CN108155959B - 一种复杂网络环境下无人机测控信号检测方法 - Google Patents

一种复杂网络环境下无人机测控信号检测方法 Download PDF

Info

Publication number
CN108155959B
CN108155959B CN201711354535.9A CN201711354535A CN108155959B CN 108155959 B CN108155959 B CN 108155959B CN 201711354535 A CN201711354535 A CN 201711354535A CN 108155959 B CN108155959 B CN 108155959B
Authority
CN
China
Prior art keywords
trough
value
wave
signal
aerial vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711354535.9A
Other languages
English (en)
Other versions
CN108155959A (zh
Inventor
韩周安
张文权
黄勇
于延辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Acti Technology & Development Co ltd
Original Assignee
Chengdu Acti Technology & Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Acti Technology & Development Co ltd filed Critical Chengdu Acti Technology & Development Co ltd
Priority to CN201711354535.9A priority Critical patent/CN108155959B/zh
Publication of CN108155959A publication Critical patent/CN108155959A/zh
Application granted granted Critical
Publication of CN108155959B publication Critical patent/CN108155959B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters

Abstract

本发明公开了一种复杂网络环境下无人机测控信号检测方法,通过对功率谱密度数据进行最大值保持,对最大值保持后的功率谱密度数据进行载波检测,对载波检测结果进行无人机信号识别,然后对无人机信号识别结果累积上报实现对无人机测控信号的检测。本发明采用快速傅里叶变换实现使用很小的计算量检测出复杂网络环境下的无人机测控信号,简单方便。

Description

一种复杂网络环境下无人机测控信号检测方法
技术领域
本发明涉及通信领域,尤其涉及一种复杂网络环境下无人机测控信号的检测方法。
背景技术
非合作通信中,信号分析的首要任务是,从复杂电磁环境中获取目标信号频率、时间、功率三维特征,而信号三维特征的获取主要依靠信号信号检测技术。
目前已有的信号检测方法大致分为两类:一类是通过傅里叶变换,观察频率范围内是否有符合频率、功率特征的信号,如果满足,再通过累积捕获,判断是否满足时间特征,从而捕获目标信号并测量其频率、时间、功率三维特征参数。另一类是采用小波变换、短时傅里叶变换等技术直接分析信号的频率、时间、功率等三维特征。
第一类方法的特点是实现简单、计算量小,对常在信号效果较好,第二类方法的特点是实现复杂,计算量大,能够捕获突发信号和跳频信号。
无人机测控信号的特点:(1)属于跳频信号,但跳变频率较低,一般小于50次每秒。(2)跳变频率范围为固定值,一般在8MHz左右。(3)对频谱作最大值保持,其包络为一个通带平坦,过渡带陡峭的宽带信号,因而上述两种方法对于无人机测控信号均不能很好的实现检测。
发明内容
为了解决上述问题,本发明提出一种复杂网络环境下无人机测控信号的检测方法,以便捷、有效的发现并检测复杂网络环境下的无人机测控信号。
具体的,本发明采用如下技术方案:
一种复杂网络环境下无人机测控信号的检测方法:
步骤1:利用通用无线电数字接收机对目标频段进行连续频谱扫描,采集基带IQ数据进行计算后得到功率谱密度数据并作最大值保持,使测控信号包络一个通带平坦,过渡带陡峭的宽带信号,然后上传至上位机;
步骤2:上位机软件后台调用信号检测算法动态库,对最大值保持后的功率谱密度数据进行载波检测,提取符合无人机测控信号的频率、功率特征的信号;
步骤3:对载波检测结果进行无人机信号识别;
步骤4:对无人机信号识别结果进行多次累积,上报出现次数最多的频点;
步骤5:对上报结果进行处理。
优选地,通过快速傅里叶变换对所述步骤1中采集的基带IQ数据进行计算,对其结果经过取模值、求对数之后得到的功率谱密度数据找出最大值并保持。
优选地,对于所述步骤2中的载波检测中的载波信号采用波峰波谷法识别。
所述波峰波谷法为:
步骤1:利用差分数据,寻找数据的波峰和波谷,记录下其位置和标志;
步骤2:寻找第一个波谷,记为左侧波谷的最小值,记录下其位置和取值;
步骤3:继续寻找,如果寻找到波峰,并且波峰的取值大于左侧波谷取值,且差值大于预设值,认为寻找左侧波谷结束,开始寻找波峰,记当前找到的波峰为波峰的最大值;如果依然寻找到波谷,将取值与原波谷取值比较,取最小值记为左侧波谷;
步骤4:开始寻找波峰后,继续寻找,如果是波峰,将取值与原波峰取值比较,取最大值作为新的波峰;如果找到波谷并且波峰取值大于波谷取值3dB, 且差值大于预设值,认为寻找波峰结束,开始寻找右侧波谷,记当前波谷为右侧波谷;
步骤5:开始寻找右侧波谷后,继续寻找,如果是波峰,并且取值大于当前波谷取值的3dB,认为寻找右侧波谷结束,左右两侧波谷和波峰组成一个完整的信号,记当前波谷为新的左侧波谷,重复步骤2至步骤5;如果是波谷,将取值与原波谷取值比较,取最小值记为右侧波谷。
步骤6:查看边缘是否有漏掉的信号,依据每个信号的带宽要求,以中心频点为基准,向两侧递减,寻找信号的带宽。
优选地,预设值为3dB或6dB。
其中符合无人机测控信号的频率、功率特征的信号为:(1)信号3dB带宽在7-9MHz,(2)信号包络通带平坦,通带起伏在3dB至6dB;(3) 信号包络陡峭的过渡带。
优选地,所述对上报结果进行处理为将上报结果进行显示或引导侧向定位设备进行处理。
优选地,所述数字接收机通过LAN口或USB接口上传数据。
优选地,所述上位机为DSP或通用PC机。
本发明的有益效果在于:
(1)与常规跳频信号检测算法相比,该方法计算复杂度很低,仅需快速傅里叶变换,因而在计算量比较小的前提下就可实现对于无人机测控信号的准确检测;(2)与常规载波检测算法相比,该方法的载波检测无须设置检测门限,可适应不同噪声环境的应用场景,尤其是2400MH至2500MHz的WIFI信号频段;(3)累积多次识别结果,上报出现次数最多的频点,大幅度降低误报概率;(4)该方法可在通用信号分析设备上工程实现,无须任何专用处理设备。
附图说明
图1为无人机测控信号检测示意图。
图2为载波检测示意图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式。
参见图1,无人机测控信号的检测通过步骤1-5实现:
步骤1:利用通用无线电数字接收机对目标频段进行连续频谱扫描,采集基带IQ数据进行计算后得到功率谱密度数据并作最大值保持,使测控信号包络一个通带平坦,过渡带陡峭的宽带信号,然后上传至上位机;
步骤2:上位机软件后台调用信号检测算法动态库,对最大值保持后的功率谱密度数据进行载波检测,提取符合无人机测控信号的频率、功率特征的信号;
步骤3:对载波检测结果进行无人机信号识别;
步骤4:对无人机信号识别结果进行多次累积,上报出现次数最多的频点;
步骤5:对上报结果进行处理。
优选通过快速傅里叶变换对所述步骤1中采集的基带IQ数据进行计算,对其结果经过取模值、求对数之后得到的功率谱密度数据找出最大值并保持。
参见图2,步骤2中的载波检测中的载波信号采用波峰波谷法识别。
所述波峰波谷法具体为:
步骤1:利用差分数据,寻找数据的波峰和波谷,记录下其位置和标志;
步骤2:寻找第一个波谷,记为左侧波谷的最小值,记录下其位置和取值;
步骤3:继续寻找,如果寻找到波峰,并且波峰的取值大于左侧波谷取值,且差值大于预设值,认为寻找左侧波谷结束,开始寻找波峰,记当前找到的波峰为波峰的最大值;如果依然寻找到波谷,将取值与原波谷取值比较,取最小值记为左侧波谷;
步骤4:开始寻找波峰后,继续寻找,如果是波峰,将取值与原波峰取值比较,取最大值作为新的波峰;如果找到波谷并且波峰取值大于波谷取值3dB, 且差值大于预设值,认为寻找波峰结束,开始寻找右侧波谷,记当前波谷为右侧波谷;
步骤5:开始寻找右侧波谷后,继续寻找,如果是波峰,并且取值大于当前波谷取值的3dB,认为寻找右侧波谷结束,左右两侧波谷和波峰组成一个完整的信号,记当前波谷为新的左侧波谷,重复步骤2至步骤5;如果是波谷,将取值与原波谷取值比较,取最小值记为右侧波谷。
步骤6:查看边缘是否有漏掉的信号,依据每个信号的带宽要求,以中心频点为基准,向两侧递减,寻找信号的带宽。
优选地,预设值为3dB或6dB。
其中符合无人机测控信号的频率、功率特征的信号为:(1)信号3dB带宽在7-9MHz,(2)信号包络通带平坦,通带起伏在3dB至6dB;(3) 信号包络陡峭的过渡带。
优选地,所述对上报结果进行处理为将上报结果进行显示或引导侧向定位设备进行处理。
优选地,所述数字接收机通过LAN口或USB接口上传数据。
优选地,所述上位机为DSP或通用PC机。
本发明的无人机测控信号检测方法与常规跳频信号检测算法相比,该方法计算复杂度很低,仅需快速傅里叶变换,因而在计算量比较小的前提下就可实现对于无人机测控信号的准确检测,且载波检测无须设置检测门限,可适应不同噪声环境的应用场景,尤其是2400MH至2500MHz的WIFI信号频段;对识别结果进行多次累积,上报出现次数最多的频点,大幅度降低误报概率。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和单元并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、ROM、RAM等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (6)

1.一种复杂网络环境下无人机测控信号检测方法,其特征在于:
步骤1:利用通用无线电数字接收机对目标频段进行连续频谱扫描,采集基带IQ数据进行计算后得到功率谱密度数据并作最大值保持,使测控信号包络一个通带平坦,过渡带陡峭的宽带信号,然后上传至上位机;
通过快速傅里叶变换对所述步骤1中采集的基带IQ数据进行计算,对其结果经过取模值、求对数之后得到的功率谱密度数据找出最大值并保持;
步骤2:上位机软件后台调用信号检测算法动态库,对最大值保持后的功率谱密度数据进行载波检测,提取符合无人机测控信号的频率、功率特征的信号;
对于所述步骤2中的载波检测中的载波信号采用波峰波谷法识别;
所述波峰波谷法为:
利用差分数据,寻找数据的波峰和波谷,记录下其位置和标志;
寻找第一个波谷,记为左侧波谷的最小值,记录下其位置和取值;
继续寻找,如果寻找到波峰,并且波峰的取值大于左侧波谷取值,且差值大于预设值,认为寻找左侧波谷结束,开始寻找波峰,记当前找到的波峰为波峰的最大值;如果依然寻找到波谷,将取值与原波谷取值比较,取最小值记为左侧波谷;
开始寻找波峰后,继续寻找,如果是波峰,将取值与原波峰取值比较,取最大值作为新的波峰;如果找到波谷并且波峰取值大于波谷取值3dB,且差值大于预设值,认为寻找波峰结束,开始寻找右侧波谷,记当前波谷为右侧波谷;
开始寻找右侧波谷后,继续寻找,如果是波峰,并且取值大于当前波谷取值的3dB,认为寻找右侧波谷结束,左右两侧波谷和波峰组成一个完整的信号,记当前波谷为新的左侧波谷,重复步骤2至步骤5;如果是波谷,将取值与原波谷取值比较,取最小值记为右侧波谷;
查看边缘是否有漏掉的信号,依据每个信号的带宽要求,以中心频点为基准,向两侧递减,寻找信号的带宽;
步骤3:对载波检测结果进行无人机信号识别;
步骤4:对无人机信号识别结果进行多次累积,上报出现次数最多的频点;
步骤5:对上报结果进行处理。
2.如权利要求1所述的检测方法,其特征在于:所述预设值为3dB或6dB。
3.如权利要求1所述的检测方法,其特征在于:所述符合无人机测控信号的频率、功率特征的信号为:(1)信号3dB带宽在7-9MHz,(2)信号包络通带平坦,通带起伏在3dB至6dB;(3) 信号包络陡峭的过渡带。
4.如权利要求1所述的检测方法,其特征在于:所述对上报结果进行处理为将上报结果进行显示或引导侧向定位设备进行处理。
5.如权利要求1-4任一项所述的检测方法,其特征在于:所述数字接收机通过LAN口或USB接口上传数据。
6.如权利要求1-4任一项所述的检测方法,其特征在于:所述上位机为DSP或通用PC机。
CN201711354535.9A 2017-12-15 2017-12-15 一种复杂网络环境下无人机测控信号检测方法 Active CN108155959B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711354535.9A CN108155959B (zh) 2017-12-15 2017-12-15 一种复杂网络环境下无人机测控信号检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711354535.9A CN108155959B (zh) 2017-12-15 2017-12-15 一种复杂网络环境下无人机测控信号检测方法

Publications (2)

Publication Number Publication Date
CN108155959A CN108155959A (zh) 2018-06-12
CN108155959B true CN108155959B (zh) 2020-09-29

Family

ID=62467100

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711354535.9A Active CN108155959B (zh) 2017-12-15 2017-12-15 一种复杂网络环境下无人机测控信号检测方法

Country Status (1)

Country Link
CN (1) CN108155959B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112147704B (zh) * 2020-09-27 2023-01-06 上海特金无线技术有限公司 探测无人机的方法、装置及设备、存储介质
CN112994740B (zh) * 2021-04-23 2021-07-23 成都天锐星通科技有限公司 跳频信号参数估计方法、装置、电子设备和可读存储介质
CN114280368B (zh) * 2021-12-28 2023-08-11 成都爱科特科技发展有限公司 一种复杂环境下突发信号检测方法及检测系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005104400A1 (ja) * 2004-04-23 2007-08-30 三菱電機株式会社 ダイバーシチ受信機およびダイバーシチ受信方法
DE102007062603B4 (de) * 2007-12-22 2013-01-31 Diehl Bgt Defence Gmbh & Co. Kg Verfahren und Vorrichtung zur Detektion Daten sendender Fahrzeuge
CN203894401U (zh) * 2014-06-06 2014-10-22 广州广电计量检测股份有限公司 应用于电波暗室的信号检测系统
CN105182070B (zh) * 2015-08-13 2017-12-05 西华大学 一种信号检测方法
CN205725773U (zh) * 2016-03-02 2016-11-23 北京盈想东方科技股份有限公司 一种单通道频谱监测设备
CN105842561B (zh) * 2016-03-28 2018-06-26 北京航空航天大学 一种适用于现场电磁干扰检测的背景信号消除方法
CN205787905U (zh) * 2016-04-15 2016-12-07 陈昊 无人飞行器、无人飞行器控制端及系统
CN106598037A (zh) * 2016-12-13 2017-04-26 天津成周科技有限公司 一种基于电子信息无人机控制用无人机身份识别系统

Also Published As

Publication number Publication date
CN108155959A (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
CN107911183B (zh) 一种基于实时信号特征分析的无人机识别方法及系统
US10158437B2 (en) Wireless analysis apparatus and wireless analysis method
CN108155959B (zh) 一种复杂网络环境下无人机测控信号检测方法
CN108957399B (zh) 一种利用lte信号信道状态信息实现运动检测的方法
US8447252B2 (en) Adaptive channel scanning for detection and classification of RF signals
CN108627807B (zh) 一种机载雷达抗干扰方法
CN111399002A (zh) 一种基于两级神经网络的gnss接收机组合干扰分类识别方法
CN110149656B (zh) 无线信号覆盖测试方法及装置
CN112684251B (zh) 一种基于功率谱模版的目标信号频域检测方法
CN113259029B (zh) 一种适用于无人机信号的实时自动检测识别方法
KR102162284B1 (ko) 클라우드 데이터 처리 gnss 재밍 감시 방법 및 시스템
Khalaf et al. Hybrid spectrum sensing architecture for cognitive radio equipment
CN108089071B (zh) 一种环境门限干扰检测方法
CN111046025B (zh) 无人机信号探测方法及装置
CN112751629A (zh) 基于时频图像处理的宽带特定信号检测方法
CN106656372B (zh) 一种跳频系统的频带干扰检测方法
US8022858B2 (en) Radar detection method and apparatus using the same
CN112929141B (zh) 一种基于图传信号匹配的无人机检测识别方法和系统
CN113300986B (zh) 无人机图传信号与热点信号识别方法、介质、计算机设备
Scheers et al. Wideband spectrum sensing technique based on goodness-of-fit testing
CN109709581B (zh) 一种卫星导航信号强干扰循环特征参数快速检测获取方法
CN111753803A (zh) 基于模糊聚类和高阶累积量的无人机图传信号识别方法
CN108718223B (zh) 一种非合作信号的盲频谱感知方法
CN114584227B (zh) 自动化突发信号检测方法
JP5252430B2 (ja) 信号検出方法,プログラム,情報記憶媒体,及びセンサー

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant