CN108171359A - 一种方舱布局的最优化方法 - Google Patents

一种方舱布局的最优化方法 Download PDF

Info

Publication number
CN108171359A
CN108171359A CN201711220710.5A CN201711220710A CN108171359A CN 108171359 A CN108171359 A CN 108171359A CN 201711220710 A CN201711220710 A CN 201711220710A CN 108171359 A CN108171359 A CN 108171359A
Authority
CN
China
Prior art keywords
module
shelter
nacelle
climate control
workspace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711220710.5A
Other languages
English (en)
Other versions
CN108171359B (zh
Inventor
汤咏
叶诚
王家明
刘鲁军
丁飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Sun Create Electronic Co Ltd
Original Assignee
Anhui Sun Create Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Sun Create Electronic Co Ltd filed Critical Anhui Sun Create Electronic Co Ltd
Priority to CN201711220710.5A priority Critical patent/CN108171359B/zh
Publication of CN108171359A publication Critical patent/CN108171359A/zh
Application granted granted Critical
Publication of CN108171359B publication Critical patent/CN108171359B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/043Optimisation of two dimensional placement, e.g. cutting of clothes or wood
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • Strategic Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • General Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Development Economics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Genetics & Genomics (AREA)
  • Game Theory and Decision Science (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Physiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Air Conditioning Control Device (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

本发明属于雷达方舱技术领域,具体涉及一种方舱布局的最优化方法,包括如下步骤:S1、所述方舱包括舱体,工作台模块、工作区空调模块、设备机柜模块和设备区空调模块;S2、对方舱整体建模,建立平面直角坐标系,得到S1中各模块的重心坐标,S3、利用遗传算法迭代求取内部模块的重心坐标(X6、Y6)与舱体的重心坐标为(A5、B5)的最小距离Min(F(X)),得到X3、Y1、Y2、Y3和Y4的具体数值,从而确定上述各模块位于舱体的具体位置,得到最优化布局的方舱。本发明的有益效果是:把各模块布局问题转化为最优问题,引入遗传算法,实现启发式搜索最优位置,避免了经验布局的弊端,适合广泛推广应用到所有涉及布局的方案中。

Description

一种方舱布局的最优化方法
技术领域
本发明属于雷达方舱技术领域,具体涉及一种方舱布局的最优化方法。
背景技术
方舱是一种可以放置在运输车上的集成电子设备、完成雷达信号处理和终端显示的可移动设备舱。根据使用功能不同,方舱被划分为工作区、设备区。为了提高方舱内部工作舒适度和电子设备散热效果,两个区域被隔开。这样的方舱主要包含五大模块,分别为:用于信号处理的设备机柜;终端显示的工作台(含两名工作人员);工作区挂式空调、设备区的挂式空调;舱体。
在运输车行进中,由于路面不平整,车辆及方舱都呈现明显颠簸,如果车辆与方舱重心偏差太大,车辆稍大的颠簸或者车辆大转弯中都会引起车辆侧翻。因此,如何布局方舱内部设备总的重心与车辆的一致是方舱布局设计的第一要点。目前的布局方舱方法是经验估算,这一方面对设计师经验要求太高,不适合推广应用;第二,经验估算的偏差需要实际验证,一旦实际运输中发现偏差太大,方舱布局方案就必须重新设计,会造成不可挽回的巨大损失。因此,科学地优化布局是一项意义深刻的研究内容。
发明内容
为了解决上述问题,本发明的目的是提供一种方舱布局的最优化方法,以解决方舱安全运输的问题。
本发明提供了如下的技术方案:
一种方舱布局的最优化方法,包括如下步骤:
S1、所述方舱包括舱体,工作台模块、工作区空调模块、设备机柜模块和设备区空调模块,其中舱体呈长方体形,包括左短侧壁、右短侧壁、前侧壁和后侧壁,所述工作台模块设置在舱体内紧靠左短侧壁,工作区空调模块包括工作区空调外机和工作区空调主机,所述工作区空调外机设置在左短侧壁外侧,所述工作区空调主机设置在左短侧壁内侧上部,所述设备机柜模块设置在舱体内部,所述设备区空调模块包括设备区空调外机和设备区空调主机,所述设备区空调外机设置在右短侧壁外侧,所述设备区空调主机设置在右短侧壁内侧上部,所述工作台模块与设备机柜模块之间设有隔板;
S2、对方舱整体建模,建立平面直角坐标系,得到S1中各模块的重心坐标,其中工作台模块的质量为M1、其重心坐标为(X1,B1),工作区空调模块的质量为M2、其重心坐标为(A2,Y2),设备机柜模块的质量为M3、其重心坐标为(X3,Y3),设备区空调模块的质量为M4、其重心坐标为(A4,Y4),舱体的重心坐标为(A5,B5),其中A2、A4、A5、B1、B5、M1、M2、M3、和M4均可通过测量直接得出,将工作台模块、工作区空调模块、设备机柜模块和设备区空调模块作为一个整体,记为内部模块,得到其重心坐标(X6、Y6),
其中,
S3、利用遗传算法迭代求取内部模块的重心坐标(X6,Y6)与舱体的重心坐标为(A5,B5)的最小距离Min(F(X)),得到X3、Y1、Y2、Y3和Y4的具体数值,从而确定上述各模块位于舱体的具体位置,得到最优化布局的方舱。
优选的,所述S3中,最小距离
优选的,S3中所述遗传算法包括,首先预设遗传算法的种群规模、交叉概率和变异概率、遗传算法终止条件、各位置变量的约束条件,并设置适配度函数,然后对未知量的可行解进行遗传编码,生成初始种群,对于初始种群进行适配度计算并根据适配度计算结果进行种群选择、交叉、变异,产生下一代,最后根据终止条件判断是否可以进入下一个循环,如此循环往复直至算法收敛并终止,最终,得出最小距离Min(F(X))的值,得到X3、Y1、Y2、Y3和Y4的具体数值,从而确定上述各模块位于舱体的具体位置,得到最优化布局的方舱。
本发明的有益效果是:把各模块布局问题转化为最优问题,引入遗传算法,实现启发式搜索最优位置,避免了经验布局的弊端,适合广泛推广应用到所有涉及布局的方案中。
附图说明
图1是本发明方舱的基本布局图;
图2是本发明遗传算法流程图;
图3是本发明遗传算法收敛图。
附图中标记的含义如下:
10-舱体 11-左短侧壁 12-右短侧壁 13-前侧壁 14-后侧壁 20-工作台模块 30-工作区空调模块 31-工作区空调外机 32-工作区空调主机 40-设备机柜模块 50-设备区空调模块 51-设备区空调外机 52-设备区空调主机 60-隔板
具体实施方式
下面结合具体实施例对本发明做具体说明。
一种方舱布局的最优化方法,包括如下步骤:
S1、所述方舱包括舱体10,工作台模块20、工作区空调模块30、设备机柜模块40和设备区空调模块50,其中舱体10呈长方体形,包括左短侧壁11、右短侧壁12、前侧壁13和后侧壁14,所述工作台模块20设置在舱体10内紧靠后侧壁14,工作区空调模块30包括工作区空调外机31和工作区空调主机32,所述工作区空调外机31设置在左短侧壁11外侧,所述工作区空调主机32设置在左短侧壁11内侧上部,所述工作台模块20与工作区空调主机32相邻设置,所述设备机柜模块40设置在舱体10内部,所述设备区空调模块50包括设备区空调外机51和设备区空调主机52,所述设备区空调外机51设置在右短侧壁12外侧,所述设备区空调主机52设置在右短侧壁12内侧上部,工作台模块20与设备机柜模块40之间设有隔板60;
S2、对方舱整体建模,建立平面直角坐标系,得到S1中各模块的重心坐标,其中工作台模块20的质量为M1、其重心坐标为(X1,B1),工作区空调模块30的质量为M2、其重心坐标为(A2,Y2),设备机柜模块40的质量为M3、其重心坐标为(X3,Y3),设备区空调模块50的质量为M4、其重心坐标为(A4,Y4),舱体10的重心坐标为(A5,B5),其中A2、A4、A5、B1、B5、M1、M2、M3、和M4均可通过测量直接得出,将工作台模块20、工作区空调模块30、设备机柜模块40和设备区空调模块50作为一个整体,记为内部模块,得到其重心坐标(X6,Y6),
其中,
S3、利用遗传算法迭代求取内部模块的重心坐标(X6,Y6)与舱体的重心坐标为(A5,B5)的最小距离Min(F(X)),得到X3、Y1、Y2、Y3和Y4的具体数值,从而确定上述各模块位于舱体的具体位置,得到最优化布局的方舱。
进一步优化上述实施例,所述S3中,最小距离
进一步优化上述实施例,S3中所述遗传算法包括,首先预设遗传算法的种群规模、交叉概率和变异概率、遗传算法终止条件、各位置变量的约束条件,并设置适配度函数,然后对未知量的可行解进行遗传编码,生成初始种群,对于初始种群进行适配度计算并根据适配度计算结果进行种群选择、交叉、变异,产生下一代,最后根据终止条件判断是否可以进入下一个循环,如此循环往复直至算法收敛并终止,最终,得出最小距离Min(F(X))的值,得到X3、Y1、Y2、Y3和Y4的具体数值,从而确定上述各模块位于舱体的具体位置,得到最优化布局的方舱。
在一个具体的实施例中,
参见图1,预设坐标系零点(所有坐标单位均为毫米),方舱处于坐标系的第一象限,方舱总体外形为长×宽=5312×1796,其中工作台模块的质量为190kg、其重心坐标为(X1,1196),工作区空调模块(包括空调主机和外机)的质量为50.5kg、其重心坐标为(321,Y2),设备机柜模块的质量为520kg、其重心坐标为(X3,Y3),设备区空调模块的质量为69kg、其重心坐标为(4991,Y4),舱体的重心坐标为(2869,875),将工作台模块、工作区空调模块、设备机柜模块和设备区空调模块作为一个整体,记为内部模块,得到其重心坐标(X6,Y6)
由上可得,方舱内部模块的重心坐标为(X6,Y6),即,
那么,
如图2所示,为了使得工作台模块、工作区空调模块、设备机柜模块和设备区空调模块的重心与舱体尽可能一致,必须使得方舱内部模块的重心坐标(X6,Y6)距离舱体重心坐标(2869,875)的距离最短,那么Min(F(X))必须满足:
Min(F(X))=[(X6×829.5-2869×829.5)2+(Y6×829.5-875×829.5)2]/829.52
那么,
Min(F(X))=[(190X1+520X3-2019246)2+(50.5Y2+520Y3+69Y4-512822.5)2]/829.52
本实施例中方舱中各模块大致为长方体形,其中,舱体的长度为4479、宽度为1796,工作区模块的长度为1459、宽度为1200,设备机柜模块的长度为1200、宽度为800,工作区空调模块和设备区空调模块的外形相同,其长度均为882、宽度均为642,在工作区模块与设备机柜模块之间设有隔板,隔板与Y轴的水平距离为为2656,得到各变量的约束范围:
X1=(1210,1980);X3=(3256,4291);Y2=(441,1355);Y3=(850,1196);Y4=(441,1355);
其中由于工作区空调主机设置在工作区模块的上方,导致工作区模块的重心向远离Y轴方向偏移,根据实际情况本实施例X1的取值范围最终为(1210,1980),设备机柜模块前门的打开以及后面接线时,都需要一定的操作空间,本实施例中设备机柜模块距离前侧壁的距离为450,距离后侧壁的距离为200,最终得到Y3的取值范围为(850,1196)。
预设算法种群规模为20个,交叉概率为0.5,变异概率为0.5;算法终止条件为最大代数10000代或者适配度函数值小于100,取适配度函数为F(X),其中,
图3为算法迭代过程,可见,在50代以内,算快速收敛。最小重心函数值为:
Min(F(X))=97.0015
对应的坐标未知量为:
X1=1210,X3=3256,Y3=1062,Y4=441
因此工作台模块重心坐标为(1210,1196);工作区空调重心位置坐标为(321,1062);设备区空调重心坐标位置为(4991,441);设备机柜模块重心坐标位置为(3256,863)。在该布局下,方舱内部模块的重心坐标为(X6,Y6)距离方舱舱体重心坐标(2869,875)约为97mm,是符合运输稳定性需求的最优化布局。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种方舱布局的最优化方法,其特征在于,包括如下步骤:
S1、所述方舱包括舱体(10),工作台模块(20)、工作区空调模块(30)、设备机柜模块(40)和设备区空调模块(50),其中舱体(10)呈长方体形,包括左短侧壁(11)、右短侧壁(12)、前侧壁(13)和后侧壁(14),所述工作台模块(20)设置在舱体(10)内紧靠后侧壁(14),工作区空调模块(30)包括工作区空调外机(31)和工作区空调主机(32),所述工作区空调外机(31)设置在左短侧壁(11)外侧,所述工作区空调主机(32)设置在左短侧壁(11)内侧上部,所述设备机柜模块(40)设置在舱体(10)内部,所述设备区空调模块(50)包括设备区空调外机(51)和设备区空调主机(52),所述设备区空调外机(51)设置在右短侧壁(12)外侧,所述设备区空调主机(52)设置在右短侧壁(12)内侧上部,所述工作台模块(20)与设备机柜模块(40)之间设有隔板(60);
S2、对方舱整体建模,建立平面直角坐标系,得到S1中各模块的重心坐标,其中工作台模块(20)的质量为M1、其重心坐标为(X1,B1),工作区空调模块(30)的质量为M2、其重心坐标为(A2,Y2),设备机柜模块(40)的质量为M3、其重心坐标为(X3,Y3),设备区空调模块(50)的质量为M4、其重心坐标为(A4,Y4),舱体(10)的重心坐标为(A5,B5),其中A2、A4、A5、B1、B5、M1、M2、M3、和M4均可通过测量直接得出,将工作台模块(20)、工作区空调模块(30)、设备机柜模块(40)和设备区空调模块(50)作为一个整体,记为内部模块,得到其重心坐标(X6,Y6),
其中,
S3、利用遗传算法迭代求取内部模块的重心坐标(X6、Y6)与舱体(10)的重心坐标为(A5,B5)的最小距离Min(F(X)),得到X3、Y1、Y2、Y3和Y4的具体数值,从而确定上述各模块位于舱体的具体位置,得到最优化布局的方舱。
2.根据权利要求1所述的一种方舱布局的最优化方法,其特征在于,所述S3中,最小距离
3.根据权利要求1所述的一种方舱布局的最优化方法,其特征在于,S3中所述遗传算法包括,首先预设遗传算法的种群规模、交叉概率和变异概率、遗传算法终止条件、各位置变量的约束条件,并设置适配度函数,然后对未知量的可行解进行遗传编码,生成初始种群,对于初始种群进行适配度计算并根据适配度计算结果进行种群选择、交叉、变异,产生下一代,最后根据终止条件判断是否可以进入下一个循环,如此循环往复直至算法收敛并终止,最终,得出最小距离Min(F(X))的值,得到X3、Y1、Y2、Y3和Y4的具体数值,从而确定上述各模块位于舱体的具体位置,得到最优化布局的方舱。
CN201711220710.5A 2017-11-29 2017-11-29 一种方舱布局的最优化方法 Active CN108171359B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711220710.5A CN108171359B (zh) 2017-11-29 2017-11-29 一种方舱布局的最优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711220710.5A CN108171359B (zh) 2017-11-29 2017-11-29 一种方舱布局的最优化方法

Publications (2)

Publication Number Publication Date
CN108171359A true CN108171359A (zh) 2018-06-15
CN108171359B CN108171359B (zh) 2021-11-23

Family

ID=62524765

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711220710.5A Active CN108171359B (zh) 2017-11-29 2017-11-29 一种方舱布局的最优化方法

Country Status (1)

Country Link
CN (1) CN108171359B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110633508A (zh) * 2019-08-23 2019-12-31 北京航空航天大学 基于多目标优化算法的民航客机客舱布局方案确定通用系统和方法
CN112035923A (zh) * 2020-08-25 2020-12-04 中船文化科技(北京)有限公司 一种方舱布局规划方法、装置、电子设备以及存储介质
CN112883650A (zh) * 2021-02-26 2021-06-01 深圳市瑞立视多媒体科技有限公司 一种基于遗传算法的刚体标记点优化方法、设备以及可读存储介质
EP4044079A1 (de) * 2021-02-15 2022-08-17 Siemens Aktiengesellschaft System zur raum- und/oder flächenplanung, verwendung eines genetischen algorithmus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090306866A1 (en) * 2008-06-10 2009-12-10 The Regents Of The University Of Michigan Method, control apparatus and powertrain system controller for real-time, self-learning control based on individual operating style
CN102214321A (zh) * 2011-07-14 2011-10-12 大连海事大学 一种三维集装箱装载布局优化方法及系统
CN104298816A (zh) * 2014-09-25 2015-01-21 北京理工大学 一种适合制造系统重构的机床布局设计方法
CN104808627A (zh) * 2015-04-20 2015-07-29 海安县申菱电器制造有限公司 一种离散制造系统的车间布局方法
CN104899365A (zh) * 2015-05-27 2015-09-09 南京航空航天大学 一种可减小气动干扰不利影响的直升机气动布局优化方法
CN106777561A (zh) * 2016-11-29 2017-05-31 朱金焰 一种涡轮叶片精铸蜡型陶芯夹紧元件的布局方法
CN106844986A (zh) * 2017-01-24 2017-06-13 中国船舶重工集团公司第七○研究所 一种基于改良遗传算法的甲板布局计算方法
CN106845006A (zh) * 2017-02-15 2017-06-13 中车株洲电力机车有限公司 基于多目标优化的轨道车辆重量重心设计优化方法及系统
CN106875071A (zh) * 2017-03-31 2017-06-20 华南理工大学 一种自适应遗传算法的车间设备多目标优化布局方法
CN107220441A (zh) * 2017-05-31 2017-09-29 安徽四创电子股份有限公司 一种电子方舱内人体舒适度的检测仿真方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090306866A1 (en) * 2008-06-10 2009-12-10 The Regents Of The University Of Michigan Method, control apparatus and powertrain system controller for real-time, self-learning control based on individual operating style
CN102214321A (zh) * 2011-07-14 2011-10-12 大连海事大学 一种三维集装箱装载布局优化方法及系统
CN104298816A (zh) * 2014-09-25 2015-01-21 北京理工大学 一种适合制造系统重构的机床布局设计方法
CN104808627A (zh) * 2015-04-20 2015-07-29 海安县申菱电器制造有限公司 一种离散制造系统的车间布局方法
CN104899365A (zh) * 2015-05-27 2015-09-09 南京航空航天大学 一种可减小气动干扰不利影响的直升机气动布局优化方法
CN106777561A (zh) * 2016-11-29 2017-05-31 朱金焰 一种涡轮叶片精铸蜡型陶芯夹紧元件的布局方法
CN106844986A (zh) * 2017-01-24 2017-06-13 中国船舶重工集团公司第七○研究所 一种基于改良遗传算法的甲板布局计算方法
CN106845006A (zh) * 2017-02-15 2017-06-13 中车株洲电力机车有限公司 基于多目标优化的轨道车辆重量重心设计优化方法及系统
CN106875071A (zh) * 2017-03-31 2017-06-20 华南理工大学 一种自适应遗传算法的车间设备多目标优化布局方法
CN107220441A (zh) * 2017-05-31 2017-09-29 安徽四创电子股份有限公司 一种电子方舱内人体舒适度的检测仿真方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
叶坤武 等: "基于遗传算法的飞机驾驶舱布局优化设计", 《兵器装备工程学报》 *
霍军周 等: "人机结合蚁群/遗传算法及其在卫星舱布局设计中的应用", 《机械工程学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110633508A (zh) * 2019-08-23 2019-12-31 北京航空航天大学 基于多目标优化算法的民航客机客舱布局方案确定通用系统和方法
CN112035923A (zh) * 2020-08-25 2020-12-04 中船文化科技(北京)有限公司 一种方舱布局规划方法、装置、电子设备以及存储介质
EP4044079A1 (de) * 2021-02-15 2022-08-17 Siemens Aktiengesellschaft System zur raum- und/oder flächenplanung, verwendung eines genetischen algorithmus
WO2022171462A1 (de) * 2021-02-15 2022-08-18 Siemens Aktiengesellschaft System zur raum- und/oder flächenplanung, verwendung eines genetischen algorithmus
CN112883650A (zh) * 2021-02-26 2021-06-01 深圳市瑞立视多媒体科技有限公司 一种基于遗传算法的刚体标记点优化方法、设备以及可读存储介质
CN112883650B (zh) * 2021-02-26 2023-06-09 深圳市瑞立视多媒体科技有限公司 一种基于遗传算法的刚体标记点优化方法、设备以及可读存储介质

Also Published As

Publication number Publication date
CN108171359B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
CN108171359A (zh) 一种方舱布局的最优化方法
CN102741833B (zh) 用于数据中心的基于知识的模型
Abdelmaksoud et al. Improved CFD modeling of a small data center test cell
JP6037608B2 (ja) サービス制御システム、サービスシステム
CN105091760A (zh) 距离传感器的配置评价装置
CN104036125A (zh) 一种油浸式变压器内部温度场的精确计算方法
EP3130450B1 (en) Three-dimensional shaping system, information processing apparatus, method for arranging three-dimensional shaping models, and program for arranging three-dimensional shaping models
CN107704638A (zh) 电梯机械室图生成装置及方法、建模数据生成装置及方法
CN112238452B (zh) 机械臂路径规划方法、装置、工控设备及存储介质
JP2018048750A (ja) 空調制御装置、空調制御方法及び空調制御プログラム
Cao et al. Observer-based continuous adaptive sliding mode control for soft actuators
JP5064538B2 (ja) コンテナ型データセンタモジュール
US11982529B2 (en) Method for registering a total station in the reference system of a CAD model
CN115879189A (zh) 基于bim平台的地下车库通风系统设计方法及相关设备
JP2020191104A (ja) 情報処理装置、モデル生成処理装置、および情報処理方法
US8321182B2 (en) System and method for positioning and controlling air conditioning tiles for optimal cooling using Voronoi diagrams
Pardey et al. Creating a calibrated CFD model of a midsize data center
CN112621754A (zh) 一种多机器人协同的装配线安全布局的设计方法
CN113158281A (zh) 管线排布模型的生成方法、装置、计算机设备和存储介质
CN115639817A (zh) 一种路径的轨迹修正方法、装置、设备和介质
CN113312821B (zh) 一种基于b样条密度法的三维自支撑结构拓扑优化设计方法
CN112183753B (zh) 一种通过电机布局优化提高运动台控制带宽的方法及系统
JP4025121B2 (ja) 部品配置演算装置、部品配置演算方法、部品配置演算用プログラム、該プログラムを記録した記録媒体および部品配置支援システム
TW201807423A (zh) 具檢測路徑最佳化功能之電路板檢測方法
CN115935457A (zh) 建筑通风系统设计方法、装置、计算机设备和存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant