CN108169165A - Maltose mixture quantitative analysis method based on tera-hertz spectra and image information fusion - Google Patents
Maltose mixture quantitative analysis method based on tera-hertz spectra and image information fusion Download PDFInfo
- Publication number
- CN108169165A CN108169165A CN201711377485.6A CN201711377485A CN108169165A CN 108169165 A CN108169165 A CN 108169165A CN 201711377485 A CN201711377485 A CN 201711377485A CN 108169165 A CN108169165 A CN 108169165A
- Authority
- CN
- China
- Prior art keywords
- spectrum
- maltose
- image
- data
- fusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 title claims abstract description 94
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 title claims abstract description 94
- 239000000203 mixture Substances 0.000 title claims abstract description 94
- 230000004927 fusion Effects 0.000 title claims abstract description 61
- 238000001228 spectrum Methods 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000004445 quantitative analysis Methods 0.000 title claims abstract description 14
- 230000003595 spectral effect Effects 0.000 claims abstract description 30
- 239000013598 vector Substances 0.000 claims description 25
- 238000000605 extraction Methods 0.000 claims description 19
- 238000000862 absorption spectrum Methods 0.000 claims description 8
- 238000000411 transmission spectrum Methods 0.000 claims description 8
- 238000003384 imaging method Methods 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 6
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000005457 optimization Methods 0.000 abstract description 2
- 238000012706 support-vector machine Methods 0.000 abstract description 2
- 241000209140 Triticum Species 0.000 description 10
- 235000021307 Triticum Nutrition 0.000 description 10
- 239000004698 Polyethylene Substances 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 235000013312 flour Nutrition 0.000 description 7
- -1 polyethylene Polymers 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- 235000013339 cereals Nutrition 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 230000035784 germination Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000034303 cell budding Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 210000001331 nose Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3581—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
- G01N21/3586—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种基于太赫兹光谱和图像信息融合的麦芽糖混合物定量分析方法,步骤包括:1)对麦芽糖混合物的光谱和图像样本数据进行特征提取,并将所提取的数据融合;2)利用光谱和图像的融合数据建模,对麦芽糖混合物定量分析。本发明的有益效果为:1、本发明的预测精度显著优于采用单一光谱或单一图像的预测精度;2、本发明采用PCA算法对光谱数据和图像数据进行单独特征提取,能够有效地去除噪声,能够较好地提取出于建模相关的特征向量,进而有效地改善多源信息融合模型的预测精度;3、根据结构风险最小化理论提出了一种Boosting迭代终止判断指标,实现了对最小二乘支持向量机基础模型参数的自动优化。
The invention discloses a method for quantitative analysis of maltose mixture based on the fusion of terahertz spectrum and image information. Fusion data modeling of spectra and images for quantitative analysis of maltose mixtures. The beneficial effects of the present invention are: 1. The prediction accuracy of the present invention is significantly better than that of a single spectrum or a single image; 2. The present invention uses the PCA algorithm to extract separate features from spectral data and image data, which can effectively remove noise , can better extract the eigenvectors related to modeling, and then effectively improve the prediction accuracy of the multi-source information fusion model; 3. According to the structural risk minimization theory, a Boosting iteration termination judgment index is proposed, which realizes the minimum Automatic optimization of base model parameters for quadratic support vector machines.
Description
技术领域technical field
本发明涉及一种基于太赫兹光谱和图像信息融合的麦芽糖混合物定量分析方法。The invention relates to a method for quantitative analysis of maltose mixture based on fusion of terahertz spectrum and image information.
背景技术Background technique
粮食如果储藏不当,容易发生霉变、芽变、板结、虫蚀、陈化等想象,使得其气味、色泽、组成分含量等都发生变化,近年来涌现了电子鼻、机器视觉、近红外、X射线等众多粮食品质检测方法,但均无法满足精确快速的粮食芽变早期检测需求。粮食在发芽过程中,最主要的化学成分变化是将淀粉转化为用于生长的糖类,而麦芽糖分子在THz波段下存在明显的特征吸收峰,因此可通过对粮食颗粒中麦芽糖分子的定量分析来判别样品的芽变程度,进而实现对粮食的早期检测。If food is not stored properly, it is prone to mildew, bud change, hardening, insect erosion, aging and other imaginations, which will cause changes in its smell, color, and composition content. In recent years, electronic noses, machine vision, near-infrared, and Many grain quality detection methods such as X-rays cannot meet the needs of accurate and rapid early detection of grain bud mutation. During the germination process of grain, the main chemical composition change is the conversion of starch into sugars for growth, and maltose molecules have obvious characteristic absorption peaks in the THz band, so the quantitative analysis of maltose molecules in grain particles can To determine the degree of budding of the sample, and then realize the early detection of grain.
THz波作为一种新的可靠的潜力巨大的无损探测技术,其光谱包含有丰富的物理和化学信息,能够获得其他光谱分析和成像技术所不能得到的信息。由于其独特的特性,THz波及成像技术已经在医学成像、安检、品质检测和质量控制等领域得到了广泛的应用。现有的麦芽糖混合物定量分析方法均采用单一的方法,由于单一的方法信息量不足,造成预测精度值低。As a new and reliable non-destructive detection technology with great potential, THz wave contains rich physical and chemical information in its spectrum, and can obtain information that cannot be obtained by other spectral analysis and imaging techniques. Due to its unique characteristics, THz wave and imaging technology has been widely used in medical imaging, security inspection, quality inspection and quality control and other fields. The existing quantitative analysis methods for maltose mixtures all use a single method, and the prediction accuracy is low due to the insufficient information of the single method.
发明内容Contents of the invention
本发明的目的提供一种基于太赫兹光谱和图像信息融合的麦芽糖混合物定量分析方法,解决单一的方法信息量不足,预测精度值低的技术问题。The purpose of the present invention is to provide a quantitative analysis method of maltose mixture based on the fusion of terahertz spectrum and image information, so as to solve the technical problems of insufficient information and low prediction accuracy of a single method.
针对所提到的问题,本发明提供了一种基于太赫兹光谱和图像信息融合的麦芽糖混合物定量分析方法,步骤包括:In view of the mentioned problems, the present invention provides a method for quantitative analysis of maltose mixture based on terahertz spectrum and image information fusion, the steps include:
1)对麦芽糖混合物的光谱和图像样本数据进行特征提取,并将所提取的数据融合;1) Feature extraction is performed on the spectrum and image sample data of the maltose mixture, and the extracted data are fused;
2)利用光谱和图像的融合数据建模,对麦芽糖混合物定量分析。2) Using the fusion data modeling of spectra and images to quantitatively analyze the maltose mixture.
优选方案是:步骤1之前还包括获取麦芽糖混合物的光谱和图像的样本数据。The preferred solution is: before step 1, it also includes obtaining sample data of spectra and images of the maltose mixture.
优选方案是:获取麦芽糖混合物的光谱样本数据,步骤包括:The preferred scheme is: obtain the spectral sample data of the maltose mixture, the steps include:
1)采用THz-TDS系统对各个浓度麦芽糖混合物进行了测量,得出光谱;1) The THz-TDS system was used to measure the maltose mixture with various concentrations, and the spectrum was obtained;
2)采用傅里叶变换获得样品的频域光谱;2) Obtain the frequency domain spectrum of the sample by Fourier transform;
3)计算不同浓度麦芽糖混合物的吸收光谱和折射率。3) Calculate the absorption spectrum and refractive index of the maltose mixture with different concentrations.
优选方案是:将不同浓度的麦芽糖混合物薄片放置在THz-TDS系统中的移动平台上,并进行反射成像测量,获得不同浓度麦芽糖混合物的部分THz图像。The preferred solution is: place the flakes of maltose mixture with different concentrations on the mobile platform in the THz-TDS system, and perform reflection imaging measurement to obtain partial THz images of the maltose mixture with different concentrations.
优选方案是:采用PCA算法对光谱数据和图像数据进行单独特征提取。The preferred solution is to use the PCA algorithm to perform separate feature extraction on the spectral data and the image data.
优选方案是:利用Boosting-LS-SVM多源信息融合模型对麦芽糖混合物的光谱和图像特征数据进行预测的具体方法包括为:The preferred solution is: using the Boosting-LS-SVM multi-source information fusion model to predict the spectrum and image feature data of the maltose mixture, the specific methods include:
1)根据风险最小化理论确定Boosting迭代终止判断条件;1) According to the risk minimization theory, determine the conditions for judging the termination of Boosting iterations;
2)按照迭代终止判断条件对Boosting-LS-SVM多源信息融合模型迭代;2) Iterate the Boosting-LS-SVM multi-source information fusion model according to the iteration termination judgment condition;
3)采用相关系数和均方根误差来评价Boosting-LS-SVM多源信息融合模型的预测误差。3) The correlation coefficient and root mean square error are used to evaluate the prediction error of the Boosting-LS-SVM multi-source information fusion model.
优选方案是:假设有n个样本用于建立融合模型,对于第k个麦芽糖混合物,采用PCA算法样本光谱和图像数据进行特征提取,若一个麦芽糖混合物样品的THz透射光谱样本数据和反射图像样本数据分别为:The optimal solution is: assuming that there are n samples used to establish the fusion model, for the kth maltose mixture, use the PCA algorithm sample spectrum and image data for feature extraction, if the THz transmission spectrum sample data and reflection image sample data of a maltose mixture sample They are:
xk1={xk1,1,xk1,2,…,xk1,n1}和xk2={xk2,1,xk2,2,…,xk2,n2} (1) xk1 ={ xk1,1 , xk1,2 ,..., xk1,n1 } and xk2 ={ xk2,1 , xk2,2 ,..., xk2,n2 } (1)
其中,xk1和xk2分别为第k个麦芽糖混合物的THz透射光谱数据反射图像数据,经过特征提取后的特征向量集分别表示为:Among them, x k1 and x k2 are the THz transmission spectrum data reflection image data of the k-th maltose mixture respectively, and the feature vector sets after feature extraction are expressed as:
zk1={zk1,1,zk1,2,…zk1,n1}和zk2={zk2,1,zk2,2,…zk2,n2} (2)z k1 = {z k1,1 , z k1,2 , . . . z k1,n1 } and z k2 ={z k2,1 , z k2,2 , ... z k2,n2 } (2)
其中,zk1和zk2分别为第k个样本光谱数据和图像数据经过特征提取后的特征向量集,将光谱和图像的特征数据相融合,构成信息融合模型的第k个输入向量,表示为:Among them, z k1 and z k2 are the feature vector sets of the k-th sample spectral data and image data after feature extraction respectively, and the spectral and image feature data are fused to form the k-th input vector of the information fusion model, expressed as :
其中,zk为第k个样本光谱和图像特征数据融合后的特征向量集。Among them, z k is the feature vector set after fusion of the kth sample spectrum and image feature data.
优选方案是:所述迭代终止判断条件公式为:The preferred solution is: the formula of the iteration termination judgment condition is:
其中Cm为第m次迭代后得到的终止指标值,且Cm>Cm-1(m>1),z表示麦芽糖混合物光谱图像综合特征向量;y表示混合物的浓度值;Fm(z)表示第m次Boosting迭代后得到的基础回归模型,Fm(z)表示经过m次Boosting迭代后获得的光谱图像融合模型预测结果;βm表示第m次迭代过程中LS-SVM基础模型的权值;am表示第m次迭代过程中LS-SVM基础模型的参数。Where C m is the termination index value obtained after the mth iteration, and C m >C m-1 (m>1), z represents the integrated feature vector of the spectrum image of the maltose mixture; y represents the concentration value of the mixture; F m (z ) represents the basic regression model obtained after the mth Boosting iteration, F m (z) represents the prediction result of the spectral image fusion model obtained after the m Boosting iteration; β m represents the LS-SVM basic model during the mth iteration Weight; a m represents the parameters of the LS-SVM basic model in the mth iteration process.
优选方案是:zk的预测值可表示为:The preferred solution is: the predicted value of z k can be expressed as:
其中K(z,zk)为核函数,t为迭代次数,βm表示第m次迭代过程中LS-SVM基础模型的权值;am表示第m次迭代过程中LS-SVM基础模型的参数,zk为第k个样本光谱和图像特征数据融合后的特征向量集。where K(z, z k ) is the kernel function, t is the number of iterations, β m represents the weight of the LS-SVM basic model in the mth iteration process; a m represents the weight of the LS-SVM basic model in the mth iteration process parameter, z k is the feature vector set after fusion of the kth sample spectrum and image feature data.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
1、本发明的预测精度显著优于采用单一光谱或单一图像的预测精度;1. The prediction accuracy of the present invention is significantly better than that of a single spectrum or a single image;
2、本发明采用PCA算法对光谱数据和图像数据进行单独特征提取,能够有效地去除噪声,能够较好地提取出于建模相关的特征向量,进而有效地改善多源信息融合模型的预测精度;2. The present invention uses the PCA algorithm to perform separate feature extraction on spectral data and image data, which can effectively remove noise and better extract feature vectors related to modeling, thereby effectively improving the prediction accuracy of the multi-source information fusion model ;
3、根据结构风险最小化理论提出了一种Boosting迭代终止判断指标,实现了对最小二乘支持向量机基础模型参数的自动优化。3. According to the structural risk minimization theory, a Boosting iteration termination judgment index is proposed, which realizes the automatic optimization of the basic model parameters of the least squares support vector machine.
附图说明Description of drawings
图1为麦芽糖THz吸收光谱;Fig. 1 is maltose THz absorption spectrum;
图2为麦芽糖小麦粉混合物THz吸收光谱;Fig. 2 is the THz absorption spectrum of maltose wheat flour mixture;
图3(a)为麦芽糖和聚乙烯混合物不同浓度麦芽糖混合物THz图像;Figure 3(a) is the THz image of maltose and polyethylene mixture with different concentrations of maltose mixture;
图3(b)为麦芽糖和小麦粉混合物不同浓度麦芽糖混合物THz图像;Figure 3(b) is the THz image of maltose mixture with different concentrations of maltose and wheat flour mixture;
图4为麦芽糖和聚乙烯混合物、麦芽糖和小麦粉混合物预测结果和实际结果相关性散点图。Figure 4 is a scatter diagram of the correlation between the predicted results and the actual results of the mixture of maltose and polyethylene, and the mixture of maltose and wheat flour.
具体实施方式Detailed ways
下面对本发明做进一步的详细说明,以令本领域技术人员参照聚乙烯混合物说明书文字能够据以实施。The present invention will be further described in detail below, so that those skilled in the art can implement it with reference to the description of the polyethylene mixture.
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不配出一个或多个其它元件或其组合的存在或添加。It should be understood that terms such as "having", "comprising" and "including" as used herein do not entail the presence or addition of one or more other elements or combinations thereof.
本发明提供了一种基于太赫兹光谱和图像信息融合的麦芽糖混合物定量分析方法,步骤包括:The invention provides a method for quantitative analysis of maltose mixture based on fusion of terahertz spectrum and image information, the steps comprising:
1)对麦芽糖混合物的光谱和图像样本数据进行特征提取,并将所提取的数据融合;1) Feature extraction is performed on the spectrum and image sample data of the maltose mixture, and the extracted data are fused;
2)利用光谱和图像的融合数据建模,对麦芽糖混合物定量分析。2) Using the fusion data modeling of spectra and images to quantitatively analyze the maltose mixture.
优选方案是:步骤1之前还包括获取麦芽糖混合物的光谱和图像的样本数据。The preferred solution is: before step 1, it also includes obtaining sample data of spectra and images of the maltose mixture.
优选方案是:获取麦芽糖混合物的光谱样本数据,步骤包括:The preferred scheme is: obtain the spectral sample data of the maltose mixture, the steps include:
1)采用THz-TDS系统对各个浓度麦芽糖混合物进行了测量,得出光谱;1) The THz-TDS system was used to measure the maltose mixture with various concentrations, and the spectrum was obtained;
2)采用傅里叶变换获得样品的频域光谱;2) Obtain the frequency domain spectrum of the sample by Fourier transform;
3)计算不同浓度麦芽糖混合物的吸收光谱和折射率。3) Calculate the absorption spectrum and refractive index of the maltose mixture with different concentrations.
优选方案是:将不同浓度的麦芽糖混合物薄片放置在THz-TDS系统中的移动平台上,并进行反射成像测量,获得不同浓度麦芽糖混合物的部分THz图像。The preferred solution is: place the flakes of maltose mixture with different concentrations on the mobile platform in the THz-TDS system, and perform reflection imaging measurement to obtain partial THz images of the maltose mixture with different concentrations.
优选方案是:采用PCA算法对光谱数据和图像数据进行单独特征提取。The preferred solution is to use the PCA algorithm to perform separate feature extraction on the spectral data and the image data.
优选方案是:利用Boosting-LS-SVM多源信息融合模型对麦芽糖混合物的光谱和图像特征数据进行预测的具体方法包括为:The preferred solution is: using the Boosting-LS-SVM multi-source information fusion model to predict the spectrum and image feature data of the maltose mixture, the specific methods include:
1)根据风险最小化理论确定Boosting迭代终止判断条件;1) According to the risk minimization theory, determine the conditions for judging the termination of Boosting iterations;
2)按照迭代终止判断条件对Boosting-LS-SVM多源信息融合模型迭代;2) Iterate the Boosting-LS-SVM multi-source information fusion model according to the iteration termination judgment condition;
3)采用相关系数和均方根误差来评价Boosting-LS-SVM多源信息融合模型的预测误差。3) The correlation coefficient and root mean square error are used to evaluate the prediction error of the Boosting-LS-SVM multi-source information fusion model.
优选方案是:假设有n个样本用于建立融合模型,对于第k个麦芽糖混合物,采用PCA算法样本光谱和图像数据进行特征提取,若一个麦芽糖混合物样品的THz透射光谱样本数据和反射图像样本数据分别为:The optimal solution is: assuming that there are n samples used to establish the fusion model, for the kth maltose mixture, use the PCA algorithm sample spectrum and image data for feature extraction, if the THz transmission spectrum sample data and reflection image sample data of a maltose mixture sample They are:
xk1={xk1,1,xk1,2,…,xk1,n1}和xk2={xk2,1,xk2,2,…,xk2,n2} (1) xk1 ={ xk1,1 , xk1,2 ,..., xk1,n1 } and xk2 ={ xk2,1 , xk2,2 ,..., xk2,n2 } (1)
其中,xk1和xk2分别为第k个麦芽糖混合物的THz透射光谱数据反射图像数据,经过特征提取后的特征向量集分别表示为:Among them, x k1 and x k2 are the THz transmission spectrum data reflection image data of the k-th maltose mixture respectively, and the feature vector sets after feature extraction are expressed as:
zk1={zk1,1,zk1,2,…zk1,n1}和zk2={zk2,1,zk2,2,…zk2,n2} (2)z k1 = {z k1,1 , z k1,2 , . . . z k1,n1 } and z k2 ={z k2,1 , z k2,2 , ... z k2,n2 } (2)
其中,zk1和zk2分别为第k个样本光谱数据和图像数据经过特征提取后的特征向量集,将光谱和图像的特征数据相融合,构成信息融合模型的第k个输入向量,表示为:Among them, z k1 and z k2 are the feature vector sets of the k-th sample spectral data and image data after feature extraction respectively, and the spectral and image feature data are fused to form the k-th input vector of the information fusion model, expressed as :
其中,zk为第k个样本光谱和图像特征数据融合后的特征向量集。Among them, z k is the feature vector set after fusion of the kth sample spectrum and image feature data.
优选方案是:所述迭代终止判断条件公式为:The preferred solution is: the formula of the iteration termination judgment condition is:
其中Cm为第m次迭代后得到的终止指标值,且Cm>Cm-1(m>1),z表示麦芽糖混合物光谱图像综合特征向量;y表示混合物的浓度值;Fm(z)表示第m次Boosting迭代后得到的基础回归模型,Fm(z)表示经过m次Boosting迭代后获得的光谱图像融合模型预测结果;βm表示第m次迭代过程中LS-SVM基础模型的权值;am表示第m次迭代过程中LS-SVM基础模型的参数。Where C m is the termination index value obtained after the mth iteration, and C m >C m-1 (m>1), z represents the integrated feature vector of the spectrum image of the maltose mixture; y represents the concentration value of the mixture; F m (z ) represents the basic regression model obtained after the mth Boosting iteration, F m (z) represents the prediction result of the spectral image fusion model obtained after the m Boosting iteration; β m represents the LS-SVM basic model during the mth iteration Weight; a m represents the parameters of the LS-SVM basic model in the mth iteration process.
优选方案是:zk的预测值可表示为:The preferred solution is: the predicted value of z k can be expressed as:
其中K(z,zk)为核函数,t为迭代次数,βm表示第m次迭代过程中LS-SVM基础模型的权值;am表示第m次迭代过程中LS-SVM基础模型的参数,zk为第k个样本光谱和图像特征数据融合后的特征向量集。where K(z, z k ) is the kernel function, t is the number of iterations, β m represents the weight of the LS-SVM basic model in the mth iteration process; a m represents the weight of the LS-SVM basic model in the mth iteration process parameter, z k is the feature vector set after fusion of the kth sample spectrum and image feature data.
1、麦芽糖混合物THz光谱特征1. THz spectral characteristics of maltose mixture
采用THz-TDS系统对各个浓度麦芽糖混合物进行了测量,对每个混合物样品均测量三次,计算其平均光谱,并在测量每两个浓度样品混合物之间先测量一个参考信息,接着采用傅里叶变换获得样品的频域光谱,最后计算不同浓度麦芽糖混合物的吸收光谱和折射率,图1给出了部分麦芽糖与聚乙烯混合物的吸收光谱,图2给出了部分麦芽糖与小麦粉混合物的吸收光谱。The THz-TDS system was used to measure the maltose mixtures of various concentrations, each mixture sample was measured three times, the average spectrum was calculated, and a reference information was measured between the measurement of each two concentration sample mixtures, and then Fourier Transform the frequency domain spectrum of the obtained sample, and finally calculate the absorption spectrum and refractive index of the mixture of maltose with different concentrations. Figure 1 shows the absorption spectrum of part of the mixture of maltose and polyethylene, and Figure 2 shows the absorption spectrum of part of the mixture of maltose and wheat flour.
2、麦芽糖混合物THz图像特征2. THz image characteristics of maltose mixture
将不同浓度的麦芽糖混合物薄片放置在THz-TDS系统中的移动平台上,并进行反射成像测量。获得不同浓度麦芽糖和聚乙烯混合物的部分THz图像(于1.0THz处)如图3(a)所示,不同浓度麦芽糖和小麦粉混合物的部分THz图像(于1.0THz处)如图3(b)所示,图中0%表示纯聚乙烯或小麦粉末。由图可得,随着麦芽糖含量的增加,THz图像之间的发生了明显的变化,说明采用THz成像技术实现对麦芽糖成分的定量检测是现实可行的。Thin slices of maltose mixture with different concentrations were placed on the moving platform in the THz-TDS system, and reflectance imaging measurements were performed. Partial THz images (at 1.0THz) of different concentrations of maltose and polyethylene mixtures are shown in Figure 3(a), and partial THz images (at 1.0THz) of different concentrations of maltose and wheat flour mixtures are shown in Figure 3(b) 0% in the figure represents pure polyethylene or wheat powder. It can be seen from the figure that with the increase of maltose content, the THz images have obvious changes, which shows that it is feasible to use THz imaging technology to realize the quantitative detection of maltose components.
3、基于太赫兹光谱和图像信息融合技术的小麦麦芽糖定量分析建模3. Wheat maltose quantitative analysis and modeling based on terahertz spectrum and image information fusion technology
(1)对麦芽糖混合物的光谱和图像样本数据进行特征提取。(1) Perform feature extraction on the spectrum and image sample data of the maltose mixture.
假设有n个样本用于建立融合模型,对于第k个麦芽糖混合物,采用PCA算法样本光谱和图像数据进行特征提取,若一个麦芽糖混合物样品的THz透射光谱样本数据和反射图像样本数据分别为:Assuming that there are n samples used to establish the fusion model, for the kth maltose mixture, the PCA algorithm is used to extract the sample spectrum and image data. If the THz transmission spectrum sample data and reflection image sample data of a maltose mixture sample are respectively:
xk1={xk1,1,xk1,2,…,xk1,n1}和xk2={xk2,1,xk2,2,…,xk2,n2} (1) xk1 ={ xk1,1 , xk1,2 ,..., xk1,n1 } and xk2 ={ xk2,1 , xk2,2 ,..., xk2,n2 } (1)
其中,xk1和xk2分别为第k个麦芽糖混合物的THz透射光谱数据反射图像数据,经过特征提取后的特征向量集分别表示为:Among them, x k1 and x k2 are the THz transmission spectrum data reflection image data of the k-th maltose mixture respectively, and the feature vector sets after feature extraction are expressed as:
zk1={zk1,1,zk1,2,…zk1,n1}和zk2={zk2,1,zk2,2,…zk2,n2} (2)z k1 = {z k1,1 , z k1,2 , . . . z k1,n1 } and z k2 ={z k2,1 , z k2,2 , ... z k2,n2 } (2)
其中,zk1和zk2分别为第k个样本光谱数据和图像数据经过特征提取后的特征向量集,将光谱和图像的特征数据相融合,构成信息融合模型的第k个输入向量,表示为:Among them, z k1 and z k2 are the feature vector sets of the k-th sample spectral data and image data after feature extraction respectively, and the spectral and image feature data are fused to form the k-th input vector of the information fusion model, expressed as :
其中,zk为第k个样本光谱和图像特征数据融合后的特征向量集。Among them, z k is the feature vector set after fusion of the kth sample spectrum and image feature data.
(2)利用Boosting-LS-SVM多源信息融合模型对麦芽糖混合的光谱和图像特征数据进行预测。(2) Using the Boosting-LS-SVM multi-source information fusion model to predict the spectral and image feature data of maltose mixture.
根据迭代终止判断条件公式:According to the iteration termination judgment condition formula:
其中Cm为第m次迭代后得到的终止指标值,且Cm>Cm-1(m>1),z表示麦芽糖混合物光谱图像综合特征向量;y表示混合物的浓度值;Fm(z)表示第m次Boosting迭代后得到的基础回归模型,Fm(z)表示经过m次Boosting迭代后获得的光谱图像融合模型预测结果;βm表示第m次迭代过程中LS-SVM基础模型的权值;am表示第m次迭代过程中LS-SVM基础模型的参数。计算得到的Boosting-LS-SVM融合模型的最佳迭代次数为t次,前t次迭代中LS-SVM基础模型的权值分别为:β1,β2,…βn,基础模型的参数分别为:a1,a2,…at和a1,b2,…bt,则获得的组合模型对zk的预测值可表示为:Where C m is the termination index value obtained after the mth iteration, and C m >C m-1 (m>1), z represents the integrated feature vector of the spectrum image of the maltose mixture; y represents the concentration value of the mixture; F m (z ) represents the basic regression model obtained after the mth Boosting iteration, F m (z) represents the prediction result of the spectral image fusion model obtained after the m Boosting iteration; β m represents the LS-SVM basic model during the mth iteration Weight; a m represents the parameters of the LS-SVM basic model in the mth iteration process. The optimal number of iterations of the calculated Boosting-LS-SVM fusion model is t times. The weights of the LS-SVM basic model in the first t iterations are: β 1 , β 2 , ... β n , and the parameters of the basic model are respectively is: a 1 , a 2 ,...a t and a 1 , b 2 ,...b t , then the predicted value of the combined model for z k can be expressed as:
其中K(z,zk)为核函数。Among them, K(z, z k ) is the kernel function.
为了防止光谱和图像数据信息量不均衡而对信息融合模型预测精度的影响,本方法首先采用PCA算法分别对THz光谱数据样本和图像数据样本进行特征提取,控制每种数据样本的特征信号的数量,选取THz光谱数据中的前4个主成分和图像数据中的前5个主成分作为LS-SVM模型的输入,再对特征数据利用Boosting-LS-SVM算法进行信息融合建模。同时LS-SVM算法采用径向基核函数(RBF)和网格搜索算法来评价光谱图像组合模型的泛化性能。Boosting-LS-SVM算法中首先需要根据经验值设置基础模型LS-SVM的两个参数C,γ,然后按照上述提到的迭代终止判断条件对LS-SVM基础模型进行Boosting迭代,最后采用相关系数R和均方根误差RMSE来评价模型的预测误差,其计算公式如下:In order to prevent the impact on the prediction accuracy of the information fusion model due to the unbalanced amount of spectral and image data information, this method first uses the PCA algorithm to extract the features of the THz spectral data samples and image data samples respectively, and controls the number of characteristic signals of each data sample , select the first 4 principal components in the THz spectral data and the first 5 principal components in the image data as the input of the LS-SVM model, and then use the Boosting-LS-SVM algorithm to carry out information fusion modeling on the feature data. At the same time, LS-SVM algorithm uses radial basis function (RBF) and grid search algorithm to evaluate the generalization performance of spectral image combination model. In the Boosting-LS-SVM algorithm, it is first necessary to set the two parameters C and γ of the basic model LS-SVM according to the empirical values, and then perform Boosting iterations on the LS-SVM basic model according to the above-mentioned iteration termination judgment conditions, and finally use the correlation coefficient R and the root mean square error RMSE are used to evaluate the prediction error of the model, and the calculation formula is as follows:
其中,表示麦芽糖含量的标准测量值,表示Boosting-LS-SVM融合模型预测值。RMSE值越小,表示融合模型的预测精度越高。in, Indicates the standard measurement of maltose content, Indicates the predicted value of the Boosting-LS-SVM fusion model. The smaller the RMSE value, the higher the prediction accuracy of the fusion model.
则Boosting-LS-SVM算法中经过m次Boosting迭代后的迭代终止判断指标值Cm可以表示为:Then the iteration termination judgment index value Cm after m Boosting iterations in the Boosting-LS-SVM algorithm can be expressed as:
其中Fm(z)表示经过m次Boosting迭代后获得的光谱图像融合模型预测结果;βm表示第m次迭代过程中LS-SVM基础模型的权值;am表示第m次迭代过程中LS-SVM基础模型的参数。Among them, F m (z) represents the prediction result of the spectral image fusion model obtained after m iterations of Boosting; β m represents the weight of the LS-SVM basic model in the m iteration process; a m represents the LS - Parameters of the underlying model of the SVM.
(3)建立基于Boosting集成方法的小麦麦芽糖定量分析融合模型(3) Establishment of fusion model for quantitative analysis of wheat maltose based on Boosting integration method
在相应最优特征数据组合下,分别采用单一THz光谱特征数据、单一THz图像特征数据及THz光谱特征数据和图像特征数据相结合进行了Boosting-LS-SVM建模,表1列出了麦芽糖聚乙烯混合物和麦芽糖小麦粉混合物的三种Boosting-LS-SVM融合模型最佳预测结果及相应的参数。Under the corresponding optimal feature data combination, the Boosting-LS-SVM modeling was carried out by using single THz spectral feature data, single THz image feature data, and the combination of THz spectral feature data and image feature data. Table 1 lists the The best prediction results and corresponding parameters of three Boosting-LS-SVM fusion models for ethylene mixture and maltose wheat flour mixture.
由表1可以看出采用THz光谱特征数据和图像特征数据构建的Boosting-LS-SVM模型的预测精度要显著优于采用单一光谱数据和单一图像数据特征提取后构建的Boosting-LS-SVM模型的最优预测结果。结果证明本文提出的PCA+Boosting-LS-SVM信息融合模型能够有效地去除噪声,能够较好地提取出与建模相关的特征向量,进而有效地改善多源信息融合模型的预测精度。It can be seen from Table 1 that the prediction accuracy of the Boosting-LS-SVM model constructed with THz spectral feature data and image feature data is significantly better than that of the Boosting-LS-SVM model constructed with single spectral data and single image data feature extraction. best prediction result. The results prove that the PCA+Boosting-LS-SVM information fusion model proposed in this paper can effectively remove noise, and can better extract the feature vectors related to modeling, thereby effectively improving the prediction accuracy of the multi-source information fusion model.
表1 麦芽糖混合物的Boosting-LS-SVM模型预测结果及相应参数Table 1 The prediction results and corresponding parameters of the Boosting-LS-SVM model for the maltose mixture
如图4所示,麦芽糖和聚乙烯混合物、麦芽糖和小麦粉混合物,采用PCA方法对光谱数据和图像数据进行单独特征提取后,再用融合特征数据构建的Boosting-LS-SVM信息融合模型的预测结果和实际结果相关性散点图。由图可以看出,本文采用的PCA+Boosting-LS-SVM多源信息融合模型对麦芽糖混合物的预测值能够较好的逼近实际测量值,二者的线性相关度较高,说明本文提出的方法能够显著改进麦芽糖混合物中麦芽糖含量的预测精度,是一种有效地麦芽糖定量检测方法,为粮食芽变早期检测奠定了重要的理论和技术基础,具有重大的应用推广价值。As shown in Figure 4, the mixture of maltose and polyethylene, and the mixture of maltose and wheat flour, after separate feature extraction of spectral data and image data by PCA method, the prediction results of the Boosting-LS-SVM information fusion model constructed by fusion feature data Scatter plot of correlation with actual results. It can be seen from the figure that the PCA+Boosting-LS-SVM multi-source information fusion model adopted in this paper can better approach the actual measured value for the predicted value of the maltose mixture, and the linear correlation between the two is high, which shows that the method proposed in this paper It can significantly improve the prediction accuracy of maltose content in the maltose mixture, is an effective quantitative detection method of maltose, lays an important theoretical and technical basis for the early detection of grain germination, and has great application and promotion value.
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节。Although the embodiment of the present invention has been disclosed as above, it is not limited to the use listed in the specification and implementation, it can be applied to various fields suitable for the present invention, and it can be easily understood by those skilled in the art Therefore, the invention is not limited to the specific details without departing from the general concept defined by the claims and their equivalents.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711377485.6A CN108169165B (en) | 2017-12-19 | 2017-12-19 | Maltose mixture quantitative analysis method based on terahertz spectrum and image information fusion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711377485.6A CN108169165B (en) | 2017-12-19 | 2017-12-19 | Maltose mixture quantitative analysis method based on terahertz spectrum and image information fusion |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108169165A true CN108169165A (en) | 2018-06-15 |
CN108169165B CN108169165B (en) | 2020-10-23 |
Family
ID=62522527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711377485.6A Active CN108169165B (en) | 2017-12-19 | 2017-12-19 | Maltose mixture quantitative analysis method based on terahertz spectrum and image information fusion |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108169165B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109507187A (en) * | 2018-11-23 | 2019-03-22 | 哈尔滨工业大学(威海) | A method and device for diagnosing defects in laser additive manufacturing |
CN110108649A (en) * | 2019-05-06 | 2019-08-09 | 北京工商大学 | The fast non-destructive detection method of oil crops quality based on terahertz light spectral technology |
CN110728325A (en) * | 2019-10-12 | 2020-01-24 | 太原科技大学 | Variable Voltage DR Image Fusion Method Based on Support Transform |
CN113252598A (en) * | 2021-05-19 | 2021-08-13 | 中国电子科技集团公司第四十一研究所 | Full-electronics terahertz near-field spectrum comprehensive test device and method |
CN113607678A (en) * | 2021-07-29 | 2021-11-05 | 河南工业大学 | Terahertz technology-based quantitative analysis method for glucose and wheat mixture |
CN114088656A (en) * | 2020-07-31 | 2022-02-25 | 中国科学院上海高等研究院 | Terahertz spectral substance identification method and system, storage medium and terminal |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590211A (en) * | 2011-01-11 | 2012-07-18 | 郑州大学 | Method for utilizing spectral and image characteristics to grade tobacco leaves |
CN106124435A (en) * | 2016-07-04 | 2016-11-16 | 江苏大学 | Based on visible ray, near-infrared, the rice new-old quality inspection device of Terahertz fusion spectral technique and detection method |
-
2017
- 2017-12-19 CN CN201711377485.6A patent/CN108169165B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590211A (en) * | 2011-01-11 | 2012-07-18 | 郑州大学 | Method for utilizing spectral and image characteristics to grade tobacco leaves |
CN106124435A (en) * | 2016-07-04 | 2016-11-16 | 江苏大学 | Based on visible ray, near-infrared, the rice new-old quality inspection device of Terahertz fusion spectral technique and detection method |
Non-Patent Citations (1)
Title |
---|
YUYING JIANG 等: "Early detection of germinated wheat grains using terahertz image and chemometrics", 《SCIENTIFIC REPORTS》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109507187A (en) * | 2018-11-23 | 2019-03-22 | 哈尔滨工业大学(威海) | A method and device for diagnosing defects in laser additive manufacturing |
CN110108649A (en) * | 2019-05-06 | 2019-08-09 | 北京工商大学 | The fast non-destructive detection method of oil crops quality based on terahertz light spectral technology |
CN110728325A (en) * | 2019-10-12 | 2020-01-24 | 太原科技大学 | Variable Voltage DR Image Fusion Method Based on Support Transform |
CN114088656A (en) * | 2020-07-31 | 2022-02-25 | 中国科学院上海高等研究院 | Terahertz spectral substance identification method and system, storage medium and terminal |
CN113252598A (en) * | 2021-05-19 | 2021-08-13 | 中国电子科技集团公司第四十一研究所 | Full-electronics terahertz near-field spectrum comprehensive test device and method |
CN113607678A (en) * | 2021-07-29 | 2021-11-05 | 河南工业大学 | Terahertz technology-based quantitative analysis method for glucose and wheat mixture |
Also Published As
Publication number | Publication date |
---|---|
CN108169165B (en) | 2020-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108169165B (en) | Maltose mixture quantitative analysis method based on terahertz spectrum and image information fusion | |
CN104949936B (en) | Sample component assay method based on optimization Partial Least-Squares Regression Model | |
CN103854305B (en) | A kind of Model Transfer method based on multi-scale Modeling | |
CN108680515B (en) | Single-grain rice amylose quantitative analysis model construction and detection method thereof | |
CN107247033B (en) | The method of identifying the maturity of Huanghua pear based on the fast decay elimination algorithm and PLSDA | |
CN107958267B (en) | A Prediction Method of Oil Properties Based on Spectral Linear Representation | |
CN105092519B (en) | Sample component assay method based on increment PLS | |
CN106918567B (en) | A kind of method and apparatus measuring trace metal ion concentration | |
CN103226093A (en) | Calibration curve creation method, calibration curve creation device and target component determination device | |
CN108535250A (en) | ' Fuji ' ripe apples degree lossless detection method based on Streif indexes | |
CN104255118B (en) | Rapid lossless testing method based on near infrared spectroscopy technology for paddy rice seed germination percentage | |
CN103398971A (en) | Chemometrics method for determining cetane number of diesel oil | |
CN102128805A (en) | Method and device for near infrared spectrum wavelength selection and quick quantitative analysis of fruit | |
CN104502306B (en) | Near-infrared spectrum wavelength system of selection based on variable importance | |
CN115855860A (en) | Method for predicting moisture content in tea drying process and processing terminal | |
CN105866043A (en) | Method for detecting apple sour through hyperspectral technology | |
CN115326746A (en) | An evaluation model construction method for near-infrared spectrometer measurement spectral prediction | |
CN106770054A (en) | Black earth water content fast determining method based on spectral absorption characteristics | |
CN107036999A (en) | A kind of five yuan of ready-mixed oil quantitative analysis methods based near infrared spectrum and Chemical Measurement | |
CN107796779A (en) | The near infrared spectrum diagnostic method of rubber tree LTN content | |
CN114002162A (en) | Soil organic carbon content estimation methods, equipment, storage media and program products | |
CN106442397A (en) | Rice near infrared spectrum model optimizing method based on spectrum proportional deduction | |
CN106529680A (en) | Multiscale extreme learning machine integrated modeling method based on empirical mode decomposition | |
CN106124417A (en) | A kind of method of the aftertaste utilizing hyperspectral technique detection Fructus Mali pumilae astringent taste | |
CN106124450A (en) | The assay method of awns platymiscium dry matter weight of leaf |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |