovskite and other solar cell materials
JP6455915B2 (ja) * 2014-08-29 2019-01-23 国立大学法人電気通信大学 太陽電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256036A (ja) * 1988-04-05 1989-10-12 Toshiba Corp 情報記録媒体及びその製造方法
US20100186804A1 (en) * 2009-01-29 2010-07-29 Emcore Solar Power, Inc. String Interconnection of Inverted Metamorphic Multijunction Solar Cells on Flexible Perforated Carriers
CN102130297A (zh) * 2010-12-17 2011-07-20 天津理工大学 基于p/n型氧化物叠层结构的阻变存储器及其制备方法
US20150287871A1 (en) * 2012-11-05 2015-10-08 University Of Florida Research Foundation, Inc. Solution-processed ultraviolet light detector based on p-n junctions of metal oxides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MD REZAUL HASAN等: "Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates", 《APL MATERIALS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265504A (zh) * 2019-07-01 2019-09-20 哈尔滨工业大学 一种紫外光电探测器及其制备方法

Also Published As

Publication number Publication date
US20180158971A1 (en) 2018-06-07
KR101701192B1 (ko) 2017-02-01

Similar Documents

Publication Publication Date Title
Hasan et al. Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates
Boruah Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors
Bansal et al. A highly efficient bilayer graphene/ZnO/silicon nanowire based heterojunction photodetector with broadband spectral response
US11653555B2 (en) Methods and apparatuses for fabricating perovskite-based devices on cost-effective flexible conductive substrates
Athira et al. SnO2-NiO heterojunction based self-powered UV photodetectors
CN108172646A (zh) 透明光电元件以及用于制造透明光电元件的方法
Patel et al. High-performing flexible and transparent photodetector by using silver nanowire-networks
Salunkhe et al. Performance evaluation of transparent self-powered n-ZnO/p-NiO heterojunction ultraviolet photosensors
Gogurla et al. Gold nanoparticle-embedded silk protein-ZnO nanorod hybrids for flexible bio-photonic devices
Sarkar et al. Enhanced UV–visible photodetection characteristics of a flexible Si membrane-ZnO heterojunction utilizing piezo-phototronic effect
Wang et al. Flexible, transparent and self-powered deep ultraviolet photodetector based on Ag NWs/amorphous gallium oxide Schottky junction for wearable devices
Patel et al. Carrier transport and working mechanism of transparent photovoltaic cells
Willars-Rodríguez et al. Self-powered broadband photodetector based on a solution-processed p-NiO/n-CdS: Al heterojunction
Nair et al. Photoresponse of a printed transparent silver nanowire-zinc oxide nanocomposite
Muhsien et al. Preparation and characterization of p-Ag2O/n-Si heterojunction devices produced by rapid thermal oxidation
Fu et al. Enhanced photoresponse in ZnO nanorod array/p-GaN self-powered ultraviolet photodetectors via coupling with CuO nanostructures
Mohammadi et al. High performance n-ZnO/p-metal-oxides UV detector grown in low-temperature aqueous solution bath
Du et al. Surface passivation of ITO on heterojunction solar cells with enhanced cell performance and module reliability
Zhang et al. High performance mid-wave infrared photodetector based on graphene/black phosphorus heterojunction
Hwang et al. Separate absorption and multiplication solar-blind photodiodes based on p-NiO/MgO/n-ZnO heterostructure
Şakar et al. Ultraviolet and visible photo-response of transparent conductive Al-doped ZnO (AZO)/n-Silicon isotype heterojunction device
Bhunia et al. Fabrication and characterization of cu/Cu2O/CuO/ZnO/Al–ZnO/ag heterojunction solar cells
Yu et al. Fabrication of a cost effective and broadband self-powered photodetector based on Sb2Te3 and silicon
Huang et al. Dual functional modes for nanostructured p-Cu2O/n-Si heterojunction photodiodes
Kek et al. UV and visible photodetection of Al-doped ZnO on p-Si prepared by pulsed laser deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180615

WD01 Invention patent application deemed withdrawn after publication