CN108154938A - 伽码激光或伽码射线实现可控核聚变的方法与装置 - Google Patents

伽码激光或伽码射线实现可控核聚变的方法与装置 Download PDF

Info

Publication number
CN108154938A
CN108154938A CN201611144464.5A CN201611144464A CN108154938A CN 108154938 A CN108154938 A CN 108154938A CN 201611144464 A CN201611144464 A CN 201611144464A CN 108154938 A CN108154938 A CN 108154938A
Authority
CN
China
Prior art keywords
laser
gamma
energy
fusion
neutron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611144464.5A
Other languages
English (en)
Inventor
陈紫微
陈世浩
姜云鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201611144464.5A priority Critical patent/CN108154938A/zh
Publication of CN108154938A publication Critical patent/CN108154938A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • X-Ray Techniques (AREA)
  • Plasma Technology (AREA)

Abstract

伽码激光或伽码射线实现可控核聚变的方法与装置,属核能源领域。其装置由伽码激光或伽码射线发生器、中子束或正离子束、由聚变材料制作的靶球、约束靶球等离子体的磁约束装置或激光惯性约束装置构成。伽码光子能量等于将靶核激发到较长寿命激发态的能量,伽码激光或伽码射线对称地辐照靶球,吸收伽码光子的靶核处于激发态。以普通激光或激光尾波将靶球等离子体加温到聚变温度,使中子束或正离子束入射靶球等离子体。处于激发态的靶核与中子或正离子聚变温度显著低于处于基态的靶核与中子或正离子聚变温度,从而劳逊判据容易实现,聚变反应能够发生。

Description

伽码激光或伽码射线实现可控核聚变的方法与装置
技术领域:本发明属于核能源领域。
技术背景:可控核聚变是解决人类能源问题的一个重要方式,虽然有了很大进展,劳逊判据所要求的聚变温度已经达到,但迄今未能实现[1]。这是由于按传统核聚变方式,在聚变高温下,劳逊判据中的约束时间和等离子体的密度不容易达到。本发明提出新的核聚变方式,所需温度显著低于传统核聚变温度,劳逊判据能够实现。
波长可调的伽码射线在世界多个实验室已经实现,伽码激光实现方案也已经提出[2]-[4]。文献[5]提出了一种伽码激光或伽码射线实现可控核聚变的方法与装置。本发明与这一发明的差别是,利用中子束或正离子束入射到其原子核处于激发态的等离子体靶球中实现可控核聚变。
发明内容:伽码激光或伽码射线实现可控核聚变的方法与装置,其装置由伽码激光或伽码射线发生器、中子束或正离子束、由聚变材料制作的靶球、约束靶球等离子体的磁约束装置或激光惯性约束装置构成;其中聚变材料的原子核有激发态,激发态之一的寿命τ相对较长,长于1fs,能量本征值Eg相对较高,高于0.4MeV;满足这样条件的原子核有多种,其中有 伽码激光或伽码射线的频率ωγ满足
这里m是用于聚变原子核的质量;伽码激光或伽码射线发生器对称地分布在靶球周围、对称地辐照靶球,辐照的时间等于等离子体态的靶球被约束的时间;伽码激光或伽码射线的总能流密度Iγ满足
式中,σγe是聚变原子核对伽码光子的吸收截面;吸收能量为伽码光子的核处于能量为Ee的激发态;设激发态核温度为TRF或TpF时,能够分别与动能为En的入射中子、或动能为Ep的入射正离子发生聚变,以普通波长激光或激光尾波将靶球等离子体加温到TnF或TpF,并开动中子源或正离子源,使得动能为En的中子或动能为Ep的正离子入射到靶球,中子束的总能流密度In、离子束的总能流密度Ip分别为
式中σnN、σpN分别为聚变核吸收动能为En中子或动能为Ep离子的吸收截面;提高TnF或TpF,则可减小En或Ep,反之,降低TnF或TpF,则需增大En或Ep,根据具体条件确定TnF或TpF和En或Ep;靶核吸收这样的中子或离子后,发生聚变反应,并释放出能量。
质子数为Z的原子核同时吸收n个伽码光子的可能性是存在的,1≤n≤Z,这时,伽码光频率和总能流密度满足
式中,σ是核同时吸收n个光子的吸收截面。
显然,虽然满足(4)的多光子吸收这种可能性存在,但其要低于满足(1)、(2)单光子吸收截面几个数量极,低到αn,α=e2/4n=1/137,是精细耦合常数。所以应该提高单光子能量,以满足(1)、(2)。
本发明中最重要的是,用伽码激光或伽码射线辐照靶核,使其处于激发态,激发态靶核的势能更高,核半径与散射截面增大,从而聚变温度显著降低,聚变等离子体更容易被约束,劳逊判据更容易实现。其次是用中子入射激发态靶核,实现中子与靶核的聚变点火。其好处是,中子与核之间没有静电排斥力,在更低温度实现核聚变。所需要単色性好的中子可由伽码激光或伽码射线中子源产生(见本人另一个申请、尚未获权的专利)。显然,如文献[5]所述,靶球可由两种核构成。至少其中一种核具有较长寿命的激发态,伽码光的频率与能流密度仍满足(1与(2)式。这时,中子或离子束当然就不需要了。
例如,存在如下反应[6]
当Ep0≤3MeV, (5)
Ep0是质子p的动能。存在的激发态相对于基态,的能量是EeB=2.124639MeV,寿命3.8fs,自旋及宇称是(1/2)-。将EeB的质量mB代入(1),就确定了入射伽马射线的频率以频率为的伽码射线辐照由其原子核为的靶球,和将处于激发态。考虑到体系与体系总能量相同以及隧道效应,将有以下聚变反应
当Ep≤0.875361MwV, (6)
式中,Ep是与聚变旳质子p动能。(6)表明,与激发态核发生聚变反应的质子动能显著低于与基态核发生聚变反应的质子动能。相应地,不用中子或正离子束入射,而是通过加温实现两种核的聚变时,且至少其中一种核处于激发态,则激发态核的聚变反应温度将显著低于基态核的聚变反应温度。
与(5)、(6)类似的反应有[7]-[8]
伽码激光与核的作用显著强于同样振幅、同样频率伽码射线与核的作用。现在,伽马激光尚未实现,暂用强度更大的单色伽码射线代替伽马激光作用于原子核,使其处于激发态,实现核聚变。
附图说明:图1是伽码激光或伽码射线实现可控核聚变的装置水平剖面示意图。图中,1是靶球;2是伽码激光或伽码射线发生器;3是中子源或正离子源。
具体实施方式:实施例1.取1g其原子核为的铍制作靶球。的半衰期T1/2为53.29天、自旋宇称为(3/2)-、质量mBe=7.0169283u。有一个激发态其能量本征值EBe=429.08KeV,寿命τBe=133fs,自旋宇称为(1/2)。将EBe、mBe代入(1)就确定了所需要的伽码射线频率ωγBe.由光核散射公式可确定对能量为伽码光子吸收截面σγBe,由σγBe、τBe可确定伽码射线能流密度IγBe。以6束频率为ωγBe、能流密度为IγBe/6的伽码射线对称地辐照靶球,将处于其激发态靶球将处于等离子体态。对此等离子体用传统方式作磁约束。入射中子的能量可取为En=1KeV。由中子与核作用公式可确定对动能为En的中子吸收截面σn.将En和σn代入(3)就确定了总的中子能流密度In。6束对称分布、中子动能为En、能流密度均为In/6的中子束入射到磁约束中的靶球等离子体,发生以下聚变反应[8]
式中QnBe是这一聚变反应放出的能量。用相应的传统技术利用这些能量,并处理核聚变产生的正离子与电子。
处于温度TBe≈107K的等离子体态时,热中子也能与发生上述反应。
实施例2.取1g其原子核为的锂制作靶球。是稳定核、自旋宇称为(3/2)-、质量为mLi=7.0160030u。有一个激发态其能量本征值ELi=477.612KeV,,寿命τLi=73fs,自旋宇称为(1/2)。将ELi、mLi代入(1)就确定了所需要的伽码射线频率ωγLi.由光核散射公式可确定对能量为的伽码光子吸收截面σγLi,由σγLi、τLi可确定伽码射线能流密度IγLi。以6束频率为ωγLi、能流密度为IγLi/6的伽码射线对称地辐照靶球,将处于其激发态靶球将处于等离子体态。对此等离子体用传统方式作磁约束。中间态有激发态其能量为3.04MeV.由此,入射质子的能量可取为Ep≤2.563MeV。由质子与核作用公式可确定对动能为Ep的质子吸收截面σp.将Ep和σp代入(3)就确定了总的质子能流密度Ip。6束对称分布、质子动能为Ep、能流密度均为Ip/6的质子束入射到磁约束中的靶球等离子体,发生以下聚变反应[8]
式中QpLi是这一聚变反应放出的能量。
参考文献
[1]Hurricane,O.A,Callahan D.A and Casey D.T.et al,Nature,Fuel gainexceeding unity in an inertially confined fusion implosion,20Feb.2014,V506:343-348.
[2]Chen Shi-Hao,Chen Ziwei,Electron-photon backscattering laser[J],Laser Physics,2014,24,045805.
[3]Chen Ziwei,Chen Shi-Hao,A discussion on electron-photon backscattering lasers and electron-photon backscattering laser in a laserstanding wave cavity[J],Laser Physics,20154,25,045803.
[4]Chen Shi-Hao,Chen Ziwei,Coherent conditions of electron-photonbackscattering light in a wiggle magnetic field[J],Laser Physics,2016,26,025807.
[5]陈世浩,伽码激光或伽码射线实现可控核聚变的方法与装置,专利申请号:201610992740.7;201621219556.0.
[6]杨福家,王炎森陆福全,原子核物理,2006,第二版,复旦大学出版社,295-296.
[7]卢希庭,原子核物理,修订版,北京,原子能出版社,1980,333-335,229-230.
[8]Table of Isotopes,Eighth Edition,Edited by Richard B.Firestone,Virginia S.Shirley and S.Y.Frank Chu et al,1996,Weily Interscience,p276,285,300,304,309and 313.

Claims (2)

1.伽码激光或伽码射线实现可控核聚变的方法与装置,其特征是是,这种装置由伽码激光或伽码射线发生器、中子束或正离子束、由聚变材料制作的靶球、约束靶球等离子体的磁约束装置或激光惯性约束装置构成;其中聚变材料的原子核有激发态,激发态之一的寿命τ相对较长,长于1fs,其能量本征值Ee相对较高,高于0.4MeV;伽码激光或伽码射线的频率ωγ满足
这里m是用于聚变原子核的质量;伽码激光或伽码射线发生器对称地分布在靶球周围、对称地辐照靶球,辐照的时间等于等离子体态的靶球被约束的时间;伽码激光或伽码射线的总能流密度Iγ满足
式中,σγe是聚变原子核对伽码光子的吸收截面;吸收能量为伽码光子的核处于能量为Ee的激发态;设激发态核温度为TnF或TpF时,能够分别与动能为En的入射中子、或动能为Ep的入射正离子发生聚变,以普通波长激光或激光尾波将靶球等离子体加温到TnF或TpF,并开动中子源或正离子源,使得动能为En的中子或动能为Ep的正离子入射到靶球,中子束的总能流密度In、离子束的总能流密度Ip分别为
式中σnN、σpN分别为聚变核吸收动能为En中子或动能为Ep离子的吸收截面;提高TnF或TpF,则可减小En或Ep,反之,降低TnF或TpF,则需增大En或Ep,根据具体条件确定TnF或TpF和En或Ep;靶核吸收这样的中子或离子后,发生聚变反应,并释放出能量。
2.权利要求1所述的伽码激光或伽码射线实现可控核聚变的方法与装置,其特征是,质子数为Z为的核同时吸收n个伽码光子的可能性是存在的,1≤n≤Z,这时,伽马光频率和总能流密度满足
式中,σ是核同时吸收n个光子的吸收截面。
CN201611144464.5A 2016-12-06 2016-12-06 伽码激光或伽码射线实现可控核聚变的方法与装置 Pending CN108154938A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611144464.5A CN108154938A (zh) 2016-12-06 2016-12-06 伽码激光或伽码射线实现可控核聚变的方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611144464.5A CN108154938A (zh) 2016-12-06 2016-12-06 伽码激光或伽码射线实现可控核聚变的方法与装置

Publications (1)

Publication Number Publication Date
CN108154938A true CN108154938A (zh) 2018-06-12

Family

ID=62468453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611144464.5A Pending CN108154938A (zh) 2016-12-06 2016-12-06 伽码激光或伽码射线实现可控核聚变的方法与装置

Country Status (1)

Country Link
CN (1) CN108154938A (zh)

Similar Documents

Publication Publication Date Title
Hora et al. Fusion energy using avalanche increased boron reactions for block-ignition by ultrahigh power picosecond laser pulses
Hai-Bo et al. Monte Carlo simulation and parameterized treatment on the effect of nuclear elastic scattering in high-energy proton radiography
Hajima et al. Detection of radioactive isotopes by using laser Compton scattered γ-ray beams
Jin et al. Highly efficient terahertz radiation from a thin foil irradiated by a high-contrast laser pulse
Levichev Status and upgrade of the VEPP-4 storage-ring facility
Hu et al. Proton-induced radiation damage in BaF 2, LYSO, and PWO crystal scintillators
Izawa et al. High power lasers and their new applications
CN112309590A (zh) 一种低温可控核聚变装置及其实现方式
CN108154938A (zh) 伽码激光或伽码射线实现可控核聚变的方法与装置
Zou et al. Highly Efficient Heavy Ion Acceleration from Laser Interaction with Dusty Plasma
CN111018329B (zh) 一种光学元器件/光学材料色心的制备固化方法
Takahashi et al. Production of short-lived positron-emitting radioactive nuclei using a 2.4 TW, 50 fs tabletop laser
Shwartz et al. VEPP-2000 collider operation in full energy range with new injector
Galy et al. High-intensity lasers as radiation sources: An overview of laser-induced nuclear reactions and applications
Tudorić-Ghemo Neutron-proton radiative capture at 14.4 MeV
CN108154946A (zh) 伽码激光或伽码射线在中子源与处理乏燃料中的应用方法与装置
Imasaki et al. An approach of laser induced nuclear fusion
Cirrone et al. Generation control and application of flash radiation beam from laser-matter interaction: the ELIMAIA-ELIMED beamline
RU2729064C1 (ru) Способ преобразования ядерной энергии (энергии радиоактивного распада и/или деления) в оптическую энергию и устройство для его осуществления
Corner et al. Laserwire: A high resolution non-invasive beam profiling diagnostic
Hairong et al. Research progress of quantum electrodynamics cascade and dense positron production driven by interaction between extremely intense lasers and solid targets
Antici et al. Postacceleration of laser-generated high-energy protons through conventional accelerator linacs
Lee et al. Feasibility of strong and quasi-monochromatic gamma-ray generation by the laser compton scattering
Gales et al. Implementation status of the extreme light infrastructure-nuclear physics (ELI-NP) project
Basov et al. Mechanisms of neutron generation in a laser plasma

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180612