CN108165577A - Turn the photosynthetic key genes of C4 and improve the photosynthetic method of C3 plant - Google Patents

Turn the photosynthetic key genes of C4 and improve the photosynthetic method of C3 plant Download PDF

Info

Publication number
CN108165577A
CN108165577A CN201810025625.1A CN201810025625A CN108165577A CN 108165577 A CN108165577 A CN 108165577A CN 201810025625 A CN201810025625 A CN 201810025625A CN 108165577 A CN108165577 A CN 108165577A
Authority
CN
China
Prior art keywords
leu
ala
val
gly
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810025625.1A
Other languages
Chinese (zh)
Inventor
路铁刚
张治国
崔学安
吴金霞
孙学辉
谷晓峰
保罗·奎克 威廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biotechnology Research Institute of CAAS
Original Assignee
Biotechnology Research Institute of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotechnology Research Institute of CAAS filed Critical Biotechnology Research Institute of CAAS
Priority to CN201810025625.1A priority Critical patent/CN108165577A/en
Publication of CN108165577A publication Critical patent/CN108165577A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8269Photosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation

Abstract

Turn the photosynthetic key genes of C4 the invention discloses one kind and improve the photosynthetic method of C3 plant.The present invention provides a kind of enhancing photosynthesis of plant and/or plant products and/or the method for improving phytomass are improved, including:Using different startup substrategies, 5 photosynthetic key genes of C4 are imported into recipient plant, obtain genetically modified plants;Compared with the recipient plant, photosynthesis enhancing and/or output increased and/or biomass improve the genetically modified plants.It is successfully formulated using the method for the present invention and provides the material that photosynthetic efficiency significantly improves, big spoke improves the Biomass and yield of plant, and without subsidiary other unfavorable characters.The present invention is worth for cultivating C4 rice materials with great production application.

Description

Turn the photosynthetic key genes of C4 and improve the photosynthetic method of C3 plant
Technical field
The invention belongs to photosynthesis of plant technical field of improvement, are related to one kind and turn the photosynthetic key gene raising C3 plants of C4 Photosynthetic method, more particularly to using polygenes conversion system, transformation obtains a carrier containing 5 photosynthesis genes, profit These genes are driven with different promoters, initiative can significantly improve the method for the rice material of photosynthetic efficiency.
Background technology
With industrialization, the development of urbanization and the increase of population, China's grain demand will be in that rigidity increases, and plough Reduction, shortage of water resources, climate change etc. become increasingly conspicuous to the constraint of grain-production, and China's grain supply and demand will be chronically at " tight Balance " state, Ensuring Food Safety face a severe challenge.The Plant-type Breeding and heterosis utilization of crops are China's grain The raising of crop yield ensures that the fast development of national economy is made that tremendous contribution, but grain yield further improves difficulty It spends increasing.In current Ensuring Food Safety as under the background of China's long-term national policy, how realizing cereal crops yield water Flat lasting promotion is a difficult problem to lie across in Chinese society economy, agricultural science and technology forward march.Crop harvest index is One of leading indicator of crop yield is weighed, the harvest index of rice, wheat is all close to 0.5 at present, it means that both works The grain yield of object accounts for nearly the 50% of all biological amount, and the large span raising for realizing grain yield by traditional breeding method can not Energy.
Fortunately, there are other plants (C4 plants, such as corn, sorghum and sugarcane), they photosynthetic in the world Efficiency is higher by 50% than C3 plant.Using the means of transgenosis, theoretically conversion can significantly increase C4 photosynthesis.
Although the overexpression research of the enzyme and transport protein of C4 approach in C3 plant has made great progress, in C3 plant The technology of the specific region high level expression C4 path enzymes of blade is also very ripe, due to photosynthetical system be a complexity, the division of labor it is bright Thin system, the photosynthetic efficiency of C3 plant can not be significantly improved by turning individual gene.Some research shows that, high level expression C4 Gene pairs C3 plant photosynthetic efficiency improves and the effect of physiological character improvement is limited, sometimes even unfavorable.The surveys such as Agarie The transgenic paddy rice strain of 50 times higher than control of PEPC activity is determined, the result is that its photosynthetic rate slightly below compares.The hairs such as Ku Now partly turn PEPC rice plants and show undesirable economical character, such as plant height is downgraded, blade narrows, infertility.And attempt by PEPC, NADP-ME, PPDK, NADP-MDH are all transferred in rice, to form the experiment of a complete C4 cycle also with mistake Lose and come to an end, this turn polygenes rice equally show growth it is suppressed, illustrate to be established in vivo is an invalid cycle, to C4 Distinctive CO2Concentrating mechanism is not contributed.
Invention content
In view of the deficiencies of the prior art, present invention employs different startup substrategies, and 5 photosynthetic key genes of C4 are led Enter rice.
First, it is claimed it is a kind of enhancing photosynthesis of plant and/or improve plant products and/or improve plant The method of biomass.
Enhancing photosynthesis of plant and/or raising plant products and/or raising phytomass provided by the present invention Method (or the genetically modified plants method improved to cultivate photosynthesis enhancing and/or output increased and/or biomass), tool Body may include following steps:5 photosynthetic key genes of C4 are imported into recipient plant, obtain genetically modified plants;The transgenosis Compared with the recipient plant, photosynthesis enhancing and/or output increased and/or biomass improve plant.
Wherein, the photosynthetic key genes of 5 C4 are encoding gene, the PEP of phosphopyruvic acid bidifly enzyme (ZmPPDK1) The encoding gene of carboxylase (ZmPEPC1), the encoding gene of malic dehydrogenase (ZmMDH6), NADP- malate dehydrogenases (ZmME2) encoding gene and the encoding gene of carbonic anhydrase (ZmCA1).
In the genetically modified plants, the encoding gene of the phosphopyruvic acid bidifly enzyme (ZmPPDK1) is by the phosphoric acid The endogenesis promoter driving transcription of the encoding gene of pyruvic acid bidifly enzyme (ZmPPDK1);The PEP carboxylases (ZmPEPC1) Encoding gene by the PEP carboxylases (ZmPEPC1) encoding gene endogenesis promoter drive transcription;The malic acid The encoding gene of dehydrogenase (ZmMDH6) is driven by 35CaMVS promoters and transcribed;The NADP- malate dehydrogenases (ZmME2) Encoding gene is driven by Ubiqutin promoters and transcribed;The encoding gene of the carbonic anhydrase (ZmCA1) is started by OsActin Son driving transcription.
Wherein, the photosynthetic key genes of 5 C4 are imported in the recipient plant by the form of recombinant vector.Institute Recombinant vector is stated as hereafter any recombinant vector.
In the above-mentioned methods, the recombinant vector is imported into the recipient plant concretely:By using Ti-plasmids, Ri The conventional biology methods such as plasmid, plant viral vector, directly delivered DNA, microinjection, conductance, agriculture bacillus mediated convert Plant cell or tissue, and the plant tissue of conversion is cultivated into plant.
Second, a kind of claimed recombinant vector or the recombinant bacterium containing the recombinant vector.
The recombinant vector is the ring containing DNA fragmentation 1, DNA fragmentation 2, DNA fragmentation 3, DNA fragmentation 4 and DNA fragmentation 5 Form quality grain.
The DNA fragmentation 1 is from above swimming over to the downstream encoding gene containing phosphopyruvic acid bidifly enzyme (ZmPPDK1) successively The encoding gene of endogenesis promoter, phosphopyruvic acid bidifly enzyme (ZmPPDK1).The DNA fragmentation 2 is from above swimming over to downstream successively The endogenesis promoter of encoding gene containing PEP carboxylases (ZmPEPC1), the encoding gene of PEP carboxylases (ZmPEPC1).Institute State DNA fragmentation 3 from above swim over to downstream successively containing 35CaMVS promoters, malic dehydrogenase (ZmMDH6) encoding gene. The DNA fragmentation 4 from above swim over to downstream successively containing Ubiqutin promoters, NADP-malate dehydrogenase (ZmME2) coding base Cause.The DNA fragmentation 5 from above swim over to downstream successively containing OsActin promoters, carbonic anhydrase (ZmCA1) encoding gene.
Further, the recombinant vector is by the DNA fragmentation 1, DNA fragmentation 2, the DNA fragmentation 3, described DNA fragmentation 4 and the DNA fragmentation 5 are inserted into restriction enzyme site the Hind III and Sma of pCambia1300 carriers after being sequentially connected with The recombinant plasmid obtained after between I.
Previously described phosphopyruvic acid bidifly enzyme (ZmPPDK1) can be following any shown protein:
(A1) amino acid sequence is the protein of SEQ ID No.11;
(A2) by the amino acid sequence shown in SEQ ID No.11 by one or several amino acid residues substitution and/or Lack and or add and have the protein of identical function;
(A3) with (A1)-(A2) in any limited amino acid sequence have more than 99%, more than 95%, 90% with Above, more than 85% or more than 80% homology and the protein with identical function;
(A4) N-terminal of any limited protein and/or C-terminal connect the fusion obtained after label in (A1)-(A3) Albumen.
Previously described PEP carboxylases (ZmPEPC1) can be following any shown protein:
(B1) amino acid sequence is the protein of SEQ ID No.12;
(B2) by the amino acid sequence shown in SEQ ID No.12 by one or several amino acid residues substitution and/or Lack and or add and have the protein of identical function;
(B3) with (B1)-(B2) in any limited amino acid sequence have more than 99%, more than 95%, 90% with Above, more than 85% or more than 80% homology and the protein with identical function;
(B4) N-terminal of any limited protein and/or C-terminal connect the fusion obtained after label in (B1)-(B3) Albumen.
Previously described malic dehydrogenase (ZmMDH6) can be following any shown protein:
(C1) amino acid sequence is the protein of SEQ ID No.13;
(C2) by the amino acid sequence shown in SEQ ID No.13 by one or several amino acid residues substitution and/or Lack and or add and have the protein of identical function;
(C3) with (C1)-(C2) in any limited amino acid sequence have more than 99%, more than 95%, 90% with Above, more than 85% or more than 80% homology and the protein with identical function;
(C4) N-terminal of any limited protein and/or C-terminal connect the fusion obtained after label in (C1)-(C3) Albumen.
Previously described NADP- malate dehydrogenases (ZmME2) can be following any shown protein:
(D1) amino acid sequence is the protein of SEQ ID No.14;
(D2) by the amino acid sequence shown in SEQ ID No.14 by one or several amino acid residues substitution and/or Lack and or add and have the protein of identical function;
(D3) with (D1)-(D2) in any limited amino acid sequence have more than 99%, more than 95%, 90% with Above, more than 85% or more than 80% homology and the protein with identical function;
(D4) N-terminal of any limited protein and/or C-terminal connect the fusion obtained after label in (D1)-(D3) Albumen.
Previously described carbonic anhydrase (ZmCA1) can be following any shown protein:
(E1) amino acid sequence is the protein of SEQ ID No.15;
(E2) by the amino acid sequence shown in SEQ ID No.15 by one or several amino acid residues substitution and/or Lack and or add and have the protein of identical function;
(E3) with (E1)-(E2) in any limited amino acid sequence have more than 99%, more than 95%, 90% with Above, more than 85% or more than 80% homology and the protein with identical function;
(E4) N-terminal of any limited protein and/or C-terminal connect the fusion obtained after label in (E1)-(E3) Albumen.
The encoding gene of previously described phosphopyruvic acid bidifly enzyme (ZmPPDK1) can be following any the DNA points Son:
(a1) DNA molecular shown in SEQ ID No.2;
(a2) hybridize under strict conditions with (a1) DNA molecular limited and encode the phosphopyruvic acid bidifly enzyme (ZmPPDK1) DNA molecular;
(a3) with (a1)-(a2) in any restriction DNA sequence dna have more than 99%, more than 95%, more than 90%, More than 85% or more than 80% homology and the DNA molecular of the coding phosphopyruvic acid bidifly enzyme (ZmPPDK1).
The encoding gene of previously described PEP carboxylases (ZmPEPC1) can be following any DNA molecular:
(b1) DNA molecular shown in SEQ ID No.4;
(b2) hybridize under strict conditions with (b1) DNA molecular limited and encode the PEP carboxylases (ZmPEPC1) DNA molecular;
(b3) with (b1)-(b2) in any restriction DNA sequence dna have more than 99%, more than 95%, more than 90%, More than 85% or more than 80% homology and the DNA molecular of the coding PEP carboxylases (ZmPEPC1).
The encoding gene of previously described malic dehydrogenase (ZmMDH6) can be following any DNA molecular:
(c1) DNA molecular shown in SEQ ID No.6;
(c2) hybridize under strict conditions with (c1) DNA molecular limited and encode the malic dehydrogenase (ZmMDH6) DNA molecular;
(c3) with (c1)-(c2) in any restriction DNA sequence dna have more than 99%, more than 95%, more than 90%, More than 85% or more than 80% homology and the DNA molecular of the coding malic dehydrogenase (ZmMDH6).
The encoding gene of previously described NADP- malate dehydrogenases (ZmME2) can be following any DNA molecular:
(d1) DNA molecular shown in SEQ ID No.8;
(d2) hybridize under strict conditions with (d1) DNA molecular limited and encode the NADP- malate dehydrogenases (ZmME2) DNA molecular;
(d3) with (d1)-(d2) in any restriction DNA sequence dna have more than 99%, more than 95%, more than 90%, More than 85% or more than 80% homology and the DNA molecular of the coding NADP- malate dehydrogenases (ZmME2).
The encoding gene of previously described carbonic anhydrase (ZmCA1) can be following any DNA molecular:
(e1) DNA molecular shown in SEQ ID No.10;
(e2) hybridize under strict conditions with (e1) DNA molecular limited and encode the carbonic anhydrase (ZmCA1) DNA molecular;
(e3) with (e1)-(e2) in any restriction DNA sequence dna have more than 99%, more than 95%, more than 90%, More than 85% or more than 80% homology and the DNA molecular of the coding carbonic anhydrase (ZmCA1).
Above-mentioned stringent condition can be with 6 × SSC, and the solution of 0.5%SDS hybridizes at 65 DEG C, then with 2 × SSC, It is primary that 0.1%SDS and 1 × SSC, 0.1%SDS respectively wash film.
The nucleotide sequence of the endogenesis promoter of the encoding gene of previously described phosphopyruvic acid bidifly enzyme (ZmPPDK1) As shown in SEQ ID No.1.The nucleotide of the endogenesis promoter of the encoding gene of previously described PEP carboxylases (ZmPEPC1) Sequence is as shown in SEQ ID No.3.The nucleotide sequence of previously described 35CaMVS promoters is as shown in SEQ ID No.5. The nucleotide sequence of previously described Ubiqutin promoters is as shown in SEQ ID No.7.Previously described OsActin promoters Nucleotide sequence as shown in SEQ ID No.9.
Further, the nucleotides sequence of the DNA fragmentation 1 is classified as SEQ ID No.1 and SEQ ID No.2 is directly suitable The sequence obtained after secondary connection.The nucleotides sequence of the DNA fragmentation 2 is classified as SEQ ID No.3 and SEQ ID No.4 is direct The sequence obtained after being sequentially connected with.The nucleotides sequence of the DNA fragmentation 3 is classified as SEQ ID No.5 and SEQ ID No.6 is straight Connect the sequence obtained after being sequentially connected with.The nucleotides sequence of the DNA fragmentation 4 is classified as SEQ ID No.7 and SEQ ID No.8 The sequence obtained after being directly sequentially connected with.The nucleotides sequence of the DNA fragmentation 5 is classified as SEQ ID No.9 and SEQ ID The sequence that No.10 is obtained after being directly sequentially connected with.
In one embodiment of the invention, the recombinant vector is specially by 10 sequences shown in SEQ ID No.1-10 Row be directly sequentially connected with after be inserted into pCambia1300 carriers " GGCCAGTGCCAAGCTT " and The recombinant plasmid obtained after at " CCCGGGCTGCAAGTTCAA ".
Third, the claimed recombinant vector or recombinant bacterium are in enhancing photosynthesis of plant and/or improve plant Application in produce amount and/or raising phytomass.
In the present invention, the plant is C3 plant.Specifically, the C3 plant can be rice;More specifically, such as water Rice varieties Nipponbare (Oryza sativa L.ssp.Japonica).
In the present invention, the enhancing photosynthesis of plant (or photosynthesis enhancing) can specifically be presented as that raising is planted Object photosynthetic rate.The raising plant products (or described output increased), which can specifically be presented as, improves vegetable seeds mass of 1000 kernel.
The present invention using different promoters drive 5 photosynthetic pathway key protein encoding gene, 5 gene sources in Corn (Zea mays.L), respectively phosphopyruvic acid bidifly enzyme (ZmPPDK1), PEP carboxylases (ZmPEPC1), malic acid take off Hydrogen enzyme (ZmMDH6), NADP- malate dehydrogenases (ZmME2), carbonic anhydrase (ZmCA1).Different promoters be respectively 35CaMV S, Ubiqutin, OsActin, ZmPPDK1 promoter, ZmPEPC1 promoters.This multigene carrier is named as MGTV (Multi-gene-transformation-vector) carrier.By in MGTV vector introduction C3 plant rice, initiative has been provided The material that photosynthetic efficiency significantly improves, big spoke improve the biomass of plant, and without subsidiary other unfavorable characters.The present invention is right It is worth in cultivating C4 rice materials with great production application.
Description of the drawings
Fig. 1 is the structure flow chart of MGTV carriers.
Fig. 2 is unloaded control and turns the T1 of polygenes positive strain for plant phenotype.PCambia1300 is planted for unloaded control Strain;MGTV-OV4 is turns polygenes positive strain OV4.
Specific embodiment
Experimental method used in following embodiments is conventional method unless otherwise specified.
The materials, reagents and the like used in the following examples is commercially available unless otherwise specified.
Quantitative test in following embodiments, is respectively provided with three repeated experiments, and results are averaged.
Rice varieties Nipponbare (Oryza sativa L.ssp.Japonica), also known as wild type, are represented with WT:China Paddy rice cross breeding breeding center (China, Changsha).PCambia1300 carriers, pCambia1302 carriers, pCambia1390 carriers: PCAMBIA companies.Agrobacterium AGL1:Chinese plasmid vector strain cell pnca gene collection.
Embodiment 1, the acquisition of MGTV vector constructions and transgenic paddy rice and Function Identification
First, the clone of 5 photosynthetic elements and multigene carrier structure
C4 plant Zea mays have higher photosynthetic efficiency, biological yield etc. than C3 plant rice, and main cause is that C4 plants Object has the photosynthetic cycle approach of C4, and the present invention has cloned these photosynthetic pathway key genes from corn:Phosphopyruvic acid bidifly Enzyme (ZmPPDK1), PEP carboxylases (ZmPEPC1), malic dehydrogenase (ZmMDH6), NADP- malate dehydrogenases (ZmME2), Carbonic anhydrase (ZmCA1).It is driven using different promoters, wherein ZmPPDK1 promoters driving ZmPPDK1, ZmPEPC1 start Son driving ZmPEPC1,35CaMV S driving ZmMDH6, Ubiqutin promoters drive ZmME2, the driving of OsACTIN promoters ZmCA1。
Encoding gene (CDS) sequence of phosphopyruvic acid bidifly enzyme (ZmPPDK1) encodes SEQ as shown in SEQ ID No.2 Protein shown in ID No.11.Encoding gene (CDS) sequence of PEP carboxylases (ZmPEPC1) is compiled as shown in SEQ ID No.4 Protein shown in code SEQ ID No.12.Encoding gene (CDS) sequence such as SEQ ID of malic dehydrogenase (ZmMDH6) Shown in No.6, protein shown in SEQ ID No.13 is encoded.Encoding gene (CDS) sequence of NADP- malate dehydrogenases (ZmME2) As shown in SEQ ID No.8, protein shown in SEQ ID No.14 is encoded.The encoding gene (CDS) of carbonic anhydrase (ZmCA1) Sequence encodes protein shown in SEQ ID No.15 as shown in SEQ ID No.10.
The nucleotide sequence of ZmPPDK1 promoters is as shown in SEQ ID No.1.The nucleotide sequence of ZmPEPC1 promoters As shown in SEQ ID No.3.The nucleotide sequence of 35CaMVS promoters is as shown in SEQ ID No.5.Ubiqutin promoters Nucleotide sequence as shown in SEQ ID No.7.The nucleotide sequence of OsActin promoters is as shown in SEQ ID No.9.
1st, the encoder block (CDS) and promoter sequence of 5 photosynthesis genes elements are expanded respectively first.
Using TOYOBO KOD high-fidelity enzymatic amplifications, operated to specifications, reaction system is as shown in table 1.
Table 1 expands the encoder block (CDS) of 5 photosynthesis genes elements and the reaction system of promoter sequence
The correct amplified band gel extraction to molecular weight, -20 DEG C of preservation products.
2nd, splicing obtains 5 complete element sequences respectively.
Because for expanding the F ends primer of every set of pieces CDS, added with the 15-18bp sequences being overlapped with promoter, thus can The promoter and CDS of every set of pieces are spliced into a PCR product using fusion DNA vaccine.Meanwhile in order to which next step is 5 In element recombination to purpose carrier, this wheel PCR amplification needs to increase overlap in respective F ends primer, and amplification system is such as Shown in table 2.
Table 2 splices the amplification system for obtaining 5 complete element sequences respectively
Using the efficient recombinase In-Fusion HD Cloning Kit (article No. 639648) of Clontech, using each 15-18bp repetitive sequences, element 1 between element is to the repetitive sequence between element 5 and pCambia1300 carriers, according to table Correspondence ratio shown in 3 carries out recombining reaction, conversion, identification, sequencing, is finally completed the structure of carrier.
3 element 1 of table is to element 5 and the reaction ratio of pCambia1300 carriers
Element number Clip size Aequum Volume
Element 1 4844bp 216ng 1.5μl
Element 2 4913bp 219ng 1.5μl
Element 3 1837bp 82ng 0.5μl
Element 4 3982bp 177ng 1μl
Element 5 2784bp 124ng 1μl
PCambia1300 carriers 8958bp 200ng 2μl
2.5 μ l recombinases are mended to 10 μ l
Each primer sequence referred to above is specifically as shown in table 4.
Primer used in 4 vector construction of table
By 900 to being grown on screening and culturing medium more, clone carries out PCR identifications, and it is completely correct to obtain 6 recombinations Clone.Sequence verifications are carried out to this 5 clones, it is found that carrier construction is consistent with expected sequence, has no base mutation, it can be with For next step rice transformation.This multigene carrier is named as MGTV (Multi-gene-transformation- Vector) carrier is shown in Fig. 1.
The structure description of MGTV carriers:10 sequences shown in SEQ ID No.1-10 are spliced into 5 elements respectively, so Afterwards using in-between coincidence sequence, 5 elements are recombinated simultaneously to pCambia1300 carriers in the case where recombinating enzyme effect At " GGCCAGTGCCAAGCTT " and " CCCGGGCTGCAAGTTCAA " (between restriction enzyme site Hind III and SmaI) after Obtained recombinant plasmid.
In addition, the present invention also construct following 5 for turn monogenic recombinant vector:
(1) pCambia1300-PPDK1 carriers:2 sequences shown in SEQ ID No.1 and SEQ ID No.2 are direct It is inserted into after being sequentially connected at " GGCCAGTGCCAAGCTT " and " CCCGGGCTGCAAGTTCAA " of pCambia1300 carriers The recombinant plasmid obtained afterwards.
(2) pCambia1300-PEPC1 carriers:2 sequences shown in SEQ ID No.3 and SEQ ID No.4 are direct It is inserted into after being sequentially connected at " GGCCAGTGCCAAGCTT " and " CCCGGGCTGCAAGTTCAA " of pCambia1300 carriers The recombinant plasmid obtained afterwards.
(3) pCambia1300-MDH6 carriers:2 sequences shown in SEQ ID No.5 and SEQ ID No.6 are directly suitable After being inserted into after secondary connection at " GGCCAGTGCCAAGCTT " and " CCCGGGCTGCAAGTTCAA " of pCambia1300 carriers Obtained recombinant plasmid.
(4) pCambia1300-ME2 carriers:2 sequences shown in SEQ ID No.7 and SEQ ID No.8 are directly suitable After being inserted into after secondary connection at " GGCCAGTGCCAAGCTT " and " CCCGGGCTGCAAGTTCAA " of pCambia1300 carriers Obtained recombinant plasmid.
(5) pCambia1300-CA1 carriers:2 sequences shown in SEQ ID No.9 and SEQ ID No.10 are directly suitable After being inserted into after secondary connection at " GGCCAGTGCCAAGCTT " and " CCCGGGCTGCAAGTTCAA " of pCambia1300 carriers Obtained recombinant plasmid.
2nd, the initiative and identification of transgenic line
1st, the recombinant plasmid MGTV of step 1 structure is imported into Agrobacterium AGL1, obtains recombinational agrobacterium.
2nd, the recombinational agrobacterium that step 1 is taken to obtain is resuspended in liquid and co-cultures culture medium (YEP fluid nutrient mediums+100mg/ L acetosyringones, pH5.2), obtain OD600nm=0.14 bacterium solution.
3rd, the embryo callus of Nipponbare is taken, 30min is impregnated with the bacterium solution that step 2 obtains, then through co-culturing, sieving It selects, take root, strong sprout, obtaining T0For plant.
4、T0T is obtained for plant selfing1For seed, T1It is T for the plant that seed grows up to1For plant.
5th, above-mentioned conversion is carried out with pCambia1300 carriers, obtains turning empty carrier plant.
6th, with pCambia1300-PPDK1, pCambia1300-PEPC1, pCambia1300-MDH6, PCambia1300-ME2 and pCambia1300-CA1 carriers carry out above-mentioned conversion, obtain 5 kinds and turn single-gene plant.
With primer sequence amplification regeneration plant DNA corresponding in table 2, electrophoresis determines positive strain.Turn from identification is positive 4 are randomly choosed in polygenes strain, number is OV-1, OV-2, OV-3 and OV-4 respectively.
3rd, photosynthetic parameters measure
4 transgenic positive systems that Nipponbare, the step 2 for taking growth conditions consistent obtain (OV-1, OV-2, OV-3 and OV-4), the unloaded T1 for compareing, turning individual gene, in full-bloom stage, utilizes LI-COR6400 to carry out the survey of photosynthetic parameters for plant It is fixed, and other economical characters shown in statistical form 5.
The result shows that it compareed with zero load, wild control, turn individual gene (PPDK1, PEPC1, MDH6, ME2, CA1) phase Than big degree of convergence improves photosynthetic efficiency to 4 positive strains (OV-1, OV-2, OV-3 and OV-4), and then improves to some extent Mass of 1000 kernel, and that unfavorable economical character phenotype is not presented.See Fig. 2 and table 5.
5 transgenosis of table is compared with each economical character of empty map
Note:* show compared with empty map, significant difference (P<0.05).
<110>Biological Technology institute, Chinese Academy of Agricultural Sciences
<120>Turn the photosynthetic key genes of C4 and improve the photosynthetic method of C3 plant
<130> GNCLN180019
<160> 15
<170> PatentIn version 3.5
<210> 1
<211> 2000
<212> DNA
<213>Corn(Zea mays L.)
<400> 1
gagattttgg ggttatggtc gcaagggtta tgaatgaaga cttaccaggt aaatgggttc 60
agaatatttt gaaagtccga gaggatgatc catgctttgc tttaatcaag gttaagtata 120
atactaaagg taaattttgc tctcaatttt ggaagggaat actatatgca aggaacttgg 180
taaatgggga ttatcaacaa cgattaacaa tgagaaaatg tactattttg ggaggaggta 240
tgggttttgg acatgccact aatattagaa ttcccatttt ttgttgtttg tcaaaataat 300
cattgtttgg tcagtggttg ttaggaagga ggtggataga aagttaaatt tagattttcc 360
ctggggtgga ggacatgaaa gagtgggaaa ggttgctgga cattttggaa ggagtgataa 420
ttactaaacg agaatatatg ttatcttcgt cgttagagaa atctagacag tatacaacaa 480
gatccacgta ctacaggtaa acttttaggg gtattgtgaa caagaggatg agtaaactct 540
aaaagaacaa agctccaatg aaaatttagg tttttatgtg gttagtcata gggcaagttg 600
caaacaggtg ttgatctaaa aaggaagtag tagggaaatg tgaagtgtct ttgcgaggaa 660
ttggaaaatg aagatcacat tttctttggg tgcatcatgg gaagaaccat ttgggactct 720
tttaaggagg cctaagaatg ccataaagtt tgcaagatct ttttgaagag tgtctaccta 780
taaacaatag taaatatcat gtcaaaattt tcatcttcgc cattattctt taggagaatt 840
tagaatgttc cgaataaaat atggatagaa aagaagttcc caaagtcatc caattttcta 900
caaaatcttc aactttaaga ttgagagtgg gtgttgtaaa gttcttggaa gatgagttga 960
accccatgga ggcgttggct aaagtactga aagcaatcta aagacatgga ggtggaaggc 1020
ctgacgtaga tagagaagat gctcttagct ttcattgtct ttcttttgta gtcatctgat 1080
ttacctctct cgtttataca actggttttt taaacactcc ttaacttttc aaattgtctc 1140
tttctttacc ctagactaga taattttaat ggtgattttg ctaatgtggc gccatgttag 1200
atagaggtaa aatgaactag ttaaaagctc agagtgataa atcaggctct caaaaattca 1260
taaactgttt tttaaatatc caaatatttt tacatggaaa ataataaaat ttagtttagt 1320
attaaaaaat tcagttgaat atagttttgt cttcaaaaat tatgaaactg atcttaatta 1380
tttttcctta aaaccgtgct ctatctttga tgtctagttt gagacgatta tataattttt 1440
tttgtgctta actacgacga gctgaagtac gtagaaatac tagtggagtc gtgccgcgtg 1500
tgcctgtagc cactcgtacg ctacagccca agcgctagag cccaagaggc cggaggtgga 1560
aggcgtcgcg gcactatagc cactcgccgc aagagcccaa gaggccggag ctggaaggat 1620
gagggtctgg gtgttcacga attgcctgga ggcaggaggc tcgtcgtccg gagccacagg 1680
cgtggagacg tccgggataa ggtgagcagc cgctgcgata ggggcgcgtg tgaaccccgt 1740
cgcgccccac ggatggtata agaataaagg cattccgcgt gcaggattca cccgttcgcc 1800
tctcaccttt tcgctgtact cactcgccac acacaccccc tctccagctc cgttggagct 1860
ccggacagca gcaggcgcgg ggcggtcacg tagtaagcag ctctcggctc cctctcccct 1920
tgctccatat gatcgtgcaa cccatcgagc tacgcgcgtg gactgccttc cctgggtcgg 1980
cgcaggaggg gatcggaagg 2000
<210> 2
<211> 2844
<212> DNA
<213>Corn(Zea mays L.)
<400> 2
atggcggcat cggtttccag ggccatctgc gtacagaagc cgggctcaaa atgcaccagg 60
gacagggaag cgacctcctt cgcccgccga tcggtcgcag cgccgaggcc cccgcacgcc 120
aaagcccgcc ggcgtcatcc gctccgactc cggcgcggga cggggccaca ttgctcgccg 180
ctgagggccg tcgttgacgc cgcgccgata cagacgacca aaaagagggt gttccacttc 240
ggcaagggca agagcgaggg caacaagacc atgaaggaac tgctgggcgg caagggcgcg 300
aacctggcgg agatggcgag catcgggctg tcggtgccgc cagggttcac ggtgtcgacg 360
gaggcgtgcc agcagtacca ggacgccggg tgcgccctcc ccgcggggct ctgggccgag 420
atcgtcgacg gcctgcagtg ggtggaggag tacatgggcg ccaccctggg cgatccgcag 480
cgcccgctcc tgctctccgt ccgctccggc gccgccgtgt ccatgcccgg catgatggac 540
acggtgctca acctggggct caacgacgaa gtggccgccg ggctggcggc caagagcggg 600
gagcgcttcg cctacgactc cttccgccgc ttcctcgaca tgttcggcaa cgtcgtcatg 660
gacatccccc gctcactgtt cgaagagaag cttgagcaca tgaaggaatc caaggggctg 720
aagaacgaca ccgacctcac ggcctctgac ctcaaagagc tcgtgggtca gtacaaggag 780
gtctacctct cagccaaggg agagccattc ccctcagacc ccaagaagca gctggagcta 840
gcagtgctgg ctgtgttcaa ctcgtgggag agccccaggg ccaagaagta caggagcatc 900
aaccagatca ctggcctcag gggcaccgcc gtgaacgtgc agtgcatggt gttcggcaac 960
atggggaaca cttctggcac cggcgtgctc ttcaccagga accccaacac cggagagaag 1020
aagctgtatg gcgagttcct ggtgaacgct cagggtgagg atgtggttgc cggaataaga 1080
accccagagg accttgacgc catgaagaac ctcatgccac aggcctacga cgagcttgtt 1140
gagaactgca acatcctgga gagccactac aaggaaatgc aggatatcga gttcactgtc 1200
caggaaaaca ggctgtggat gttgcagtgc aggacaggga aacgtacggg caaaagtgcc 1260
gtgaagatcg ccgtggacat ggttaacgag ggccttgttg agccccgctc agcgatcaag 1320
atggtagagc caggccacct ggaccagctt cttcatcctc agtttgagaa cccgtcggcg 1380
tacaaggatc aagtcattgc cactggtctg ccagcctcac ctggggctgc tgtgggccag 1440
gttgtgttca ctgctgaaga tgctgaagca tggcattccc aagggaaagc tgctattctg 1500
gtaagggcgg agaccagccc tgaggacgtt ggtggcatgc acgctgctgt ggggattctt 1560
acagagaggg gtggcatgac ttcccacgct gctgtggtcg cacgttggtg ggggaaatgc 1620
tgcgtctcgg gatgctcagg cattcgcgta aacgatgcgg agaagctcgt gacgatcgga 1680
agccatgtgc tgcgcgaagg tgagtggctg tcgctgaatg ggtcgactgg tgaggtgatc 1740
cttgggaagc agccgctttc cccaccagcc cttagtggtg atctgggaac tttcatggcc 1800
tgggtggatg atgttagaaa gctcaaggtc ctggctaacg ccgatacccc tgatgatgca 1860
ttgactgcgc gaaacaatgg ggcacaagga attggattat gccggacaga gcacatgttc 1920
tttgcttcag acgagaggat taaggctgtc aggcagatga ttatggctcc cacgcttgag 1980
ctgaggcagc aggcgctcga ccgtctcttg acgtatcaga ggtctgactt cgaaggcatt 2040
ttccgtgcta tggatggact cccggtgacc atccgactcc tggaccatcc ttcttacgag 2100
ttccttccag aagggaacat cgaggacatt gtaagtgaat tatgtgctga gacgggagcc 2160
aaccaggagg atgccctcgc gcgaattgaa aagctttcag aagtaaaccc gatgcttggc 2220
ttccgtgggt gcaggcttgg tatatcgtac cctgaattga cagagatgca agcccgggcc 2280
atttttgaag ctgctatagc aatgaccaac cagggtgttc aagtgttccc agagataatg 2340
gttcctcttg ttggaacacc acaggaactg gggcatcaag tgactcttat ccgccaagtt 2400
gctgagaaag tgttcgccaa tgtgggcaag actatcgggt acaaagttgg aacaatgatt 2460
gagatcccca gggcagctct ggtggctgat gagatagcgg agcaggctga attcttctcc 2520
ttcggaacga acgacctgac gcagatgacc tttgggtaca gcagggatga tgtgggaaag 2580
ttcattcccg ttcatcttgc tcagggcatc ctccaacatg accccttcga ggtcctggac 2640
cagaggggag tgggcgagct ggtgaagttt gctacagaga ggggccgcaa agctaggcct 2700
aacttgaagg tgggcatttg tggagaacac ggtggagagc cttcgtctgt ggccttcttc 2760
gcgaaggctg ggctggattt cgtttcttgc tcccctttca gggttccgat tgctaggcta 2820
gctgcagctc aggtgcttgt ctga 2844
<210> 3
<211> 1991
<212> DNA
<213>Corn(Zea mays L.)
<400> 3
tctcttaatc agtatatata attaaaaaac taatttcaca tttgtgttcc taatattttt 60
tacaaataaa tcattgttta attccatttg taataagttt ttattaaaat tgcttttatt 120
tcatttatta taaacattta attgttttaa tcctatttta gttttaattt attgtatcta 180
tttattaata taacgaactt cgataagaaa caaaagcaag gtcaaggtgt tttttcaaag 240
tagttgtgga aaagctgaac cccttttatt caacttttag aagcaggaaa acagaaccaa 300
acagacccta aaaatgtgtg aatttttagc aggttaatta ttcgcatctc tttggtcatg 360
tttaagaggc tggaatagat caactgcaag aacacatagc agagtggata gggggggggg 420
gggggggggg gggggagggt cgtcgtctcc ctatctgacc tctcttctgc attggattgc 480
ctttttcggt actctattta aaacttaaaa gtacaaatga ggtgccggat tgatggagtg 540
atatataagt ttgatgtgtt tttcacataa gtgacaagta ttattgaaag agaacatttg 600
cattgctact gtttgcatat gggaaaattg agaattgtat catgccatgg ccgatcagtt 660
ctttacttag ctcgatgtaa tgcacaatgt tgatagtatg tcgaggatct agcgatgtaa 720
tggtgttagg acacgtggtt agctactaat ataaatgtaa ggtcattcga tggtttttct 780
attttcaatt acctagcatt atctcatttc taattgtgat aacaaatgca ttagaccata 840
attctgtaaa tatgtacatt taagcacaca gtctatattt taaaattctt ctttttgtgt 900
ggatatccca acccaaatcc acctctctct tcaatccgtg catgttcacc gctgccaagt 960
gccaacaaca catcgcatcg tgcatatctt tgttggcttg tgcacggtcg gcgccaatgg 1020
aggagacacc tgtacggtgc ccttggtaga acaacatcct tatccctata tgtatggtgc 1080
ccttcgtaga atgacacccc ttatccctac aatagccatg tatgcatacc aagaattaaa 1140
tatacttttt cttgaaccac aataatttat tatagcggca cttcttgttc aggttgaaca 1200
cttatttgga acaataaaat gccgagttcc taaccacagg ttcacttttt tttttcctta 1260
tcctcctagg aaactaaatt ttaaaatcat aaatttaatt taaatgttaa tggaaacaaa 1320
aaattatcta caaagacgac tcttagccac agccgcctca ctgcaccctc aaccacatcc 1380
tgcaaacaga caccctcgcc acatccctcc agattcttca ctccgatgca gcctacttgc 1440
taacagacgc cctctccaca tcctgcaaag cattcctcca aattcttgcg atcccccgaa 1500
tccagcatta actgctaagg gacgccctct ccacatcctg ctacccaatt agccaacgga 1560
ataacacaag aaggcaggtg agcagtgaca aagcacgtca acagcaccga gccaagccaa 1620
aaaggagcaa ggaggagcaa gcccaagccg cagccgcagc tctccaggtc cccttgcgat 1680
tgccgccagc agtagcagac acccctctcc acatcccctc cggccgctaa cagcagcaag 1740
ccaagccaaa aaggagcctc agccgcagcc ggttccgttg cggttaccgc cgatcacatg 1800
cccaaggccg cgcctttccg aacgccgagg gccgcccgtt cccgtgcaca gccacacaca 1860
cacccgcccg ccaacgactc cccatcccta tttgaaccca cccgcgcact gcattgatca 1920
ccaatcgcat cgcagcagca cgagcagcac gccgtgccgc tccaaccatc tcgcttccgt 1980
gcttagcttc c 1991
<210> 4
<211> 2913
<212> DNA
<213>Corn(Zea mays L.)
<400> 4
atggcgtcga ccaaggcacc cggccctggc gagaagcacc actccatcga cgcgcagctc 60
cgtcagctgg tcccaggcaa ggtctccgag gacgacaagc tcatcgagta cgatgcgctg 120
ctcgtcgacc gcttcctcaa catcctccag gacctccacg ggcccagcct tcgcgaattt 180
gtccaggagt gctacgaggt gtcggccgac tatgagggca aaggagacac gacgaagctg 240
ggcgagctcg gcgccaagct cacggggctg gcccccgccg acgccatcct cgtggcgagc 300
tccatcctgc acatgctcaa cctcgccaac ctggccgagg aggtgcagat cgcgcaccgc 360
cgccgcaaca gcaagctcaa gaaaggtggg ttcgccgacg agggctccgc caccaccgag 420
tccgacatcg aggagacgct caagcgcctc gtgtccgagg tcggcaagtc ccccgaggag 480
gtgttcgagg cgctcaagaa ccagaccgtc gacctcgtct tcaccgcgca tcccacgcag 540
tccgcccgcc gctcgctcct gcagaaaaac gccaggatcc ggaattgtct gacccagctg 600
aatgccaagg acatcactga cgacgacaag caggagctcg atgaggctct gcagagagag 660
atccaagcag ccttcagaac cgatgaaatc aggagggcac aacccacccc ccaggacgaa 720
atgcgctatg ggatgagcta catccatgag actgtatgga agggcgtgcc taagttcttg 780
cgccgtgtgg atacagccct gaagaatatc ggcatcaatg agcgccttcc ctacaatgtt 840
tctctcattc ggttctcttc ttggatgggt ggtgaccgcg atggaaatcc aagagttacc 900
ccggaggtga caagagatgt atgcttgctg gccagaatga tggctgcaaa cttgtacatc 960
gatcagattg aagagctgat gtttgagctc tctatgtggc gctgcaacga tgagcttcgt 1020
gttcgtgccg aagagctcca cagttcgtct ggttccaaag ttaccaagta ttacatagaa 1080
ttctggaagc aaattcctcc aaacgagccc taccgggtga tactaggcca tgtaagggac 1140
aagctgtaca acacacgcga gcgtgctcgc catctgctgg cttctggagt ttctgaaatt 1200
tcagcggaat cgtcatttac cagtatcgaa gagttccttg agccacttga gctgtgctac 1260
aaatcaccgt gtgactgcgg cgacaaggcc atcgcggacg ggagcctcct ggacctcctg 1320
cgccaggttt tcacgttcgg gctctccctg gtgaagctgg acatccggca ggagtcggag 1380
cggcacaccg acgtgatcga cgccatcacc acgcacctcg gcatcgggtc gtaccgcgag 1440
tggtccgagg acaagcggca ggagtggctg ctgtcggagc tgcgaggcaa gcgcccgctg 1500
ctgcccccgg accttcccca gaccgaggag atcgccgacg tcatcggcgc gttccacgtc 1560
ctcgcggagc tcccgcccga cagcttcggc ccctacatca tctccatggc gacggccccc 1620
tcggacgtgc tcgccgtgga gctcctgcag cgcgagtgcg gcgtgcgcca gccgctgccc 1680
gtggtgccgc tgttcgaaag gctggccgac ctgcagtcgg cgcccgcgtc cgtggagcgc 1740
ctcttctcgg tggactggta catggaccgg atcaagggca agcagcaggt catggtcggc 1800
tactccgact ccggcaagga cgccggccgc ctgtccgcgg cgtggcagct gtacagggcg 1860
caggaggaga tggcgcaggt ggccaagcgc tacggcgtca agctcacctt gttccacggc 1920
cgcggaggca ccgtgggcag gggtggcggg cccacgcacc ttgccatcct gtcccagccg 1980
ccggacacca tcaacgggtc catccgtgtg acggtgcagg gcgaggtcat cgagttctgc 2040
ttcggggagg aacacctgtg cttccagact ctgcagcgct tcacggccgc cacgctggag 2100
cacggcatgc acccgccggt ctctcccaag tccgagtggc gcaagctcat ggacgagatg 2160
gcggtcgtgg ccacggagga gtaccgctcc gtcgtcgtca aggaggcgcg cttcgtcgag 2220
tacttcagat cggctacacc ggagaccgag tacgggagga tgaacatcgg cagccggcca 2280
gccaagagga ggcccggcgg cggcatcacg accctgcgcg ccatcccctg gatcttctcg 2340
tggacccaga ccaggttcca cccccccgtg tggctgggag tcggcgccgc attcaagttc 2400
gccatcgaca aggacgtcag gaacttccag gtcctcaaag agatgtacaa cgagtggcca 2460
ttcttcaggg tcaccctgga cctgctggag atggttttcg ccaagggaga ccccggcatt 2520
gccggcttgt atgacgagct gcttgtggcg gaagaactca agccctttgg gaagcagctc 2580
agggacaaat acgtggagac acagcagctt ctcctccaga tcgctgggca caaggatatt 2640
cttgaaggcg atccattcct gaagcagggg ctggtgctgc gcaaccccta catcaccacc 2700
ctgaacgtgt tccaggccta cacgctgaag cggataaggg accccaactt caaggtgacg 2760
ccccagccgc cgctgtccaa ggagttcgcc gacgagaaca agcccgccgg actggtcaag 2820
ctgaacccgg cgagcgagta cccgcccggc ctggaagaca cgctcatcct caccatgaag 2880
ggcatcgccg ccggcatgca gaacactggc tag 2913
<210> 5
<211> 538
<212> DNA
<213>Artificial sequence
<220>
<223>
<400> 5
catggagtca aagattcaaa tagaggacct aacagaactc gccgtaaaga ctggcgaaca 60
gttcatacag agtctcttac gactcaatga caagaagaaa atcttcgtca acatggtgga 120
gcacgacaca cttgtctact ccaaaaatat caaagataca gtctcagaag accaaagggc 180
aattgagact tttcaacaaa gggtaatatc cggaaacctc ctcggattcc attgcccagc 240
tatctgtcac tttattgtga agatagtgga aaaggaaggt ggctcctaca aatgccatca 300
ttgcgataaa ggaaaggcca tcgttgaaga tgcctctgcc gacagtggtc ccaaagatgg 360
acccccaccc acgaggagca tcgtggaaaa agaagacgtt ccaaccacgt cttcaaagca 420
agtggattga tgtgatatct ccactgacgt aagggatgac gcacaatccc actatccttc 480
gcaagaccct tcctctatat aaggaagttc atttcatttg gagagaacac gggggact 538
<210> 6
<211> 1299
<212> DNA
<213>Corn(Zea mays L.)
<400> 6
atgggccttt caacagttta ctccccggcc ggaccgcgcc tcgtgccggc ccctctcggc 60
cgctgccgct ctgcccagcc ccgccgcccg cgccgagccc cgctcgccac cgtccggtgc 120
tccgtcgacg ccaccaagca ggcgcaggat ggcgtggcga cggcggtcgc gacggaggcg 180
ccggcgtcgc ggaaggagtg cttcggggtc ttctgcacca cctacgacct caaggcggag 240
gacaagacca agtcgtggag gaagctagtg aatgttgctg tgtcaggcgc ggccgggatg 300
atatcaaatc acctgctgtt caaactcgct tctggtgagg ttttcggaca agaccaacca 360
atagcactta agctactcgg ctcagaaaga tcgtttcaag ccctcgaagg tgtagctatg 420
gaactggagg actcgctgta tccactgctg agggaagtca gcattggcat agatccttac 480
gtggtctttc aagatgtaga ttgggccctt cttattggcg ctaagccccg aggtcccggc 540
atggagcgag ctgcgctact ggatatcaat ggccaaatct ttgctgacca ggggaaagca 600
cttaatgcgg tcgcctcgcg gaacgacgaa gtcttagttg tcggaaatcc ctgtaacact 660
aatgcgctga tttgtttgaa aaatgcccca aacataccgg caaaaaactt tcatgcattg 720
acgaggttgg atgaaaatag agcaaagtgc cagctggcac taaaagcagg tgtattttat 780
gacaaagtat caaacgtgac tatttggggg aaccattcga cgactcaggt tcctgatttc 840
ttgaatgcca aaattgatgg aagaccagtg aaagaagtca ttaaggatac caagtggtta 900
gaggaagagt tcaccctcac agttcaaaag cgtggaggtg tgctcatcca aaaatggggc 960
agatcatcag ctgcatcgac cgctgtttcg atagtggatg ctattagatc cctcgtaact 1020
cctaccccag aaggtgactg gttttctaca ggggtttata cgactggaaa tccttatggc 1080
atagcagagg atatcgtgtt cagcatgcca tgcagatcga agggtgatgg tgattacgaa 1140
ctagctagtg atgtgttgat ggacgatttt ctctgggaac ggattaaaaa gagcgaagct 1200
gaattgcttg ctgagaagaa atgcgttgcc catcttacag gagaggggaa tgcattctgt 1260
gatcttccgg aagataccat gctaccagga gaagtgtag 1299
<210> 7
<211> 1993
<212> DNA
<213>Artificial sequence
<220>
<223>
<400> 7
ctgcagtgca gcgtgacccg gtcgtgcccc tctctagaga taatgagcat tgcatgtcta 60
agttataaaa aattaccaca tatttttttt gtcacacttg tttgaagtgc agtttatcta 120
tctttataca tatatttaaa ctttactcta cgaataatat aatctatagt actacaataa 180
tatcagtgtt ttagagaatc atataaatga acagttagac atggtctaaa ggacaattga 240
gtattttgac aacaggactc tacagtttta tctttttagt gtgcatgtgt tctccttttt 300
ttttgcaaat agcttcacct atataatact tcatccattt tattagtaca tccatttagg 360
gtttagggtt aatggttttt atagactaat ttttttagta catctatttt attctatttt 420
agcctctaaa ttaagaaaac taaaactcta ttttagtttt tttatttaat aatttagata 480
taaaatagaa taaaataaag tgactaaaaa ttaaacaaat accctttaag aaattaaaaa 540
aactaaggaa acatttttct tgtttcgagt agataatgcc agcctgttaa acgccgtcga 600
cgagtctaac ggacaccaac cagcgaacca gcagcgtcgc gtcgggccaa gcgaagcaga 660
cggcacggca tctctgtcgc tgcctctgga cccctctcga gagttccgct ccaccgttgg 720
acttgctccg ctgtcggcat ccagaaattg cgtggcggag cggcagacgt gagccggcac 780
ggcaggcggc ctcctcctcc tctcacggca ccggcagcta cgggggattc ctttcccacc 840
gctccttcgc tttcccttcc tcgcccgccg taataaatag acaccccctc cacaccctct 900
ttccccaacc tcgtgttgtt cggagcgcac acacacacaa ccagatctcc cccaaatcca 960
cccgtcggca cctccgcttc aaggtacgcc gctcgtcctc cccccccccc cctctctacc 1020
ttctctagat cggcgttccg gtccatggtt agggcccggt agttctactt ctgttcatgt 1080
ttgtgttaga tccgtgtttg tgttagatcc gtgctgctag cgttcgtaca cggatgcgac 1140
ctgtacgtca gacacgttct gattgctaac ttgccagtgt ttctctttgg ggaatcctgg 1200
gatggctcta gccgttccgc agacgggatc gatttcatga ttttttttgt ttcgttgcat 1260
agggtttggt ttgccctttt cctttatttc aatatatgcc gtgcacttgt ttgtcgggtc 1320
atcttttcat gctttttttt gtcttggttg tgatgatgtg gtctggttgg gcggtcgttc 1380
tagatcggag tagaaatctg tttcaaacta cctggtggat ttattaattt tggatctgta 1440
tgtgtgtgcc atacatattc atagttacga attgaagatg atggatggaa atatcgatct 1500
aggataggta tacatgttga tgcgggtttt actgatgcat atacagagat gctttttgtt 1560
cgcttggttg tgatgatgtg gtgtggttgg gcggtcgttc attcgttcta gatcggagta 1620
gaatactgtt tcaaactacc tggtgtattt attaattttg gaactgtatg tgtgtgtcat 1680
acatcttcat agttacgagt ttaagatgga tggaaatatc gatctaggat aggtatacat 1740
gttgatgtgg gttttactga tgcatataca tgatggcata tgcagcatct attcatatgc 1800
tctaaccttg agtacctatc tattataata aacaagtatg ttttataatt attttgatct 1860
tgatatactt ggatgatggc atatgcagca gctatatgtg gattttttta gccctgcctt 1920
catacgctat ttatttgctt ggtactgttt cttttgtcga tgctcaccct gttgtttggt 1980
gttacttctg cag 1993
<210> 8
<211> 1989
<212> DNA
<213>Corn(Zea mays L.)
<400> 8
atgatctccg cgcgcaccgc cgcagcttcc cccgcttccc tgtggaagca gggaggacga 60
agcgagggcg gcggcagctg cgacggatgt cggacttaca ggaacacttt gcggagggcc 120
gcagcagcga aggtgcgtgc cttgccgtcg agggcggtgg aggcggtcaa aatgggctcc 180
gccgcggaga tggagcagga ggaggcggag gtggccgcgg ccgcggccgg cgtcgtcgtc 240
gaggaccact acggcgagga cagcgccacc gaggagctgc ccatcctgcc ctgggccttc 300
tccgtcgcaa gatatgtttc cttcagttgg ttgaaaaaat acgctgagga gtcttatttc 360
tacatcagcg gttacaccct cttgagggat ccacatcaca acaagggtct tgctttcatg 420
gagaaggaga gggatgcaca ccacttgcgg gggctgcttc ctcctgcagt tgtgcctcaa 480
gaactccaaa ttaagaagat catgcacaac ctgcggcagt accaggtccc tttgcagcgc 540
tatatggcca tgatggacct tcaggagagg aacgagaggc ttttctacaa gcttttaatt 600
gataacgtgg aggagctgct tcctgtggtt tatacaccaa ctgtaggtga ggcctgccag 660
aagtatgggt ccatctttcg acaaccacag ggtctgtatg tcagcttgag ggacaagggg 720
aaggtcctag aagttctaag gaactggcca cataggaaca ttcaagttat ctgtgttact 780
gatggtgagg caatcttggg acttggagat ttgggttctc agggaatggg aattcctgta 840
ggcaaacttg ctctatacac tgctcttgga ggagttcgtc catcagcttg tttgcctatc 900
acaatcgatg ttggcacaaa taatgagaaa ctgcttaatg atgagtttta cattggactc 960
cggcaaaaac gtgcaactgg cgaggagtat catgagctta tggaagagtt catggctgct 1020
gttaagcaaa tctacggcga gaaagtcctc attcagtttg aggacttcgc gaatcataat 1080
gcttttaatt tgcttgcaaa atatagcaag agccatcttg ttttcaatga tgacatccag 1140
ggcacagcat cagtggtcct tgcaggtttg ttagcagcac tcaaggtggt tggtaggacc 1200
ttggcagagc acacttattt attccttggt gctggggagg ctggaactgg tattgcagaa 1260
ctcattgctc ttgagatttc aaaacagacg tcggctccaa ttgaagagtg ccgcaagaag 1320
atttggttgg tggactcaaa gggtttgatt gttgactctc gtaaaaactc cgttcagtca 1380
ttcaaaaaac cttgggcaca tgagcatgag cccttgacaa ccttgtacga tgctgttcag 1440
tccatcaaac ctacagttct gattgggacg tctggagttg gaagaacatt cacaaaagaa 1500
gttgttgagg ccatggcttc cttcaatgag aggcctatca tcttttcact gtcaaatcca 1560
acctctcatt ctgaatgtac tgctgaagaa gcatataact ggactcaggt cgtaatattt 1620
gccagtggca gtccatttga ccctgtggag tacgatggga aggtttttgt acctggacag 1680
tcgaacaacg cctacatttt ccctggattt ggcctcggtc ttgttatctc tggagccatc 1740
cgtgtccacg aggacatgct tcttgccgcc tcggaagcac tagctgctca ggccacacag 1800
gagaacttcg acaagggatc aatcttccca cccttcacca acattagaaa gatctctgcg 1860
cgcattgcca gagccgtggc tgcaaaagct tatgaactcg gtttggcgac ccgtctgcct 1920
cccccaaggg acctggtgaa atatgcacag agctgcatgt acactcctgt ctaccgtaac 1980
taccggtag 1989
<210> 9
<211> 1413
<212> DNA
<213>Artificial sequence
<220>
<223>
<400> 9
tagctagcat actcgaggtc attcatatgc ttgagaagag agtcgggata gtccaaaata 60
aaacaaaggt aagattacct ggtcaaaagt gaaaacatca gttaaaaggt ggtataaagt 120
aaaatatcgg taataaaagg tggcccaaag tgaaatttac tcttttctac tattataaaa 180
attgaggatg tttttgtcgg tactttgata cgtcattttt gtatgaattg gtttttaagt 240
ttattcgctt ttggaaatgc atatctgtat ttgagtcggg ttttaagttc gtttgctttt 300
gtaaatacag agggatttgt ataagaaata tctttaaaaa aacccatatg ctaatttgac 360
ataatttttg agaaaaatat atattcaggc gaattctcac aatgaacaat aataagatta 420
aaatagcttt cccccgttgc agcgcatggg tattttttct agtaaaaata aaagataaac 480
ttagactcaa aacatttaca aaaacaaccc ctaaagttcc taaagcccaa agtgctatcc 540
acgatccata gcaagcccag cccaacccaa cccaacccaa cccaccccag tccagccaac 600
tggacaatag tctccacacc cccccactat caccgtgagt tgtccgcacg caccgcacgt 660
ctcgcagcca aaaaaaaaaa aagaaagaaa aaaaagaaaa agaaaaaaca gcaggtgggt 720
ccgggtcgtg ggggccggaa acgcgaggag gatcgcgagc cagcgacgag gccggccctc 780
cctccgcttc caaagaaacg ccccccatcg ccactatata catacccccc cctctcctcc 840
catcccccca accctaccac caccaccacc accacctcca cctcctcccc cctcgctgcc 900
ggacgacgag ctcctccccc ctccccctcc gccgccgccg cgccggtaac caccccgccc 960
ctctcctctt tctttctccg tttttttttc cgtctcggtc tcgatctttg gccttggtag 1020
tttgggtggg cgagaggcgg cttcgtgcgc gcccagatcg gtgcgcggga ggggcgggat 1080
ctcgcggctg gggctctcgc cggcgtggat ccggcccgga tctcgcgggg aatggggctc 1140
tcggatgtag atctgcgatc cgccgttgtt gggggagatg atggggggtt taaaatttcc 1200
gccatgctaa acaagatcag gaagagggga aaagggcact atggtttata tttttatata 1260
tttctgctgc ttcgtcaggc ttagatgtgc tagatctttc tttcttcttt ttgtgggtag 1320
aatttgaatc cctcagcatt gttcatcggt agtttttctt ttcatgattt gtgacaaatg 1380
cagcctcgtg cggagctttt ttgtaggtag aag 1413
<210> 10
<211> 1371
<212> DNA
<213>Corn(Zea mays L.)
<400> 10
atgtacacat tgcccgtccg cgccaccaca tccagcatcg tcgccagcct cgccaccccc 60
gcgccgtcct cctcctccgg ctccggctcc ggccgcccca ggcccaggct catccggaac 120
gcccccgtct tcgccgcccc cgccaccgtc gtgggcatgg accccaccgt cgagcgcttg 180
aagagcgggt tccagaagtt caagaccgag gtctatgaca agaagccgga gctgttcgag 240
cctctcaagt ccggccagag ccccaggtac atggtgttcg cctgctccga ctcccgcgtg 300
tgcccgtcgg tgacactggg cctgcagccc ggcgaggcat tcaccgtccg caacatcgcc 360
tccatggtcc caccctacga caagatcaag tacgccggca ccgggtccgc catcgagtac 420
gccgtgtgcg cgctcaaggt gcaggtcatc gtggtcattg gccacagctg ctgcggtggc 480
atcagggcgc tcctctccct caaggacggc gcgcccgaca acttccactt cgtggaggac 540
tgggtcagga tcggcagccc tgccaagaac aaggtgaaga aagagcacgc atcggtgccg 600
ttcgatgacc agtgctccat cctggagaag gaggccgtga acgtgtcgct ccagaacctc 660
aagagctacc ccttcgtcaa ggaagggctg gccggcggga cgctcaagct ggttggcgcc 720
cactacgact tcgtcaaagg gcagttcgtc acatgggagc ctccccagga cgccatcgag 780
cgcttgacga gcgggttcca gcagttcaag gtcaatgtct atgacaagaa gccggagctt 840
ttcgggcctc tcaagtccgg ccaggccccc aagtacatgg tgttcgcttg ctccgactcc 900
cgtgtgtgcc catcggtgac cctgggcctg cagcccggcg aggccttcac cgttcgcaac 960
atagccgcca tggtcccagg ctacgacaag accaagtaca ccggcatcgg gtccgccatc 1020
gagtacgctg tgtgcgctct caaggtggag gtcctcgtgg tcattggcca tagctgctgc 1080
ggtggcatca gggcgctcct ctccctccag gacggcgcac ctgacacctt ccacttcgtc 1140
gaggactggg ttaagatcgg cttcattgcc aagatgaagg taaagaaaga gcacgcctcg 1200
gtgccgttcg atgaccagtg ctccattctc gagaaggagg ccgtgaacgt gtccctggag 1260
aacctcaaga cctacccctt cgtcaaggaa gggcttgcaa atgggaccct caagctgatc 1320
ggcgcccact acgactttgt ctcaggagag ttcctcacat ggaaaaagtg a 1371
<210> 11
<211> 947
<212> PRT
<213>Corn(Zea mays L.)
<400> 11
Met Ala Ala Ser Val Ser Arg Ala Ile Cys Val Gln Lys Pro Gly Ser
1 5 10 15
Lys Cys Thr Arg Asp Arg Glu Ala Thr Ser Phe Ala Arg Arg Ser Val
20 25 30
Ala Ala Pro Arg Pro Pro His Ala Lys Ala Arg Arg Arg His Pro Leu
35 40 45
Arg Leu Arg Arg Gly Thr Gly Pro His Cys Ser Pro Leu Arg Ala Val
50 55 60
Val Asp Ala Ala Pro Ile Gln Thr Thr Lys Lys Arg Val Phe His Phe
65 70 75 80
Gly Lys Gly Lys Ser Glu Gly Asn Lys Thr Met Lys Glu Leu Leu Gly
85 90 95
Gly Lys Gly Ala Asn Leu Ala Glu Met Ala Ser Ile Gly Leu Ser Val
100 105 110
Pro Pro Gly Phe Thr Val Ser Thr Glu Ala Cys Gln Gln Tyr Gln Asp
115 120 125
Ala Gly Cys Ala Leu Pro Ala Gly Leu Trp Ala Glu Ile Val Asp Gly
130 135 140
Leu Gln Trp Val Glu Glu Tyr Met Gly Ala Thr Leu Gly Asp Pro Gln
145 150 155 160
Arg Pro Leu Leu Leu Ser Val Arg Ser Gly Ala Ala Val Ser Met Pro
165 170 175
Gly Met Met Asp Thr Val Leu Asn Leu Gly Leu Asn Asp Glu Val Ala
180 185 190
Ala Gly Leu Ala Ala Lys Ser Gly Glu Arg Phe Ala Tyr Asp Ser Phe
195 200 205
Arg Arg Phe Leu Asp Met Phe Gly Asn Val Val Met Asp Ile Pro Arg
210 215 220
Ser Leu Phe Glu Glu Lys Leu Glu His Met Lys Glu Ser Lys Gly Leu
225 230 235 240
Lys Asn Asp Thr Asp Leu Thr Ala Ser Asp Leu Lys Glu Leu Val Gly
245 250 255
Gln Tyr Lys Glu Val Tyr Leu Ser Ala Lys Gly Glu Pro Phe Pro Ser
260 265 270
Asp Pro Lys Lys Gln Leu Glu Leu Ala Val Leu Ala Val Phe Asn Ser
275 280 285
Trp Glu Ser Pro Arg Ala Lys Lys Tyr Arg Ser Ile Asn Gln Ile Thr
290 295 300
Gly Leu Arg Gly Thr Ala Val Asn Val Gln Cys Met Val Phe Gly Asn
305 310 315 320
Met Gly Asn Thr Ser Gly Thr Gly Val Leu Phe Thr Arg Asn Pro Asn
325 330 335
Thr Gly Glu Lys Lys Leu Tyr Gly Glu Phe Leu Val Asn Ala Gln Gly
340 345 350
Glu Asp Val Val Ala Gly Ile Arg Thr Pro Glu Asp Leu Asp Ala Met
355 360 365
Lys Asn Leu Met Pro Gln Ala Tyr Asp Glu Leu Val Glu Asn Cys Asn
370 375 380
Ile Leu Glu Ser His Tyr Lys Glu Met Gln Asp Ile Glu Phe Thr Val
385 390 395 400
Gln Glu Asn Arg Leu Trp Met Leu Gln Cys Arg Thr Gly Lys Arg Thr
405 410 415
Gly Lys Ser Ala Val Lys Ile Ala Val Asp Met Val Asn Glu Gly Leu
420 425 430
Val Glu Pro Arg Ser Ala Ile Lys Met Val Glu Pro Gly His Leu Asp
435 440 445
Gln Leu Leu His Pro Gln Phe Glu Asn Pro Ser Ala Tyr Lys Asp Gln
450 455 460
Val Ile Ala Thr Gly Leu Pro Ala Ser Pro Gly Ala Ala Val Gly Gln
465 470 475 480
Val Val Phe Thr Ala Glu Asp Ala Glu Ala Trp His Ser Gln Gly Lys
485 490 495
Ala Ala Ile Leu Val Arg Ala Glu Thr Ser Pro Glu Asp Val Gly Gly
500 505 510
Met His Ala Ala Val Gly Ile Leu Thr Glu Arg Gly Gly Met Thr Ser
515 520 525
His Ala Ala Val Val Ala Arg Trp Trp Gly Lys Cys Cys Val Ser Gly
530 535 540
Cys Ser Gly Ile Arg Val Asn Asp Ala Glu Lys Leu Val Thr Ile Gly
545 550 555 560
Ser His Val Leu Arg Glu Gly Glu Trp Leu Ser Leu Asn Gly Ser Thr
565 570 575
Gly Glu Val Ile Leu Gly Lys Gln Pro Leu Ser Pro Pro Ala Leu Ser
580 585 590
Gly Asp Leu Gly Thr Phe Met Ala Trp Val Asp Asp Val Arg Lys Leu
595 600 605
Lys Val Leu Ala Asn Ala Asp Thr Pro Asp Asp Ala Leu Thr Ala Arg
610 615 620
Asn Asn Gly Ala Gln Gly Ile Gly Leu Cys Arg Thr Glu His Met Phe
625 630 635 640
Phe Ala Ser Asp Glu Arg Ile Lys Ala Val Arg Gln Met Ile Met Ala
645 650 655
Pro Thr Leu Glu Leu Arg Gln Gln Ala Leu Asp Arg Leu Leu Thr Tyr
660 665 670
Gln Arg Ser Asp Phe Glu Gly Ile Phe Arg Ala Met Asp Gly Leu Pro
675 680 685
Val Thr Ile Arg Leu Leu Asp His Pro Ser Tyr Glu Phe Leu Pro Glu
690 695 700
Gly Asn Ile Glu Asp Ile Val Ser Glu Leu Cys Ala Glu Thr Gly Ala
705 710 715 720
Asn Gln Glu Asp Ala Leu Ala Arg Ile Glu Lys Leu Ser Glu Val Asn
725 730 735
Pro Met Leu Gly Phe Arg Gly Cys Arg Leu Gly Ile Ser Tyr Pro Glu
740 745 750
Leu Thr Glu Met Gln Ala Arg Ala Ile Phe Glu Ala Ala Ile Ala Met
755 760 765
Thr Asn Gln Gly Val Gln Val Phe Pro Glu Ile Met Val Pro Leu Val
770 775 780
Gly Thr Pro Gln Glu Leu Gly His Gln Val Thr Leu Ile Arg Gln Val
785 790 795 800
Ala Glu Lys Val Phe Ala Asn Val Gly Lys Thr Ile Gly Tyr Lys Val
805 810 815
Gly Thr Met Ile Glu Ile Pro Arg Ala Ala Leu Val Ala Asp Glu Ile
820 825 830
Ala Glu Gln Ala Glu Phe Phe Ser Phe Gly Thr Asn Asp Leu Thr Gln
835 840 845
Met Thr Phe Gly Tyr Ser Arg Asp Asp Val Gly Lys Phe Ile Pro Val
850 855 860
His Leu Ala Gln Gly Ile Leu Gln His Asp Pro Phe Glu Val Leu Asp
865 870 875 880
Gln Arg Gly Val Gly Glu Leu Val Lys Phe Ala Thr Glu Arg Gly Arg
885 890 895
Lys Ala Arg Pro Asn Leu Lys Val Gly Ile Cys Gly Glu His Gly Gly
900 905 910
Glu Pro Ser Ser Val Ala Phe Phe Ala Lys Ala Gly Leu Asp Phe Val
915 920 925
Ser Cys Ser Pro Phe Arg Val Pro Ile Ala Arg Leu Ala Ala Ala Gln
930 935 940
Val Leu Val
945
<210> 12
<211> 970
<212> PRT
<213>Corn(Zea mays L.)
<400> 12
Met Ala Ser Thr Lys Ala Pro Gly Pro Gly Glu Lys His His Ser Ile
1 5 10 15
Asp Ala Gln Leu Arg Gln Leu Val Pro Gly Lys Val Ser Glu Asp Asp
20 25 30
Lys Leu Ile Glu Tyr Asp Ala Leu Leu Val Asp Arg Phe Leu Asn Ile
35 40 45
Leu Gln Asp Leu His Gly Pro Ser Leu Arg Glu Phe Val Gln Glu Cys
50 55 60
Tyr Glu Val Ser Ala Asp Tyr Glu Gly Lys Gly Asp Thr Thr Lys Leu
65 70 75 80
Gly Glu Leu Gly Ala Lys Leu Thr Gly Leu Ala Pro Ala Asp Ala Ile
85 90 95
Leu Val Ala Ser Ser Ile Leu His Met Leu Asn Leu Ala Asn Leu Ala
100 105 110
Glu Glu Val Gln Ile Ala His Arg Arg Arg Asn Ser Lys Leu Lys Lys
115 120 125
Gly Gly Phe Ala Asp Glu Gly Ser Ala Thr Thr Glu Ser Asp Ile Glu
130 135 140
Glu Thr Leu Lys Arg Leu Val Ser Glu Val Gly Lys Ser Pro Glu Glu
145 150 155 160
Val Phe Glu Ala Leu Lys Asn Gln Thr Val Asp Leu Val Phe Thr Ala
165 170 175
His Pro Thr Gln Ser Ala Arg Arg Ser Leu Leu Gln Lys Asn Ala Arg
180 185 190
Ile Arg Asn Cys Leu Thr Gln Leu Asn Ala Lys Asp Ile Thr Asp Asp
195 200 205
Asp Lys Gln Glu Leu Asp Glu Ala Leu Gln Arg Glu Ile Gln Ala Ala
210 215 220
Phe Arg Thr Asp Glu Ile Arg Arg Ala Gln Pro Thr Pro Gln Asp Glu
225 230 235 240
Met Arg Tyr Gly Met Ser Tyr Ile His Glu Thr Val Trp Lys Gly Val
245 250 255
Pro Lys Phe Leu Arg Arg Val Asp Thr Ala Leu Lys Asn Ile Gly Ile
260 265 270
Asn Glu Arg Leu Pro Tyr Asn Val Ser Leu Ile Arg Phe Ser Ser Trp
275 280 285
Met Gly Gly Asp Arg Asp Gly Asn Pro Arg Val Thr Pro Glu Val Thr
290 295 300
Arg Asp Val Cys Leu Leu Ala Arg Met Met Ala Ala Asn Leu Tyr Ile
305 310 315 320
Asp Gln Ile Glu Glu Leu Met Phe Glu Leu Ser Met Trp Arg Cys Asn
325 330 335
Asp Glu Leu Arg Val Arg Ala Glu Glu Leu His Ser Ser Ser Gly Ser
340 345 350
Lys Val Thr Lys Tyr Tyr Ile Glu Phe Trp Lys Gln Ile Pro Pro Asn
355 360 365
Glu Pro Tyr Arg Val Ile Leu Gly His Val Arg Asp Lys Leu Tyr Asn
370 375 380
Thr Arg Glu Arg Ala Arg His Leu Leu Ala Ser Gly Val Ser Glu Ile
385 390 395 400
Ser Ala Glu Ser Ser Phe Thr Ser Ile Glu Glu Phe Leu Glu Pro Leu
405 410 415
Glu Leu Cys Tyr Lys Ser Pro Cys Asp Cys Gly Asp Lys Ala Ile Ala
420 425 430
Asp Gly Ser Leu Leu Asp Leu Leu Arg Gln Val Phe Thr Phe Gly Leu
435 440 445
Ser Leu Val Lys Leu Asp Ile Arg Gln Glu Ser Glu Arg His Thr Asp
450 455 460
Val Ile Asp Ala Ile Thr Thr His Leu Gly Ile Gly Ser Tyr Arg Glu
465 470 475 480
Trp Ser Glu Asp Lys Arg Gln Glu Trp Leu Leu Ser Glu Leu Arg Gly
485 490 495
Lys Arg Pro Leu Leu Pro Pro Asp Leu Pro Gln Thr Glu Glu Ile Ala
500 505 510
Asp Val Ile Gly Ala Phe His Val Leu Ala Glu Leu Pro Pro Asp Ser
515 520 525
Phe Gly Pro Tyr Ile Ile Ser Met Ala Thr Ala Pro Ser Asp Val Leu
530 535 540
Ala Val Glu Leu Leu Gln Arg Glu Cys Gly Val Arg Gln Pro Leu Pro
545 550 555 560
Val Val Pro Leu Phe Glu Arg Leu Ala Asp Leu Gln Ser Ala Pro Ala
565 570 575
Ser Val Glu Arg Leu Phe Ser Val Asp Trp Tyr Met Asp Arg Ile Lys
580 585 590
Gly Lys Gln Gln Val Met Val Gly Tyr Ser Asp Ser Gly Lys Asp Ala
595 600 605
Gly Arg Leu Ser Ala Ala Trp Gln Leu Tyr Arg Ala Gln Glu Glu Met
610 615 620
Ala Gln Val Ala Lys Arg Tyr Gly Val Lys Leu Thr Leu Phe His Gly
625 630 635 640
Arg Gly Gly Thr Val Gly Arg Gly Gly Gly Pro Thr His Leu Ala Ile
645 650 655
Leu Ser Gln Pro Pro Asp Thr Ile Asn Gly Ser Ile Arg Val Thr Val
660 665 670
Gln Gly Glu Val Ile Glu Phe Cys Phe Gly Glu Glu His Leu Cys Phe
675 680 685
Gln Thr Leu Gln Arg Phe Thr Ala Ala Thr Leu Glu His Gly Met His
690 695 700
Pro Pro Val Ser Pro Lys Ser Glu Trp Arg Lys Leu Met Asp Glu Met
705 710 715 720
Ala Val Val Ala Thr Glu Glu Tyr Arg Ser Val Val Val Lys Glu Ala
725 730 735
Arg Phe Val Glu Tyr Phe Arg Ser Ala Thr Pro Glu Thr Glu Tyr Gly
740 745 750
Arg Met Asn Ile Gly Ser Arg Pro Ala Lys Arg Arg Pro Gly Gly Gly
755 760 765
Ile Thr Thr Leu Arg Ala Ile Pro Trp Ile Phe Ser Trp Thr Gln Thr
770 775 780
Arg Phe His Pro Pro Val Trp Leu Gly Val Gly Ala Ala Phe Lys Phe
785 790 795 800
Ala Ile Asp Lys Asp Val Arg Asn Phe Gln Val Leu Lys Glu Met Tyr
805 810 815
Asn Glu Trp Pro Phe Phe Arg Val Thr Leu Asp Leu Leu Glu Met Val
820 825 830
Phe Ala Lys Gly Asp Pro Gly Ile Ala Gly Leu Tyr Asp Glu Leu Leu
835 840 845
Val Ala Glu Glu Leu Lys Pro Phe Gly Lys Gln Leu Arg Asp Lys Tyr
850 855 860
Val Glu Thr Gln Gln Leu Leu Leu Gln Ile Ala Gly His Lys Asp Ile
865 870 875 880
Leu Glu Gly Asp Pro Phe Leu Lys Gln Gly Leu Val Leu Arg Asn Pro
885 890 895
Tyr Ile Thr Thr Leu Asn Val Phe Gln Ala Tyr Thr Leu Lys Arg Ile
900 905 910
Arg Asp Pro Asn Phe Lys Val Thr Pro Gln Pro Pro Leu Ser Lys Glu
915 920 925
Phe Ala Asp Glu Asn Lys Pro Ala Gly Leu Val Lys Leu Asn Pro Ala
930 935 940
Ser Glu Tyr Pro Pro Gly Leu Glu Asp Thr Leu Ile Leu Thr Met Lys
945 950 955 960
Gly Ile Ala Ala Gly Met Gln Asn Thr Gly
965 970
<210> 13
<211> 432
<212> PRT
<213>Corn(Zea mays L.)
<400> 13
Met Gly Leu Ser Thr Val Tyr Ser Pro Ala Gly Pro Arg Leu Val Pro
1 5 10 15
Ala Pro Leu Gly Arg Cys Arg Ser Ala Gln Pro Arg Arg Pro Arg Arg
20 25 30
Ala Pro Leu Ala Thr Val Arg Cys Ser Val Asp Ala Thr Lys Gln Ala
35 40 45
Gln Asp Gly Val Ala Thr Ala Val Ala Thr Glu Ala Pro Ala Ser Arg
50 55 60
Lys Glu Cys Phe Gly Val Phe Cys Thr Thr Tyr Asp Leu Lys Ala Glu
65 70 75 80
Asp Lys Thr Lys Ser Trp Arg Lys Leu Val Asn Val Ala Val Ser Gly
85 90 95
Ala Ala Gly Met Ile Ser Asn His Leu Leu Phe Lys Leu Ala Ser Gly
100 105 110
Glu Val Phe Gly Gln Asp Gln Pro Ile Ala Leu Lys Leu Leu Gly Ser
115 120 125
Glu Arg Ser Phe Gln Ala Leu Glu Gly Val Ala Met Glu Leu Glu Asp
130 135 140
Ser Leu Tyr Pro Leu Leu Arg Glu Val Ser Ile Gly Ile Asp Pro Tyr
145 150 155 160
Val Val Phe Gln Asp Val Asp Trp Ala Leu Leu Ile Gly Ala Lys Pro
165 170 175
Arg Gly Pro Gly Met Glu Arg Ala Ala Leu Leu Asp Ile Asn Gly Gln
180 185 190
Ile Phe Ala Asp Gln Gly Lys Ala Leu Asn Ala Val Ala Ser Arg Asn
195 200 205
Asp Glu Val Leu Val Val Gly Asn Pro Cys Asn Thr Asn Ala Leu Ile
210 215 220
Cys Leu Lys Asn Ala Pro Asn Ile Pro Ala Lys Asn Phe His Ala Leu
225 230 235 240
Thr Arg Leu Asp Glu Asn Arg Ala Lys Cys Gln Leu Ala Leu Lys Ala
245 250 255
Gly Val Phe Tyr Asp Lys Val Ser Asn Val Thr Ile Trp Gly Asn His
260 265 270
Ser Thr Thr Gln Val Pro Asp Phe Leu Asn Ala Lys Ile Asp Gly Arg
275 280 285
Pro Val Lys Glu Val Ile Lys Asp Thr Lys Trp Leu Glu Glu Glu Phe
290 295 300
Thr Leu Thr Val Gln Lys Arg Gly Gly Val Leu Ile Gln Lys Trp Gly
305 310 315 320
Arg Ser Ser Ala Ala Ser Thr Ala Val Ser Ile Val Asp Ala Ile Arg
325 330 335
Ser Leu Val Thr Pro Thr Pro Glu Gly Asp Trp Phe Ser Thr Gly Val
340 345 350
Tyr Thr Thr Gly Asn Pro Tyr Gly Ile Ala Glu Asp Ile Val Phe Ser
355 360 365
Met Pro Cys Arg Ser Lys Gly Asp Gly Asp Tyr Glu Leu Ala Ser Asp
370 375 380
Val Leu Met Asp Asp Phe Leu Trp Glu Arg Ile Lys Lys Ser Glu Ala
385 390 395 400
Glu Leu Leu Ala Glu Lys Lys Cys Val Ala His Leu Thr Gly Glu Gly
405 410 415
Asn Ala Phe Cys Asp Leu Pro Glu Asp Thr Met Leu Pro Gly Glu Val
420 425 430
<210> 14
<211> 662
<212> PRT
<213>Corn(Zea mays L.)
<400> 14
Met Ile Ser Ala Arg Thr Ala Ala Ala Ser Pro Ala Ser Leu Trp Lys
1 5 10 15
Gln Gly Gly Arg Ser Glu Gly Gly Gly Ser Cys Asp Gly Cys Arg Thr
20 25 30
Tyr Arg Asn Thr Leu Arg Arg Ala Ala Ala Ala Lys Val Arg Ala Leu
35 40 45
Pro Ser Arg Ala Val Glu Ala Val Lys Met Gly Ser Ala Ala Glu Met
50 55 60
Glu Gln Glu Glu Ala Glu Val Ala Ala Ala Ala Ala Gly Val Val Val
65 70 75 80
Glu Asp His Tyr Gly Glu Asp Ser Ala Thr Glu Glu Leu Pro Ile Leu
85 90 95
Pro Trp Ala Phe Ser Val Ala Arg Tyr Val Ser Phe Ser Trp Leu Lys
100 105 110
Lys Tyr Ala Glu Glu Ser Tyr Phe Tyr Ile Ser Gly Tyr Thr Leu Leu
115 120 125
Arg Asp Pro His His Asn Lys Gly Leu Ala Phe Met Glu Lys Glu Arg
130 135 140
Asp Ala His His Leu Arg Gly Leu Leu Pro Pro Ala Val Val Pro Gln
145 150 155 160
Glu Leu Gln Ile Lys Lys Ile Met His Asn Leu Arg Gln Tyr Gln Val
165 170 175
Pro Leu Gln Arg Tyr Met Ala Met Met Asp Leu Gln Glu Arg Asn Glu
180 185 190
Arg Leu Phe Tyr Lys Leu Leu Ile Asp Asn Val Glu Glu Leu Leu Pro
195 200 205
Val Val Tyr Thr Pro Thr Val Gly Glu Ala Cys Gln Lys Tyr Gly Ser
210 215 220
Ile Phe Arg Gln Pro Gln Gly Leu Tyr Val Ser Leu Arg Asp Lys Gly
225 230 235 240
Lys Val Leu Glu Val Leu Arg Asn Trp Pro His Arg Asn Ile Gln Val
245 250 255
Ile Cys Val Thr Asp Gly Glu Ala Ile Leu Gly Leu Gly Asp Leu Gly
260 265 270
Ser Gln Gly Met Gly Ile Pro Val Gly Lys Leu Ala Leu Tyr Thr Ala
275 280 285
Leu Gly Gly Val Arg Pro Ser Ala Cys Leu Pro Ile Thr Ile Asp Val
290 295 300
Gly Thr Asn Asn Glu Lys Leu Leu Asn Asp Glu Phe Tyr Ile Gly Leu
305 310 315 320
Arg Gln Lys Arg Ala Thr Gly Glu Glu Tyr His Glu Leu Met Glu Glu
325 330 335
Phe Met Ala Ala Val Lys Gln Ile Tyr Gly Glu Lys Val Leu Ile Gln
340 345 350
Phe Glu Asp Phe Ala Asn His Asn Ala Phe Asn Leu Leu Ala Lys Tyr
355 360 365
Ser Lys Ser His Leu Val Phe Asn Asp Asp Ile Gln Gly Thr Ala Ser
370 375 380
Val Val Leu Ala Gly Leu Leu Ala Ala Leu Lys Val Val Gly Arg Thr
385 390 395 400
Leu Ala Glu His Thr Tyr Leu Phe Leu Gly Ala Gly Glu Ala Gly Thr
405 410 415
Gly Ile Ala Glu Leu Ile Ala Leu Glu Ile Ser Lys Gln Thr Ser Ala
420 425 430
Pro Ile Glu Glu Cys Arg Lys Lys Ile Trp Leu Val Asp Ser Lys Gly
435 440 445
Leu Ile Val Asp Ser Arg Lys Asn Ser Val Gln Ser Phe Lys Lys Pro
450 455 460
Trp Ala His Glu His Glu Pro Leu Thr Thr Leu Tyr Asp Ala Val Gln
465 470 475 480
Ser Ile Lys Pro Thr Val Leu Ile Gly Thr Ser Gly Val Gly Arg Thr
485 490 495
Phe Thr Lys Glu Val Val Glu Ala Met Ala Ser Phe Asn Glu Arg Pro
500 505 510
Ile Ile Phe Ser Leu Ser Asn Pro Thr Ser His Ser Glu Cys Thr Ala
515 520 525
Glu Glu Ala Tyr Asn Trp Thr Gln Val Val Ile Phe Ala Ser Gly Ser
530 535 540
Pro Phe Asp Pro Val Glu Tyr Asp Gly Lys Val Phe Val Pro Gly Gln
545 550 555 560
Ser Asn Asn Ala Tyr Ile Phe Pro Gly Phe Gly Leu Gly Leu Val Ile
565 570 575
Ser Gly Ala Ile Arg Val His Glu Asp Met Leu Leu Ala Ala Ser Glu
580 585 590
Ala Leu Ala Ala Gln Ala Thr Gln Glu Asn Phe Asp Lys Gly Ser Ile
595 600 605
Phe Pro Pro Phe Thr Asn Ile Arg Lys Ile Ser Ala Arg Ile Ala Arg
610 615 620
Ala Val Ala Ala Lys Ala Tyr Glu Leu Gly Leu Ala Thr Arg Leu Pro
625 630 635 640
Pro Pro Arg Asp Leu Val Lys Tyr Ala Gln Ser Cys Met Tyr Thr Pro
645 650 655
Val Tyr Arg Asn Tyr Arg
660
<210> 15
<211> 456
<212> PRT
<213>Corn(Zea mays L.)
<400> 15
Met Tyr Thr Leu Pro Val Arg Ala Thr Thr Ser Ser Ile Val Ala Ser
1 5 10 15
Leu Ala Thr Pro Ala Pro Ser Ser Ser Ser Gly Ser Gly Ser Gly Arg
20 25 30
Pro Arg Pro Arg Leu Ile Arg Asn Ala Pro Val Phe Ala Ala Pro Ala
35 40 45
Thr Val Val Gly Met Asp Pro Thr Val Glu Arg Leu Lys Ser Gly Phe
50 55 60
Gln Lys Phe Lys Thr Glu Val Tyr Asp Lys Lys Pro Glu Leu Phe Glu
65 70 75 80
Pro Leu Lys Ser Gly Gln Ser Pro Arg Tyr Met Val Phe Ala Cys Ser
85 90 95
Asp Ser Arg Val Cys Pro Ser Val Thr Leu Gly Leu Gln Pro Gly Glu
100 105 110
Ala Phe Thr Val Arg Asn Ile Ala Ser Met Val Pro Pro Tyr Asp Lys
115 120 125
Ile Lys Tyr Ala Gly Thr Gly Ser Ala Ile Glu Tyr Ala Val Cys Ala
130 135 140
Leu Lys Val Gln Val Ile Val Val Ile Gly His Ser Cys Cys Gly Gly
145 150 155 160
Ile Arg Ala Leu Leu Ser Leu Lys Asp Gly Ala Pro Asp Asn Phe His
165 170 175
Phe Val Glu Asp Trp Val Arg Ile Gly Ser Pro Ala Lys Asn Lys Val
180 185 190
Lys Lys Glu His Ala Ser Val Pro Phe Asp Asp Gln Cys Ser Ile Leu
195 200 205
Glu Lys Glu Ala Val Asn Val Ser Leu Gln Asn Leu Lys Ser Tyr Pro
210 215 220
Phe Val Lys Glu Gly Leu Ala Gly Gly Thr Leu Lys Leu Val Gly Ala
225 230 235 240
His Tyr Asp Phe Val Lys Gly Gln Phe Val Thr Trp Glu Pro Pro Gln
245 250 255
Asp Ala Ile Glu Arg Leu Thr Ser Gly Phe Gln Gln Phe Lys Val Asn
260 265 270
Val Tyr Asp Lys Lys Pro Glu Leu Phe Gly Pro Leu Lys Ser Gly Gln
275 280 285
Ala Pro Lys Tyr Met Val Phe Ala Cys Ser Asp Ser Arg Val Cys Pro
290 295 300
Ser Val Thr Leu Gly Leu Gln Pro Gly Glu Ala Phe Thr Val Arg Asn
305 310 315 320
Ile Ala Ala Met Val Pro Gly Tyr Asp Lys Thr Lys Tyr Thr Gly Ile
325 330 335
Gly Ser Ala Ile Glu Tyr Ala Val Cys Ala Leu Lys Val Glu Val Leu
340 345 350
Val Val Ile Gly His Ser Cys Cys Gly Gly Ile Arg Ala Leu Leu Ser
355 360 365
Leu Gln Asp Gly Ala Pro Asp Thr Phe His Phe Val Glu Asp Trp Val
370 375 380
Lys Ile Gly Phe Ile Ala Lys Met Lys Val Lys Lys Glu His Ala Ser
385 390 395 400
Val Pro Phe Asp Asp Gln Cys Ser Ile Leu Glu Lys Glu Ala Val Asn
405 410 415
Val Ser Leu Glu Asn Leu Lys Thr Tyr Pro Phe Val Lys Glu Gly Leu
420 425 430
Ala Asn Gly Thr Leu Lys Leu Ile Gly Ala His Tyr Asp Phe Val Ser
435 440 445
Gly Glu Phe Leu Thr Trp Lys Lys
450 455

Claims (10)

1. a kind of method for enhancing photosynthesis of plant and/or improving plant products and/or improving phytomass, including as follows Step:5 photosynthetic key genes of C4 are imported into recipient plant, obtain genetically modified plants;The genetically modified plants with it is described by Body plant is compared, and photosynthesis enhancing and/or output increased and/or biomass improve;
The photosynthetic key genes of 5 C4 are the encoding gene of phosphopyruvic acid bidifly enzyme, encoding gene, the apple of PEP carboxylases Encoding gene, the encoding gene of NADP- malate dehydrogenases and the encoding gene of carbonic anhydrase of tartaric acid dehydrogenase;
In the genetically modified plants, the encoding gene of the phosphopyruvic acid bidifly enzyme is by the phosphopyruvic acid bidifly enzyme The endogenesis promoter driving transcription of encoding gene;The encoding gene of the PEP carboxylases by the PEP carboxylases encoding gene Endogenesis promoter driving transcription;The encoding gene of the malic dehydrogenase is driven by 35CaMVS promoters and transcribed;It is described The encoding gene of NADP- malate dehydrogenases is driven by Ubiqutin promoters and transcribed;The encoding gene of the carbonic anhydrase by The driving transcription of OsActin promoters.
2. according to the method described in claim 1, it is characterized in that:The photosynthetic key genes of 5 C4 are to pass through recombinant vector Form import in the recipient plant.
3. according to the method described in claim 2, it is characterized in that:The recombinant vector is any described in claim 4-8 Recombinant vector.
4. recombinant vector or the recombinant bacterium containing the recombinant vector, it is characterised in that:The recombinant vector is contains DNA fragmentation 1st, the circular plasmids of DNA fragmentation 2, DNA fragmentation 3, DNA fragmentation 4 and DNA fragmentation 5;
The DNA fragmentation 1 is from endogenesis promoter, the phosphorus for above swimming over to encoding gene of the downstream successively containing phosphopyruvic acid bidifly enzyme The encoding gene of sour pyruvic acid bidifly enzyme;
The DNA fragmentation 2 is from endogenesis promoter, the PEP carboxylases for above swimming over to encoding gene of the downstream successively containing PEP carboxylases Encoding gene;
The DNA fragmentation 3 is from above swimming over to the downstream encoding gene containing 35CaMVS promoters, malic dehydrogenase successively;
The DNA fragmentation 4 is from above swimming over to the downstream encoding gene containing Ubiqutin promoters, NADP- malate dehydrogenases successively;
The DNA fragmentation 5 is from above swimming over to the downstream encoding gene containing OsActin promoters, carbonic anhydrase successively.
5. recombinant vector according to claim 4 or recombinant bacterium, it is characterised in that:The recombinant vector is by the DNA Segment 1, the DNA fragmentation 2, the DNA fragmentation 3, the DNA fragmentation 4 and the DNA fragmentation 5 are inserted into after being sequentially connected with The recombinant plasmid obtained after between the Hind III and SmaI of 300 carriers of pCambia.
6. method or recombinant vector or recombinant bacterium according to claim 1-5, it is characterised in that:The phosphopyruvic acid is double Kinases is following any shown protein:
(A1) amino acid sequence is the protein of SEQ ID No.11;
(A2) by substitution of the amino acid sequence shown in SEQ ID No.11 by one or several amino acid residues and/or missing And/or add and have the protein of identical function;
(A3) with (A1)-(A2) in any limited amino acid sequence have more than 99%, more than 95%, more than 90%, More than 85% or more than 80% homology and the protein with identical function;
(A4) N-terminal of any limited protein and/or C-terminal connect the fusion protein obtained after label in (A1)-(A3);
The PEP carboxylases are following any shown protein:
(B1) amino acid sequence is the protein of SEQ ID No.12;
(B2) by substitution of the amino acid sequence shown in SEQ ID No.12 by one or several amino acid residues and/or missing And/or add and have the protein of identical function;
(B3) with (B1)-(B2) in any limited amino acid sequence have more than 99%, more than 95%, more than 90%, More than 85% or more than 80% homology and the protein with identical function;
(B4) N-terminal of any limited protein and/or C-terminal connect the fusion protein obtained after label in (B1)-(B3);
The malic dehydrogenase is following any shown protein:
(C1) amino acid sequence is the protein of SEQ ID No.13;
(C2) by substitution of the amino acid sequence shown in SEQ ID No.13 by one or several amino acid residues and/or missing And/or add and have the protein of identical function;
(C3) with (C1)-(C2) in any limited amino acid sequence have more than 99%, more than 95%, more than 90%, More than 85% or more than 80% homology and the protein with identical function;
(C4) N-terminal of any limited protein and/or C-terminal connect the fusion protein obtained after label in (C1)-(C3);
The NADP- malate dehydrogenases are following any shown protein:
(D1) amino acid sequence is the protein of SEQ ID No.14;
(D2) by substitution of the amino acid sequence shown in SEQ ID No.14 by one or several amino acid residues and/or missing And/or add and have the protein of identical function;
(D3) with (D1)-(D2) in any limited amino acid sequence have more than 99%, more than 95%, more than 90%, More than 85% or more than 80% homology and the protein with identical function;
(D4) N-terminal of any limited protein and/or C-terminal connect the fusion protein obtained after label in (D1)-(D3);
The carbonic anhydrase is following any shown protein:
(E1) amino acid sequence is the protein of SEQ ID No.15;
(E2) by substitution of the amino acid sequence shown in SEQ ID No.15 by one or several amino acid residues and/or missing And/or add and have the protein of identical function;
(E3) with (E1)-(E2) in any limited amino acid sequence have more than 99%, more than 95%, more than 90%, More than 85% or more than 80% homology and the protein with identical function;
(E4) N-terminal of any limited protein and/or C-terminal connect the fusion protein obtained after label in (E1)-(E3).
7. according to the method any in claim 1-6 or recombinant vector or recombinant bacterium, it is characterised in that:The phosphoric acid third The encoding gene of ketone acid bidifly enzyme is following any DNA molecular:
(a1) DNA molecular shown in SEQ ID No.2;
(a2) hybridize and encode DNA points of the phosphopyruvic acid bidifly enzyme with (a1) DNA molecular limited under strict conditions Son;
(a3) have more than 99%, more than 95%, more than 90%, more than 85% with the DNA sequence dna of any restriction in (a1)-(a2) Or more than 80% homology and the coding phosphopyruvic acid bidifly enzyme DNA molecular;
The encoding gene of the PEP carboxylases is following any DNA molecular:
(b1) DNA molecular shown in SEQ ID No.4;
(b2) hybridize under strict conditions with (b1) DNA molecular limited and encode the DNA molecular of the PEP carboxylases;
(b3) have more than 99%, more than 95%, more than 90%, more than 85% with the DNA sequence dna of any restriction in (b1)-(b2) Or more than 80% homology and the coding PEP carboxylases DNA molecular;
The encoding gene of the malic dehydrogenase is following any DNA molecular:
(c1) DNA molecular shown in SEQ ID No.6;
(c2) hybridize under strict conditions with (c1) DNA molecular limited and encode the DNA molecular of the malic dehydrogenase;
(c3) have more than 99%, more than 95%, more than 90%, more than 85% with the DNA sequence dna of any restriction in (c1)-(c2) Or more than 80% homology and the coding malic dehydrogenase DNA molecular;
The encoding gene of the NADP- malate dehydrogenases is following any DNA molecular:
(d1) DNA molecular shown in SEQ ID No.8;
(d2) hybridize under strict conditions with (d1) DNA molecular limited and encode the DNA molecular of the NADP- malate dehydrogenases;
(d3) have more than 99%, more than 95%, more than 90%, more than 85% with the DNA sequence dna of any restriction in (d1)-(d2) Or more than 80% homology and the coding NADP- malate dehydrogenases DNA molecular;
The encoding gene of the carbonic anhydrase is following any DNA molecular:
(e1) DNA molecular shown in SEQ ID No.10;
(e2) hybridize under strict conditions with (e1) DNA molecular limited and encode the DNA molecular of the carbonic anhydrase;
(e3) have more than 99%, more than 95%, more than 90%, more than 85% with the DNA sequence dna of any restriction in (e1)-(e2) Or more than 80% homology and the coding carbonic anhydrase DNA molecular.
8. according to the method any in claim 1-7 or recombinant vector or recombinant bacterium, it is characterised in that:The phosphoric acid third The nucleotide sequence of the endogenesis promoter of the encoding gene of ketone acid bidifly enzyme is as shown in SEQ ID No.1;
The nucleotide sequence of the endogenesis promoter of the encoding gene of the PEP carboxylases is as shown in SEQ ID No.3;
The nucleotide sequence of the 35CaMVS promoters is as shown in SEQ ID No.5;
The nucleotide sequence of the Ubiqutin promoters is as shown in SEQ ID No.7;
The nucleotide sequence of the OsActin promoters is as shown in SEQ ID No.9.
9. any recombinant vector or recombinant bacterium in enhancing photosynthesis of plant and/or improve plant in claim 4-8 Application in yield and/or raising phytomass.
10. according to the method any in claim 1-9 or application, it is characterised in that:The plant is C3 plant;
Specifically, the C3 plant is rice.
CN201810025625.1A 2018-01-11 2018-01-11 Turn the photosynthetic key genes of C4 and improve the photosynthetic method of C3 plant Pending CN108165577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810025625.1A CN108165577A (en) 2018-01-11 2018-01-11 Turn the photosynthetic key genes of C4 and improve the photosynthetic method of C3 plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810025625.1A CN108165577A (en) 2018-01-11 2018-01-11 Turn the photosynthetic key genes of C4 and improve the photosynthetic method of C3 plant

Publications (1)

Publication Number Publication Date
CN108165577A true CN108165577A (en) 2018-06-15

Family

ID=62518184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810025625.1A Pending CN108165577A (en) 2018-01-11 2018-01-11 Turn the photosynthetic key genes of C4 and improve the photosynthetic method of C3 plant

Country Status (1)

Country Link
CN (1) CN108165577A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791515A (en) * 2019-11-08 2020-02-14 中国科学院昆明植物研究所 Application of physcomitrella patens β CAs gene family in plant biomass and osmotic stress tolerance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320101B1 (en) * 1999-06-14 2001-11-20 Yissum Research Development Company Of The Hebrew University Of Jerusalem Enhancing inorganic carbon fixation by photosynthetic organisms
CN102002496A (en) * 2010-11-15 2011-04-06 中国科学院遗传与发育生物学研究所 DNA (Deoxyribonucleic Acid) molecule related to photosynthesis and application thereof
CN102105591A (en) * 2008-08-01 2011-06-22 拜耳生物科学股份有限公司 A method for increasing photosynthetic carbon fixation in rice
WO2011139638A2 (en) * 2010-04-25 2011-11-10 Donald Danforth Plant & Science Center Enhanced carbon fixation in photosynthetic hosts
CN103173424A (en) * 2013-04-16 2013-06-26 中国农业科学院生物技术研究所 RPRP (Rice Photorespiration Related Protein)-1 capable of increasing photosynthetic efficiency of plants as well as coding gene and application of RPRP-1
CN103614396A (en) * 2013-11-18 2014-03-05 河南省农业科学院小麦研究所 Malic enzyme (NADP-ME) gene and application thereof
CN103805616A (en) * 2014-02-25 2014-05-21 河南省农业科学院小麦研究所 C4 type pyruvate orthophosphate dikinase (PPDK) gene of corn and application thereof in wheat

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320101B1 (en) * 1999-06-14 2001-11-20 Yissum Research Development Company Of The Hebrew University Of Jerusalem Enhancing inorganic carbon fixation by photosynthetic organisms
CN102105591A (en) * 2008-08-01 2011-06-22 拜耳生物科学股份有限公司 A method for increasing photosynthetic carbon fixation in rice
WO2011139638A2 (en) * 2010-04-25 2011-11-10 Donald Danforth Plant & Science Center Enhanced carbon fixation in photosynthetic hosts
CN102002496A (en) * 2010-11-15 2011-04-06 中国科学院遗传与发育生物学研究所 DNA (Deoxyribonucleic Acid) molecule related to photosynthesis and application thereof
CN103173424A (en) * 2013-04-16 2013-06-26 中国农业科学院生物技术研究所 RPRP (Rice Photorespiration Related Protein)-1 capable of increasing photosynthetic efficiency of plants as well as coding gene and application of RPRP-1
CN103614396A (en) * 2013-11-18 2014-03-05 河南省农业科学院小麦研究所 Malic enzyme (NADP-ME) gene and application thereof
CN103805616A (en) * 2014-02-25 2014-05-21 河南省农业科学院小麦研究所 C4 type pyruvate orthophosphate dikinase (PPDK) gene of corn and application thereof in wheat

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KAISA KAJALA等: "Strategies for engineering a two-celled C4 photosynthetic pathway into rice", 《JOURNAL OF EXPERIMENTAL BOTANY》 *
MAYLIN PÉREZ BERNAL等: "Assessment three constitutive promoters for GUS expression in rice (Oryza sativa L., var. J-104)", 《REV.COLOMB.BIOTECHOL》 *
SHANTA KARKI: "Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C4 pathway", 《RICE》 *
中国可持续发展研究会: "《生物技术与未来农业》", 31 January 2016 *
王永霞: "外源玉米pepc基因对小麦C3、C4途径相关基因表达的效应", 《麦类作物学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791515A (en) * 2019-11-08 2020-02-14 中国科学院昆明植物研究所 Application of physcomitrella patens β CAs gene family in plant biomass and osmotic stress tolerance

Similar Documents

Publication Publication Date Title
Dolganov et al. Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation.
CN107164347A (en) Control Culm of Rice rugosity, tiller number, grain number per spike, mass of 1000 kernel and the ideotype gene NPT1 of yield and its application
US6320101B1 (en) Enhancing inorganic carbon fixation by photosynthetic organisms
MX2013001191A (en) Strains of agrobacterium modified to increase plant transformation frequency.
CN108822194B (en) Plant starch synthesis related protein OsFLO10, and coding gene and application thereof
CN107299100B (en) Plant constitutive expression promoter and application thereof
CN109311953A (en) Increase plant growth and yield using phenylalanine deaminase sequence
CN103865937A (en) Cytoplasmic male sterility restorer gene in rice and application thereof
WO2003100066A1 (en) A method for production of plants with suppressed photorespiration and improved co2 fixation
CN114480391B (en) Promoter for improving CRISPR/Cas9 system gene editing efficiency and application thereof
CN114369147B (en) Application of BFNE gene in tomato plant type improvement and biological yield improvement
CN112812161B (en) Application of protein IbMYC2 in regulation and control of plant drought resistance
CN112457380A (en) Protein for regulating and controlling content of fruit shape and/or fruit juice of plant, related biological material and application thereof
CN110295177A (en) The MYB43 of overexpression cabbage type rape and its parent species is improving plant plant type and is improving the application in yield
MX2014007711A (en) Methods for improving crop yield.
CN108165577A (en) Turn the photosynthetic key genes of C4 and improve the photosynthetic method of C3 plant
CN115466747B (en) Glycosyltransferase ZmKOB1 gene and application thereof in regulation and control of maize female ear set character or development
AU2001276398B2 (en) Transgenic plants which produce isomalt
CN112608938A (en) Application of OsAO2 gene in controlling drought resistance of rice
CN108690847B (en) Application of protein nog1 in regulation and control of plant yield and grain number per ear
CN111304219A (en) GL1 gene separated from rice WZ1 and application thereof in increasing rice grain length
CN105732784B (en) The application of arabidopsis seedling stage lethal gene SL1
CN1285872A (en) Gene associated with disease resistance in plants
CN112501147B (en) Common wild rice grain related coding gene and application thereof
CN112458105B (en) Common wild rice grain related coding gene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180615

RJ01 Rejection of invention patent application after publication