CN108154004B - Transition layer material selection method based on evaluation of bonding force of transition layer on epitaxial film and substrate - Google Patents
Transition layer material selection method based on evaluation of bonding force of transition layer on epitaxial film and substrate Download PDFInfo
- Publication number
- CN108154004B CN108154004B CN201711432502.1A CN201711432502A CN108154004B CN 108154004 B CN108154004 B CN 108154004B CN 201711432502 A CN201711432502 A CN 201711432502A CN 108154004 B CN108154004 B CN 108154004B
- Authority
- CN
- China
- Prior art keywords
- transition layer
- interface
- substrate
- film
- bonding force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007704 transition Effects 0.000 title claims abstract description 169
- 239000000758 substrate Substances 0.000 title claims abstract description 123
- 239000000463 material Substances 0.000 title claims abstract description 114
- 238000011156 evaluation Methods 0.000 title claims abstract description 18
- 238000010187 selection method Methods 0.000 title claims abstract description 13
- 239000010408 film Substances 0.000 claims abstract description 86
- 239000000126 substance Substances 0.000 claims abstract description 51
- 239000010409 thin film Substances 0.000 claims abstract description 45
- 230000008859 change Effects 0.000 claims abstract description 24
- 238000004458 analytical method Methods 0.000 claims description 31
- 238000004364 calculation method Methods 0.000 claims description 26
- 239000013078 crystal Substances 0.000 claims description 21
- 238000005457 optimization Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 17
- 230000003993 interaction Effects 0.000 claims description 10
- 230000027756 respiratory electron transport chain Effects 0.000 claims description 8
- 238000005314 correlation function Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 abstract description 6
- 239000002699 waste material Substances 0.000 abstract description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 43
- 125000004429 atom Chemical group 0.000 description 38
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 35
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 13
- 238000004088 simulation Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000000151 deposition Methods 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 238000004549 pulsed laser deposition Methods 0.000 description 6
- 229910002367 SrTiO Inorganic materials 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- -1 MgO Chemical class 0.000 description 2
- 229910014299 N-Si Inorganic materials 0.000 description 2
- 229910008332 Si-Ti Inorganic materials 0.000 description 2
- 229910006749 Si—Ti Inorganic materials 0.000 description 2
- 229910004339 Ti-Si Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 229910010978 Ti—Si Inorganic materials 0.000 description 2
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 241000208140 Acer Species 0.000 description 1
- 238000003775 Density Functional Theory Methods 0.000 description 1
- 229910007991 Si-N Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910006294 Si—N Inorganic materials 0.000 description 1
- 229910008484 TiSi Inorganic materials 0.000 description 1
- 229910003077 Ti−O Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000009475 tablet pressing Methods 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/20—Identification of molecular entities, parts thereof or of chemical compositions
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/16—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C10/00—Computational theoretical chemistry, i.e. ICT specially adapted for theoretical aspects of quantum chemistry, molecular mechanics, molecular dynamics or the like
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本发明提供基于过渡层对外延薄膜与衬底结合力评价的过渡层材料选择方法,属于薄膜生长理论技术领域,具体涉及过渡层选择方法。本发明首先对选取的若干过渡层材料建立界面模型;然后计算无过渡层存在时的界面性能,判定是否需要过渡层;如需要过渡层,分别计算选取的不同材料作为过渡层时,衬底/过渡层和过渡层/薄膜的界面性能,并根据界面处净电荷量变化量和原子间化学键布居数,对过渡层对衬底和过渡层对薄膜的结合力进行综合评价并排序;根据排序结果选择前2~3种过渡层材料。本发明解决了现有技术确定是否需要过渡层,以及选取何种材料作为过渡层时,存在耗时长、浪费人力物力的问题。本发明可运用于薄膜的制备。
The invention provides a transition layer material selection method based on evaluation of the bonding force between an epitaxial film and a substrate of the transition layer, belongs to the technical field of film growth theory, and in particular relates to a transition layer selection method. The present invention first establishes an interface model for several selected transition layer materials; then calculates the interface performance when no transition layer exists, and determines whether a transition layer is required; The interfacial properties of the transition layer and the transition layer/film, and comprehensively evaluate and rank the binding force of the transition layer to the substrate and the transition layer to the film according to the change in the net charge at the interface and the number of interatomic chemical bonds; As a result, the first 2 to 3 transition layer materials were selected. The invention solves the problems of long time and waste of manpower and material resources when determining whether a transition layer is required and which material is selected as the transition layer in the prior art. The present invention can be applied to the preparation of thin films.
Description
技术领域technical field
本发明属于薄膜生长理论技术领域,具体涉及过渡层选择方法。The invention belongs to the technical field of thin film growth theory, and particularly relates to a transition layer selection method.
背景技术Background technique
薄膜的制备过程中会与衬底之间形成界面,界面的性能,特别是薄膜与衬底之间的结合力对薄膜的制备和薄膜的性能发挥有重要影响。如果薄膜不能很好地结合在衬底上,不仅在制备过程中需要更加苛刻的条件,而且制备出的薄膜比较容易发生脱落,从而影响到其性能的有效发挥。对于外延薄膜,如果和衬底之间缺乏良好的结合,还会造成取向的偏差,甚至难以形成外延,制备的薄膜为多晶形态。An interface is formed between the thin film and the substrate during the preparation of the thin film, and the properties of the interface, especially the bonding force between the thin film and the substrate, have an important influence on the preparation of the thin film and the performance of the thin film. If the film cannot be well combined on the substrate, not only more severe conditions are required in the preparation process, but also the prepared film is more likely to fall off, thus affecting the effective performance of the film. For epitaxial thin films, if there is a lack of good bonding with the substrate, the orientation deviation will also be caused, and it is even difficult to form epitaxy, and the prepared thin films are in polycrystalline form.
功能性氧化物薄膜在有氧化层的Si衬底上的生长就是一个很常见的例子。功能性氧化物单晶,特别是MgO、SrTiO3和钇稳定氧化锆(YSZ)等金属氧化物,由于在微电子器件制造等领域的潜在应用而受到了研究者的关注。但是单晶材料价格昂贵,并考虑到电子器件与Si材料的集成,需要在Si上外延生长功能性氧化物材料。然而,大部分氧化物在Si衬底上直接生长比较困难,有些氧化物的在较高温度下存在和Si衬底成分渗透的问题。同时,由于存在晶格失配、晶体结构差别、热膨胀系数不协调等问题,有些氧化物薄膜与Si衬底之间的界面十分脆弱,结合力较低,存在较大的残余应力,直接在Si衬底上直接制备难以得到高质量的金属氧化物薄膜。The growth of functional oxide films on Si substrates with oxide layers is a very common example. Functional oxide single crystals, especially metal oxides such as MgO, SrTiO, and yttrium - stabilized zirconia (YSZ), have attracted the attention of researchers due to their potential applications in fields such as microelectronic device fabrication. But single crystal materials are expensive, and considering the integration of electronic devices with Si materials, functional oxide materials need to be epitaxially grown on Si. However, it is difficult to directly grow most oxides on Si substrates, and some oxides have problems with the penetration of Si substrate components at higher temperatures. At the same time, due to problems such as lattice mismatch, crystal structure difference, and incompatible thermal expansion coefficient, the interface between some oxide films and the Si substrate is very fragile, the bonding force is low, and there is a large residual stress. It is difficult to obtain high-quality metal oxide films directly on the substrate.
为了解决这些问题,通常可以在衬底和薄膜之间沉积一层过渡层2(如图1所示),增强薄膜3与衬底1之间的结合力,提高薄膜的生长质量。例如,在Si衬底上制备功能性氧化物薄膜时,常使用TiN薄膜作为过渡层,提高氧化物薄膜与Si衬底之间的界面结合力。但是,衬底材料及薄膜材料种类繁多,对于某种特定的衬底材料和特定的薄膜材料,是否需要过渡层、需要何种材料作为过渡层难以确定,现有方法主要是对可能的过渡层材料一一进行实验,会浪费大量的人力物力,并且耗费时间长。In order to solve these problems, a transition layer 2 (as shown in FIG. 1 ) can usually be deposited between the substrate and the thin film to enhance the bonding force between the
发明内容SUMMARY OF THE INVENTION
本发明为解决现有技术确定是否需要过渡层,以及选取何种材料作为过渡层时,存在耗时长、浪费人力物力问题,进而提供了基于过渡层对外延薄膜与衬底结合力评价的过渡层材料选择方法。In order to solve the problems of long time and waste of manpower and material resources when determining whether a transition layer is required in the prior art and which material is selected as the transition layer, the invention further provides a transition layer based on the evaluation of the bonding force between the epitaxial film and the substrate of the transition layer. Material selection method.
本发明所述基于过渡层对外延薄膜与衬底结合力评价的过渡层材料选择方法,通过以下技术方案实现:The transition layer material selection method based on the evaluation of the bonding force between the transition layer epitaxial film and the substrate according to the present invention is realized by the following technical solutions:
步骤一、根据衬底材料和薄膜材料的性质,选取若干过渡层材料;Step 1: Select several transition layer materials according to the properties of the substrate material and the film material;
步骤二、建立所需的界面模型;具体过程包括:Step 2: Establish the required interface model; the specific process includes:
21)根据晶体的晶格常数、晶格类型,分别建立衬底材料、过渡层材料和薄膜材料的晶体模型;21) According to the lattice constant and lattice type of the crystal, respectively establish the crystal model of the substrate material, the transition layer material and the thin film material;
22)基于晶体模型,根据晶面指数分别建立衬底材料、过渡层材料和薄膜材料的表面模型,调整表面的厚度和方向参数,并根据晶格常数建立超晶胞,使得将要结合成界面的两种材料的表面的晶格常数相差小于5%;22) Based on the crystal model, the surface models of the substrate material, the transition layer material and the thin film material are established respectively according to the crystal plane index, the thickness and direction parameters of the surface are adjusted, and the supercell is established according to the lattice constant, so that the surfaces that will be combined into the interface are formed. The lattice constants of the surfaces of the two materials differ by less than 5%;
23)将构造好的表面模型分别结合成衬底/薄膜、衬底/过渡层、过渡层/薄膜界面模型,并添加厚度不小于的真空层,形成晶体;23) Combine the constructed surface models into substrate/film, substrate/transition layer, transition layer/film interface models, and add a thickness not less than the vacuum layer to form crystals;
步骤三、计算无过渡层存在时的界面性能,即衬底/薄膜的界面性能,根据界面处净电荷量变化量和原子间化学键布居数,判定是否需要过渡层;如果需要过渡层,进行步骤四;Step 3: Calculate the interface properties when there is no transition layer, that is, the interface properties of the substrate/film. According to the change in the net charge at the interface and the number of interatomic chemical bonds, determine whether a transition layer is required; if a transition layer is required, carry out Step four;
所述衬底/薄膜的界面性能具体计算步骤包括:The specific calculation steps of the interface properties of the substrate/film include:
31)衬底/薄膜界面的几何优化和性质计算:利用Material Studio材料计算软件中的CASTEP模块,对衬底/薄膜界面进行几何优化和性质计算,选择交换相关函数和赝势,选择“几何优化”任务,得到衬底/薄膜界面的结构;根据模型的大小设置精度、截止能、k点值,在性质选项卡中选择净电荷量变化量和原子间化学键布居数,并运行计算;31) Geometric optimization and property calculation of the substrate/thin film interface: Use the CASTEP module in the Material Studio material calculation software to perform geometric optimization and property calculation of the substrate/thin film interface, select the exchange correlation function and pseudopotential, and select the "geometric optimization". "task, get the structure of the substrate/film interface; set the accuracy, cut-off energy, and k-point value according to the size of the model, select the change in net charge and the number of chemical bonds between atoms in the Properties tab, and run the calculation;
32)界面处原子电荷量与电子转移的分析:在CASTEP模块的分析中选择布居分析,选择计算好的.castep文件作为结果文件,选择向结构分配电荷,并将电荷量标在几何优化后的模型的每个原子上,将界面处原子的电荷与远离界面原子的电荷进行比较,得到衬底/薄膜界面处净电荷量变化量;32) Analysis of atomic charge and electron transfer at the interface: select the population analysis in the analysis of the CASTEP module, select the calculated .castep file as the result file, choose to assign the charge to the structure, and mark the charge after the geometry optimization. On each atom of the model of , compare the charge of atoms at the interface with the charge of atoms far away from the interface to obtain the net charge change at the substrate/film interface;
33)界面处化学键布居数的分析:在布居分析中选择分配化学键到结构,得到衬底/薄膜界面处原子间化学键布居数,布居数的正负号表明相互作用类型,正值代表共价键,负值代表离子键,绝对值表明了相互作用力的相对强弱;33) Analysis of the chemical bond population at the interface: in the population analysis, choose to assign chemical bonds to the structure, and obtain the interatomic chemical bond population at the substrate/film interface. The positive and negative signs of the population indicate the type of interaction, and a positive value Represents a covalent bond, a negative value represents an ionic bond, and the absolute value indicates the relative strength of the interaction force;
步骤四、分别计算步骤一中选取范围内的材料作为过渡层时,衬底/过渡层和过渡层/薄膜的界面性能,并根据界面处净电荷量变化量和原子间化学键布居数,对不同材料作为过渡层时,过渡层对衬底和过渡层对薄膜的结合力进行综合评价,选出对于改善衬底/薄膜界面结合力有效的材料;Step 4: Calculate the interface properties of the substrate/transition layer and the transition layer/thin film when the material within the range selected in
步骤五、对步骤四中选出的材料作为过渡层时对薄膜与衬底结合力进行评价排序;根据排序结果选择前2~3种过渡层材料。Step 5: Evaluate and sort the bonding force between the film and the substrate when the material selected in Step 4 is used as the transition layer; select the first 2 to 3 transition layer materials according to the sorting result.
本发明最为突出的特点和显著的有益效果是:本发明利用Material Studio等材料计算软件建立相应的衬底/过渡层和过渡层/薄膜材料界面模型,采用基于密度泛函理论的第一性原理进行模拟计算,从原子分子水平、电子之间相互作用和化学键形成的角度对薄膜与衬底之间的结合力进行评价,根据计算模拟结果选择合适的过渡层材料。The most prominent features and significant beneficial effects of the present invention are: the present invention utilizes material calculation software such as Material Studio to establish corresponding substrate/transition layer and transition layer/thin film material interface models, and adopts the first principles based on density functional theory. The simulation calculation is carried out to evaluate the bonding force between the film and the substrate from the point of view of the atomic and molecular level, the interaction between electrons and the formation of chemical bonds, and the appropriate transition layer material is selected according to the calculation and simulation results.
利用界面模拟计算评价了过渡层对于衬底/薄膜界面结合力的影响,提出了合适的评价标准。The influence of the transition layer on the bonding force of the substrate/film interface was evaluated by interface simulation calculation, and an appropriate evaluation standard was proposed.
而且根据过渡层对衬底/薄膜界面结合力所起的效果缩小过渡层选择范围,指导了过渡层材料的选择,大大节省了时间和人力物力成本,如实施例1、施例2以及施例3中,平均节约时间72%。Moreover, according to the effect of the transition layer on the bonding force of the substrate/film interface, the selection range of the transition layer is narrowed, and the selection of the transition layer material is guided, which greatly saves time and labor and material costs, such as Example 1, Example 2 and Example 3, the average time saving is 72%.
附图说明Description of drawings
图1为有过渡层的样品结构示意图;Fig. 1 is the sample structure schematic diagram with transition layer;
图2为SiO2(100)/TiN(100)界面几何优化后的界面结构模拟结果;Figure 2 shows the simulation results of the interface structure after the geometry optimization of the SiO 2 (100)/TiN(100) interface;
图3为TiN(100)/MgO(100)界面几何优化后的界面结构模拟结果;Figure 3 shows the simulation results of the interface structure after the geometry optimization of the TiN(100)/MgO(100) interface;
图4为SiO2(100)/TiN(100)/MgO(100)样品刻蚀至SiO2(100)/TiN(100)界面处X射线光电子能谱Ti1/2p峰的分峰结果图;Figure 4 is a graph showing the peak splitting results of the Ti1/2p peak of the X-ray photoelectron spectrum at the interface of SiO 2 (100)/TiN(100)/MgO(100) etched to the SiO 2 (100)/TiN(100) interface;
图5为SiO2(100)/TiN(100)/MgO(100)样品刻蚀至TiN(100)/MgO(100)界面处X射线光电子能谱Mg1s峰的分峰结果图;Fig. 5 is a graph showing the peak splitting results of the X-ray photoelectron spectrum Mg1s peak at the interface of TiN(100)/MgO(100) by etching the SiO 2 (100)/TiN(100)/MgO(100) sample;
图6为SiO2(100)/MgO(100)样品纳米划痕后表面的扫描电子显微镜(SEM)照片;Figure 6 is a scanning electron microscope (SEM) photograph of the surface of the SiO 2 (100)/MgO (100) sample after nano-scratch;
其中:1.衬底,2.过渡层,3.薄膜。Among them: 1. Substrate, 2. Transition layer, 3. Thin film.
具体实施方式Detailed ways
具体实施方式一:本实施方式给出的基于过渡层对外延薄膜与衬底结合力评价的过渡层材料选择方法,具体包括以下步骤:Embodiment 1: The transition layer material selection method based on the evaluation of the bonding force between the epitaxial film and the substrate of the transition layer provided in this embodiment specifically includes the following steps:
步骤一、根据衬底材料和薄膜材料的性质,确定可能合适该衬底和薄膜材料的过渡层材料选取范围;选取过程中还能够结合本领域内常规的过渡层、文献资料以及实验经验,选取若干种可能的过渡层材料,通常选取5~8种;
步骤二、建立所需的界面模型;具体过程包括:Step 2: Establish the required interface model; the specific process includes:
21)根据晶体的晶格常数、晶格类型,分别建立衬底材料、过渡层材料和薄膜材料的晶体模型;21) According to the lattice constant and lattice type of the crystal, respectively establish the crystal model of the substrate material, the transition layer material and the thin film material;
22)基于晶体模型,根据晶面指数分别建立衬底材料、过渡层材料和薄膜材料的表面模型,调整表面的厚度和方向参数,并根据晶格常数建立超晶胞,使得将要结合成界面的两种材料的表面具有尽可能相似的晶格常数,这里限定将要结合成界面的两种材料的表面的晶格常数相差小于5%;22) Based on the crystal model, the surface models of the substrate material, the transition layer material and the thin film material are established respectively according to the crystal plane index, the thickness and direction parameters of the surface are adjusted, and the supercell is established according to the lattice constant, so that the surfaces that will be combined into the interface are formed. The surfaces of the two materials have as similar lattice constants as possible, here defining the lattice constants of the surfaces of the surfaces of the two materials to be combined into an interface that differ by less than 5%;
23)将构造好的表面模型分别结合成衬底/薄膜、衬底/过渡层、过渡层/薄膜界面模型,并添加厚度不小于的真空层,形成晶体;23) Combine the constructed surface models into substrate/film, substrate/transition layer, transition layer/film interface models, and add a thickness not less than the vacuum layer to form crystals;
步骤三、计算无过渡层存在时的界面性能,即衬底/薄膜的界面性能,根据界面处净电荷量变化量和原子间化学键布居数,判定是否需要过渡层;如果不需要过渡层,结束过渡层材料选择,如果需要过渡层,进行步骤四;Step 3: Calculate the interface properties when there is no transition layer, that is, the interface properties of the substrate/film. According to the change in the net charge at the interface and the population of chemical bonds between atoms, determine whether a transition layer is required; if the transition layer is not required, End the transition layer material selection, if a transition layer is required, go to step 4;
所述衬底/薄膜的界面性能具体计算步骤包括:The specific calculation steps of the interface properties of the substrate/film include:
31)衬底/薄膜界面的几何优化和性质计算:利用Material Studio材料计算软件(Materials Studio是专门为材料科学领域研究者开发的一款可运行在PC上的模拟软件,无论构型优化、性质预测和X射线衍射分析,以及复杂的动力学模拟和量子力学计算,都可以通过一些简单易学的操作来得到切实可靠的数据)中的CASTEP模块,对衬底/薄膜界面进行几何优化和性质计算,选择合适的交换相关函数和赝势,选择“几何优化”任务,得到衬底/薄膜界面的结构;根据模型的大小设置精度、截止能、k点值(相当于一个取样密度),在性质选项卡中选择净电荷量变化量和原子间化学键布居数,并运行计算;31) Geometric optimization and property calculation of substrate/thin film interface: Use Material Studio material calculation software (Materials Studio is a simulation software specially developed for researchers in the field of materials science that can run on PC, regardless of configuration optimization, properties Prediction and X-ray diffraction analysis, as well as complex kinetic simulations and quantum mechanical calculations, can be obtained through some simple and easy-to-learn operations to obtain reliable data) The CASTEP module in the substrate/film interface for geometric optimization and property calculations , select the appropriate exchange correlation function and pseudopotential, and select the "geometric optimization" task to obtain the structure of the substrate/film interface; set the accuracy, cut-off energy, and k-point value (equivalent to a sampling density) according to the size of the model. In the tab, select the change in net charge and the population of chemical bonds between atoms, and run the calculation;
32)界面处原子电荷量与电子转移的分析:在CASTEP模块的分析中选择布居分析,选择计算好的.castep文件作为结果文件,选择向结构分配电荷,并将电荷量标在几何优化后的模型的每个原子上,将界面处原子的电荷与远离界面原子的电荷进行比较,得到衬底/薄膜界面处净电荷量变化量;32) Analysis of atomic charge and electron transfer at the interface: select the population analysis in the analysis of the CASTEP module, select the calculated .castep file as the result file, choose to assign the charge to the structure, and mark the charge after the geometry optimization. On each atom of the model of , compare the charge of atoms at the interface with the charge of atoms far away from the interface to obtain the net charge change at the substrate/film interface;
33)界面处化学键布居数的分析:在布居分析中选择分配化学键到结构,分析除了结构内部的化学键之外,在界面处是否有新的与界面元素相关的化学键出现,最后得到衬底/薄膜界面处原子间化学键布居数,布居数的正负号表明相互作用类型,正值代表共价键,负值代表离子键,绝对值表明了相互作用力的相对强弱;33) Analysis of the chemical bond population at the interface: in the population analysis, choose to assign chemical bonds to the structure, analyze whether there are new chemical bonds related to the interface elements at the interface other than the chemical bonds inside the structure, and finally get the substrate. The population number of chemical bonds between atoms at the /film interface, the positive and negative signs of the population number indicate the type of interaction, the positive value represents covalent bonds, the negative value represents ionic bonds, and the absolute value indicates the relative strength of the interaction force;
以下界面处原子分波态密度的分析可以对电荷量变化和化学键形成进行解释说明:界面处原子分波态密度的分析:分别选择界面处的原子,在CASTEP模块的分析中选择态密度、分波态密度,将结果导入函数绘图软件(Matlab,Mathmatica、Maple、Origin等)中重新绘制成界面各原子的分波态密度图,与远离界面的原子的分波态密度进行比较,得到界面处净电荷量变化量和原子间化学键布居数。The following analysis of the atomic fractional wave density of states at the interface can explain the change in charge amount and the formation of chemical bonds: Analysis of the atomic fractional wave density of states at the interface: select the atoms at the interface respectively, and select the density of states, fractional density of states in the analysis of the CASTEP module Wave density of states, import the results into the function drawing software (Matlab, Mathmatica, Maple, Origin, etc.) and re-draw into the partial wave density of states of each atom at the interface, compare with the partial wave density of states of atoms far away from the interface, and get Changes in net charge and the population of chemical bonds between atoms.
步骤四、分别计算步骤一中选取范围内的材料作为过渡层时,衬底/过渡层和过渡层/薄膜的界面性能,并根据界面处净电荷量变化量和原子间化学键布居数,对不同材料作为过渡层时,过渡层对衬底和过渡层对薄膜的结合力进行综合评价,选出对于改善衬底/薄膜界面结合力有效的材料;Step 4: Calculate the interface properties of the substrate/transition layer and the transition layer/thin film when the material within the range selected in
步骤五、对步骤四中选出的有效的材料作为过渡层时对薄膜与衬底结合力进行评价排序;根据排序结果选择前2~3种过渡层材料。Step 5: Evaluate and sort the bonding force between the film and the substrate when the effective material selected in the step 4 is used as the transition layer; select the first 2 to 3 transition layer materials according to the sorting result.
具体实施方式二:本实施方式与具体实施方式一不同的是,步骤三中判定是否需要过渡层的方法为:Embodiment 2: The difference between this embodiment and
根据步骤三中的无过渡层存在时的界面性能计算结果,判定是否需要过渡层;如果界面处原子间净电荷量变化小于10%(说明界面处原子间几乎不存在电子转移)且界面处原子间化学键布居数的绝对值小于0.10(说明界面处原子间几乎不发生相互作用),需要引入过渡层以提高薄膜与衬底的界面结合力,否则,如果界面处原子间净电荷量变化大于等于10%或界面处原子间化学键布居数的绝对值大于等于0.10,则不需要引用过渡层。According to the calculation results of the interface properties without the transition layer in
其他步骤及参数与具体实施方式一相同。Other steps and parameters are the same as in the first embodiment.
具体实施方式三:本实施方式与具体实施方式一或二不同的是,步骤四中对步骤一中选取范围内的任意材料进行综合评价的具体步骤包括:Embodiment 3: The difference between this embodiment and
对于步骤一中选取范围内的任意材料i作为过渡层:For any material i within the range selected in
41)计算衬底/过渡层界面的界面性能,得到衬底/过渡层界面净电荷量变化量xi和衬底/过渡层界面处原子间化学键布居数的绝对值yi;41) Calculate the interface properties of the substrate/transition layer interface, and obtain the net charge amount change x i at the substrate/transition layer interface and the absolute value y i of the population of chemical bonds between atoms at the substrate/transition layer interface;
计算过渡层/薄膜界面的界面性能,得到过渡层/薄膜界面净电荷量变化量x′i和过渡层/薄膜界面处原子间化学键布居数的绝对值y′i;Calculate the interface properties of the transition layer/film interface, and obtain the net charge change x' i of the transition layer/film interface and the absolute value of the interatomic chemical bond population y' i at the transition layer/film interface;
42)过渡层功能评价:如果满足xi≥10%或者yi≥0.10,并且同时满足x′i≥10%或者y′i≥0.10,即,衬底/过渡层和过渡层/薄膜界面均存在电子转移或发生相互作用,说明材料i作为过渡层对于改善衬底/薄膜界面结合力是有效的,则选取该种材料i;否则,认为该过渡层不能有效提高衬底/薄膜界面的结合力,舍弃该种材料i。42) Functional evaluation of transition layer: if x i ≥ 10% or y i ≥ 0.10, and at the same time x' i ≥ 10% or y' i ≥ 0.10, that is, the substrate/transition layer and transition layer/film interface are both There is electron transfer or interaction, indicating that the material i as a transition layer is effective for improving the bonding force of the substrate/film interface, then this material i is selected; otherwise, it is considered that the transition layer cannot effectively improve the substrate/film interface. force, discard the material i.
其他步骤及参数与具体实施方式一或二相同。Other steps and parameters are the same as in the first or second embodiment.
具体实施方式四:本实施方式与具体实施方式三不同的是,步骤五具体为:Embodiment 4: The difference between this embodiment and
令:zi=yi+y′i,即,zi表示材料i作为过渡层时,衬底/过渡层界面处原子间化学键布居数的绝对值和过渡层/薄膜界面处原子间化学键布居数的绝对值之和,对于步骤四中选出的材料分别计算zi值,根据zi从大到小的排序结果,选择对应zi排序靠前的2~3种材料为最优的过渡层材料。Let: z i =y i +y′ i , that is, zi represents the absolute value of the interatomic chemical bond population at the interface of the substrate/transition layer and the interatomic chemical bond at the transition layer/film interface when the material i is used as the transition layer The sum of the absolute values of the population numbers, calculate the zi value for the materials selected in step 4, and select the 2 to 3 materials with the highest zi ranking as the best according to the zi ranking results from large to small. transition layer material.
其他步骤及参数与具体实施方式一、二或三相同。Other steps and parameters are the same as in the first, second or third embodiment.
具体实施方式五:本实施方式与具体实施方式四不同的是,步骤41)中,衬底/过渡层界面的界面性能计算方法与所述衬底/薄膜的界面性能具体计算方法相同。Embodiment 5: The difference between this embodiment and Embodiment 4 is that in step 41), the method for calculating the interface properties of the substrate/transition layer interface is the same as the specific method for calculating the interface properties of the substrate/thin film.
其他步骤及参数与具体实施方式一、二、三或四相同。Other steps and parameters are the same as in the first, second, third or fourth embodiment.
具体实施方式六:本实施方式与具体实施方式五不同的是,步骤42)中,过渡层/薄膜界面的界面性能计算方法与所述衬底/薄膜的界面性能具体计算方法相同。Embodiment 6: The difference between this embodiment and Embodiment 5 is that in step 42), the method for calculating the interface properties of the transition layer/thin film interface is the same as the specific method for calculating the interface properties of the substrate/thin film.
其他步骤及参数与具体实施方式一、二、三、四或五相同。Other steps and parameters are the same as in the first, second, third, fourth or fifth embodiment.
实施例Example
采用以下实施例验证本发明的有益效果:Adopt the following examples to verify the beneficial effects of the present invention:
实施例1Example 1
本实施例所述的基于过渡层对外延薄膜与衬底结合力评价的过渡层材料选择方法按照以下步骤进行:The transition layer material selection method based on the evaluation of the bonding force between the transition layer epitaxial film and the substrate described in this embodiment is carried out according to the following steps:
步骤一、确定可能的过渡层材料选取范围:
对于SiO2(100)(氧化的Si)衬底及待制备的MgO薄膜,所较常用的过渡层为TiN过渡层,另外,根据文献所述原理,也可以考虑其他有还原性的材料,如Ti、TiC等。For the SiO 2 (100) (oxidized Si) substrate and the MgO thin film to be prepared, the more commonly used transition layer is the TiN transition layer. In addition, according to the principle described in the literature, other reducing materials can also be considered, such as Ti, TiC, etc.
步骤二、建立所需的界面模型;Step 2: Establish the required interface model;
21)SiO2(100)/MgO(100)界面模型的构建:SiO2(100)/MgO(100)界面模型在Material Studio的Visualizer模块中构建。首先根据晶体类型、空间群和晶格常数,建立SiO2和MgO两种晶体模型。切割(100)表面时,使得有5层SiO2(100)(其中5层Si原子和5层O原子)和5层MgO(100)原子层,设置SiO2顶端值为0,MgO顶端值为0.5。扩展表面,对于SiO2,设置U=V=3,MgO设置U=V=5,利用Build Layer将两种表面连接成SiO2(100)/MgO(100)界面模型,再选择Build Vacuum Slab为界面模型增加真空层;21) Construction of SiO 2 (100)/MgO (100) interface model: The SiO 2 (100)/MgO (100) interface model was constructed in the Visualizer module of Material Studio. Firstly, two crystal models of SiO 2 and MgO are established according to the crystal type, space group and lattice constant. When cutting the (100) surface, there are 5 layers of SiO 2 (100) (including 5 layers of Si atoms and 5 layers of O atoms) and 5 layers of MgO (100) atomic layers, set the top value of SiO 2 to 0 and the top value of MgO to be 0. 0.5. Expand the surface, for SiO 2 , set U=V=3, MgO set U=V=5, use Build Layer to connect the two surfaces to form a SiO 2 (100)/MgO (100) interface model, and then select Build Vacuum Slab as interface model added vacuum layer;
22)SiO2(100)/TiN(100)界面模型的构建:与步骤21)相似,建立TiN晶体模型,由于TiN晶格常数与MgO相近,所使用的参数与步骤21)相同;22) Construction of SiO 2 (100)/TiN (100) interface model: similar to step 21), establish a TiN crystal model, since the lattice constant of TiN is similar to MgO, the parameters used are the same as in step 21);
23)TiN(100)/MgO(100)界面模型的构建:以与步骤3.1类似的步骤,在MaterialStudio的Visualizer模块中建立TiN(100)/MgO(100)界面模型,由于TiN和MgO晶格常数接近,不需扩展表面形成超晶胞,直接连接两种表面即可;23) Construction of the TiN(100)/MgO(100) interface model: In a similar step to step 3.1, the TiN(100)/MgO(100) interface model was established in the Visualizer module of MaterialStudio. Due to the lattice constants of TiN and MgO close, no need to expand the surface to form a supercell, just connect the two surfaces directly;
24)其他界面模型的构建:根据所选择的过渡层,再建立其他的界面模型,如选取TiC作为过渡层时,建立SiO2(100)/TiC(100)和TiC(100)/MgO(100)的界面模型。24) Construction of other interface models: According to the selected transition layer, establish other interface models. For example, when TiC is selected as the transition layer, establish SiO 2 (100)/TiC(100) and TiC(100)/MgO(100 ) interface model.
步骤三、计算无过渡层存在时(即衬底/薄膜SiO2(100)/MgO(100))的界面性能,确定是否需要过渡层:
31)SiO2(100)/MgO(100)界面的几何优化和性质计算:利用Material Studio8.0平台中的CASTEP模块对所建立的SiO2(100)/MgO(100)界面模型进行几何优化和性质计算,选取广义梯度近似GGA-PW91作为交换相关函数,采用超软赝势处理电子-离子相互作用,选择任务为“几何优化”,精度设置为“Fine”,截止能设置为400eV,选取k点为5×5×1。在性质中,勾选态密度(同时勾选计算分波态密度PDOS)和布居分析(同时勾选化学键布居分析),运行计算;31) Geometric optimization and property calculation of the SiO 2 (100)/MgO(100) interface: The CASTEP module in the Material Studio 8.0 platform was used to optimize the geometry of the established SiO 2 (100)/MgO(100) interface model and For property calculation, the generalized gradient approximation GGA-PW91 is selected as the exchange correlation function, and the electron-ion interaction is processed by the ultrasoft pseudopotential. The dots are 5×5×1. In the properties, check the density of states (also check the calculation of the partial wave density of states PDOS) and the population analysis (also check the chemical bond population analysis), and run the calculation;
32)SiO2(100)/MgO(100)界面的界面结构和性质分析:在CASTEP模块的分析中选择布居分析,向结构分配电荷和化学键,发现界面处Si、Mg原子的电荷量变化很小(Si5.4%,Mg4.7%,变化率小于10%),且界面处未有新的化学键形成。32) Analysis of the interface structure and properties of the SiO 2 (100)/MgO(100) interface: Select the population analysis in the analysis of the CASTEP module, assign charges and chemical bonds to the structure, and find that the charges of Si and Mg atoms at the interface vary greatly. small (Si5.4%, Mg4.7%, the change rate is less than 10%), and no new chemical bonds are formed at the interface.
33)确定是否需要过渡层:根据步骤31)和32)结果,说明SiO2(100)/MgO(100)界面结合力较差,需要增加过渡层以提高结合力。33) Determine whether a transition layer is needed: According to the results of steps 31) and 32), it shows that the SiO 2 (100)/MgO (100) interface has poor bonding force, and a transition layer needs to be added to improve the bonding force.
步骤四、计算衬底/过渡层SiO2(100)/TiN(100)和过渡层/薄膜TiN(100)/MgO(100)的界面性能,对过渡层对衬底和过渡层对薄膜的结合力进行综合评价:Step 4. Calculate the interface properties of the substrate/transition layer SiO 2 (100)/TiN(100) and the transition layer/film TiN(100)/MgO(100), and the combination of the transition layer to the substrate and the transition layer to the thin film Comprehensive evaluation of power:
41)计算SiO2(100)/TiN(100)界面的界面性能:41) Calculate the interface properties of the SiO 2 (100)/TiN(100) interface:
411)几何优化:与步骤31)相同;411) Geometry optimization: same as step 31);
界面结构:几何优化完成后,得到SiO2(100)/TiN(100)界面的结构(如图2所示),其中,Ti-Si、N-Si原子距离(Ti、N原子与Si原子所组成的平面)分别为晶格常数在a、b方向略增加,在c轴方向缩小;Interface structure: After the geometric optimization is completed, the structure of the SiO 2 (100)/TiN(100) interface is obtained (as shown in Figure 2), in which the atomic distance between Ti-Si and N-Si (the distance between Ti, N atoms and Si atoms) is composed of planes) are The lattice constant increases slightly in the a and b directions, and decreases in the c-axis direction;
412)界面处原子电荷量与电子转移的分析:方法与步骤32)相同,将界面处原子的电荷与远离界面原子的电荷进行比较,结果列在表1中。结果显示,界面处Ti、Si原子的电荷量发生了大幅度的下降,而N原子的电荷量的值小幅度下降(绝对值小幅度上升);412) Analysis of atomic charge amount and electron transfer at the interface: the method is the same as step 32), and the charge of the atom at the interface is compared with the charge of the atom far away from the interface, and the results are listed in Table 1. The results show that the charge of Ti and Si atoms at the interface has dropped significantly, while the charge of N atom has decreased slightly (the absolute value has increased slightly);
表1SiO2(100)/TiN(100)界面原子电荷量及变化情况Table 1 SiO 2 (100)/TiN(100) interface atomic charge and change
413)界面处化学键布居数分析:将化学键分配到结构,除了结构内部的化学键之外,在界面处出现了Si-Ti化学键,布居数为0.43,呈现比较强的共价键性质,键长为 413) Analysis of the population number of chemical bonds at the interface: Assign chemical bonds to the structure. In addition to the chemical bonds inside the structure, Si-Ti chemical bonds appear at the interface. The population number is 0.43, showing a relatively strong covalent bond property. long for
414)界面处原子分波态密度分析:分别选择界面处的Ti、N、Si原子,在CASTEP模块的分析中选择态密度、分波态密度,将结果导入Origin中重新绘制成界面各原子的分波态密度图,与远离界面的原子的分波态密度进行比较后,可以发现,界面处Ti原子d轨道态密度在3.660eV左右出现的峰是受到Si原子p轨道电子态密度的影响;界面处Si原子p轨道态密度在1.211eV左右出现的峰,以及附近其他几个峰的强度增强,都是与Ti原子d轨道电子产生共振所造成的,另外还有几个位置由于受到了N原子s和p轨道电子影响,但是及其微弱;414) Analysis of atomic fractional wave density of states at the interface: select Ti, N, Si atoms at the interface respectively, select the density of states and fractional density of states in the analysis of the CASTEP module, and import the results into Origin to re-draw the interface atoms. After comparing the partial wave density of states with the partial wave density of states of atoms far away from the interface, it can be found that the peak of the d-orbital density of states of Ti atoms at the interface at about 3.660 eV is affected by the electronic density of states of the p-orbital electrons of Si atoms; The peak of the p-orbital density of states of the Si atom at the interface around 1.211 eV, as well as the intensity enhancement of several other nearby peaks, are caused by the resonance with the d-orbital electrons of the Ti atom. Atomic s and p orbital electron influence, but extremely weak;
42)TiN(100)/MgO(100)界面的界面性能:42) Interface properties of TiN(100)/MgO(100) interface:
421)几何优化:具体操作方法与步骤31)相同;421) Geometry optimization: the specific operation method is the same as step 31);
界面结构:几何优化完成后,得到TiN(100)/MgO(100)界面的结构(如图3所示),其中,N-Mg、Ti-O原子距离分别为晶格常数在a、b方向略减少,在c轴方向缩小;Interface structure: After the geometric optimization is completed, the structure of the TiN(100)/MgO(100) interface is obtained (as shown in Figure 3), where the atomic distances of N-Mg and Ti-O are respectively The lattice constant decreases slightly in the a and b directions, and shrinks in the c-axis direction;
422)界面处原子电荷量与电子转移的分析:具体操作步骤与32)类似,将界面处原子的电荷与远离界面原子的电荷进行比较,结果列在表2中。从电荷量的绝对值来分析,界面处N、Mg原子的电荷量绝对值上升,说明这两种原子之间的电荷发生了转移;422) Analysis of atomic charge and electron transfer at the interface: the specific operation steps are similar to 32), and the charge of the atom at the interface is compared with the charge of the atom far away from the interface, and the results are listed in Table 2. From the analysis of the absolute value of the charge, the absolute value of the charge of the N and Mg atoms at the interface increases, indicating that the charge between the two atoms has been transferred;
表2TiN(100)/MgO(100)界面原子电荷量及变化情况Table 2 TiN(100)/MgO(100) interface atomic charge and change
423)界面处化学键布居数分析:具体步骤与32)相似,除了结构内部的化学键之外,在界面处出现了N-Mg化学键,布居数为-0.95,呈现比较强的离子键性质,键长为同时出现了具有弱共价键性质的O-Ti键,布居数为0.08,键长为 423) Analysis of the population number of chemical bonds at the interface: The specific steps are similar to 32), except for the chemical bonds inside the structure, N-Mg chemical bonds appear at the interface, and the population number is -0.95, showing relatively strong ionic bond properties, The bond length is At the same time, O-Ti bonds with weak covalent bond properties appeared, with a population number of 0.08 and a bond length of
424)界面处原子分波态密度分析:具体步骤与414)相似,与远离界面的原子的分波态密度进行比较后,可以发现,界面处Mg原子p轨道态密度在-15.422eV左右出现的峰是受到N原子s轨道电子态密度的影响;界面处N原子p轨道态密度在-4.929eV左右峰的强度增强是与Mg原子p轨道电子产生共振的结果;424) Analysis of the atomic fractional wave density of states at the interface: The specific steps are similar to 414). After comparing with the fractional density of states of atoms far away from the interface, it can be found that the p-orbital density of states of the Mg atom at the interface appears around -15.422 eV. The peak is affected by the density of electron states of the s orbital electrons of the N atom; the intensity of the peak intensity of the p orbital state density of the N atom at the interface around -4.929 eV is the result of resonance with the electrons of the p orbital electrons of the Mg atom;
42)TiN过渡层功能评价:根据模拟计算结果,TiN过渡层能显著提高在Si(100)衬底上MgO(100)薄膜的结合力。TiN过渡层在整个结构中起到了承上启下的作用,一方面,与氧化的硅衬底表面的SiO2氧化层之间,形成了以类似Ti-Si共价键的结合形式为主,N-Si类似离子键的结合形式为辅的结合(界面处原子间化学键布居数0.43,大于0.10);另一方面,与金属氧化物薄膜MgO之间,形成了N-Mg类似离子键结合形式(净电荷量变化Mg21.4%,N10.8%,大于10%,界面处原子间化学键布居数绝对值0.95,大于0.10),从而提高了整个结构的结合力。42) Functional evaluation of the TiN transition layer: According to the simulation results, the TiN transition layer can significantly improve the bonding force of the MgO(100) thin film on the Si(100) substrate. The TiN transition layer plays a linking role in the whole structure. On the one hand, between it and the SiO 2 oxide layer on the surface of the oxidized silicon substrate, a bonding form similar to Ti-Si covalent bond is formed, and N-Si The ionic bond-like bond form is the auxiliary bond (the interatomic chemical bond population at the interface is 0.43, greater than 0.10); on the other hand, with the metal oxide film MgO, an N-Mg-like ionic bond form (net The change in charge amount is Mg21.4%, N10.8%, more than 10%, and the absolute value of the interatomic chemical bond population at the interface is 0.95, which is greater than 0.10), thereby improving the bonding force of the entire structure.
步骤五、选择合适的过渡层:Step 5. Select the appropriate transition layer:
对Ti、TiC过渡层按照步骤四进行性质模拟和评价,最终选择TiN过渡层作为SiO2衬底和MgO薄膜之间的过渡层材料。The properties of the Ti and TiC transition layers were simulated and evaluated according to step 4, and the TiN transition layer was finally selected as the transition layer material between the SiO 2 substrate and the MgO thin film.
步骤六、制备实际的SiO2(100)/MgO(100)和SiO2(100)/TiN(100)/MgO(100)样品,并对测试其性能:Step 6. Prepare actual SiO 2 (100)/MgO(100) and SiO 2 (100)/TiN(100)/MgO(100) samples, and test their properties:
61)外延样品的制备:61) Preparation of epitaxial samples:
611)氧化Si(100)衬底(SiO2(100))的表面处理:将Si(100)衬底用玻璃刀切割成尺寸为12mm×7mm的晶片,在丙酮、无水乙醇、去离子水中各超声清洗各5min。611) Surface treatment of oxidized Si(100) substrate (SiO 2 (100)): the Si(100) substrate is cut into wafers with a size of 12mm × 7mm with a glass knife, and treated in acetone, absolute ethanol, deionized water Each ultrasonic cleaning was performed for 5 min each.
将该衬底浸入体积比H2O2:去离子水=1:20的溶液中,水浴保温65℃,预氧化10min;浸入体积比NH4OH:H2O2:去离子水=1:1:10的SC-1溶液中,水浴加热到65℃,保温处理10min;去离子水冲洗干净后,浸入体积比HCl:H2O2:去离子水=1:1:6的SC-2溶液中,加热到65℃保温10min,利用去离子水冲洗。浸入体积比HF:去离子水=1:5的DHF溶液,室温下放置15min去除衬底表面氧化层,用无水乙醇超声处理5min,并将该处理过的衬底在无水乙醇中保存;The substrate was immersed in a solution with a volume ratio of H 2 O 2 : deionized water = 1:20, the water bath was kept at 65° C., and pre-oxidized for 10 minutes; the immersion volume ratio was NH 4 OH: H 2 O 2 : deionized water = 1: In the SC-1 solution of 1:10, the water bath was heated to 65 ℃, and the heat preservation treatment was carried out for 10 minutes; after deionized water was rinsed, immersed in the SC-2 solution with a volume ratio of HCl:H2O2:deionized water=1:1:6, Heated to 65 °C for 10 min, and rinsed with deionized water. Immerse in a DHF solution with a volume ratio of HF:deionized water=1:5, place at room temperature for 15 min to remove the oxide layer on the surface of the substrate, ultrasonically treat with absolute ethanol for 5 min, and store the treated substrate in absolute ethanol;
612)氧化Si(100)衬底(SiO2(100))上TiN(100)过渡层的生长:TiN(100)过渡层是在脉冲激光沉积系统(PLD)中沉积的,该沉积系统可同时安装6个靶材,实现靶材的公转切换,并有屏蔽罩将不用于沉积的靶材屏蔽,避免薄膜受到污染。选取高纯TiN靶(99.95%)为原料生长TiN外延薄膜,并将MgO靶材也预先安装在靶材组件上。整个沉积过程在真空条件下进行,设置衬底温度为550℃、激光强度为3J/cm2、激光频率为10Hz、靶基距为4.5cm、沉积时间为30min;612) Growth of TiN(100) transition layer on oxidized Si(100) substrate (SiO 2 (100)): The TiN(100) transition layer was deposited in a pulsed laser deposition system (PLD) that simultaneously 6 targets are installed to realize the target revolution switching, and a shielding cover shields the targets not used for deposition to avoid the contamination of the film. A high-purity TiN target (99.95%) was selected as the raw material to grow the TiN epitaxial film, and the MgO target was also pre-installed on the target assembly. The entire deposition process was carried out under vacuum conditions, and the substrate temperature was set to 550 °C, the laser intensity was 3 J/cm 2 , the laser frequency was 10 Hz, the target-to-base distance was 4.5 cm, and the deposition time was 30 min;
613)MgO(100)外延层的生长:将TiN靶材切换为高纯MgO靶(99.95%),制备MgO(100)薄膜。保持生长室的真空条件,衬底温度700℃、激光强度为5J/cm2、激光频率为10Hz、靶基距为4cm、沉积时间为90min;613) Growth of MgO(100) epitaxial layer: The TiN target was switched to a high-purity MgO target (99.95%) to prepare a MgO(100) thin film. The vacuum conditions of the growth chamber were maintained, the substrate temperature was 700 °C, the laser intensity was 5 J/cm 2 , the laser frequency was 10 Hz, the target-to-base distance was 4 cm, and the deposition time was 90 min;
614)SiO2(100)/MgO(100)样品的制备:采用步骤611)相同方法处理Si(100)衬底,并使用与步骤613)相同方法在衬底上制备MgO(100)薄膜,作为测试对比样品。614) Preparation of SiO 2 (100)/MgO (100) samples: the Si (100) substrate is treated by the same method as in step 611), and a MgO (100) film is prepared on the substrate by the same method as in step 613), as Test comparative samples.
62)SiO2(100)/MgO(100)和SiO2(100)/TiN(100)/MgO(100)样品的X射线光电子能谱(XPS)测试:对SiO2(100)/TiN(100)/MgO(100)样品进行刻蚀,在SiO2(100)/TiN(100)及TiN(100)/MgO(100)界面处分别进行X射线光电子能谱测试。对该样品SiO2(100)/TiN(100)界面处的Ti1/2p峰的分峰结果表明在该界面形成了与TiSi2能量接近的类似Si-Ti键的化学键作用(如图4所示),对N1s进行分峰可以看到有较小的与Si3N4能量接近的类似Si-N键的化学键作用,但这并不是主要作用方式。对TiN(100)/MgO(100)界面处Mg1s峰的分峰结果表明在该界面形成了与Mg3N2能量接近的类似Mg-N键的化学键作用(如图5所示)。SiO2(100)/MgO(100)样品界面处原子未出现类似化学键作用结果;62) X-ray photoelectron spectroscopy (XPS) test of SiO 2 (100)/MgO(100) and SiO 2 (100)/TiN(100)/MgO(100) samples: for SiO 2 (100)/TiN(100 )/MgO(100) samples were etched, and X-ray photoelectron spectroscopy tests were performed at the interfaces of SiO 2 (100)/TiN(100) and TiN(100)/MgO(100), respectively. The splitting results of the Ti1/2p peak at the SiO 2 (100)/TiN(100) interface of this sample indicate that a chemical bond similar to the Si-Ti bond with energy close to TiSi 2 is formed at the interface (as shown in Figure 4). ), it can be seen that there is a small chemical bond effect similar to Si-N bond with energy close to Si 3 N 4 by dividing the peak of N1s, but this is not the main mode of action. The splitting results of the Mg1s peak at the TiN(100)/MgO(100) interface indicate that a chemical bond similar to Mg-N bond with energy close to Mg 3 N 2 is formed at the interface (as shown in Figure 5). The atoms at the interface of SiO 2 (100)/MgO(100) samples did not show similar chemical bond results;
63)SiO2(100)/MgO(100)和SiO2(100)/TiN(100)/MgO(100)样品的纳米划痕测试:63) Nano scratch test of SiO 2 (100)/MgO(100) and SiO 2 (100)/TiN(100)/MgO(100) samples:
631)SiO2(100)/TiN(100)/MgO(100)样品的纳米划痕测试:划入深度从10nm一直增加到30nm,在扫描电子显微镜下,均未观察到薄膜脱落或剥离的现象,说明薄膜与衬底结合良好;631) Nano-scratch test of SiO 2 (100)/TiN(100)/MgO(100) samples: the scratch depth increased from 10nm to 30nm, under scanning electron microscope, no film peeling or peeling was observed. , indicating that the film and the substrate are well combined;
632)SiO2(100)/MgO(100)样品的纳米划痕测试:在划入深度小于15nm时,扫描电子显微镜下未观测到薄膜的脱落,当划入深度达到15nm时,可以在扫描电子显微镜下观测到薄膜的脱落现象(如图6所示),说明薄膜与衬底的结合情况较差。632) Nano-scratch test of SiO 2 (100)/MgO(100) samples: when the scratch depth is less than 15nm, no film peeling is observed under the scanning electron microscope. The peeling phenomenon of the thin film was observed under the microscope (as shown in Figure 6), indicating that the bonding of the thin film and the substrate was poor.
实施例2Example 2
一种基于过渡层对外延YSZ(钇稳定氧化锆)薄膜与氧化的Si衬底(SiO2(100))结合力影响评价的过渡层选择的实例,与实施例1其他步骤相同或类似,仅用以下步骤代替步骤六:采用脉冲激光沉积法(PLD),在Si(100)/TiN(100)上制备YSZ薄膜。利用ZrO2和Y2O3陶瓷粉末预先烧制靶材,以不同质量比(ZrO2和Y2O3陶瓷粉末质量比分别为100:8、100:11、100:15)球磨后,在1500℃烧制、压片、热压,最终形成直径25mm的圆形靶材。沉积时,通入O2作为背景气体,其压强为0.01Pa,选择衬底温度700~750℃,激光能量为5J/cm2,激光频率10Hz,靶基距4cm,沉积时间约50min。在该结构中,通过步骤一~五的模拟,TiN(100)仍是最为合适的过渡层材料,与YSZ(100)薄膜之间的结合力是N-Zr(N-金属氧化物中的金属元素)的类似化学键作用。An example of the transition layer selection based on the evaluation of the effect of the transition layer on the bonding force between the epitaxial YSZ (yttrium stabilized zirconia) thin film and the oxidized Si substrate (SiO 2 (100)), which is the same as or similar to other steps in Example 1, only Step 6 was replaced with the following steps: YSZ thin films were prepared on Si(100)/TiN(100) by pulsed laser deposition (PLD). The targets were pre-fired with ZrO 2 and Y 2 O 3 ceramic powders, and then ball-milled with different mass ratios (the mass ratios of ZrO 2 and Y 2 O 3 ceramic powders were 100:8, 100:11, and 100:15, respectively). Firing at 1500°C, tablet pressing, and hot pressing to finally form a circular target with a diameter of 25mm. During deposition, O 2 was introduced as a background gas with a pressure of 0.01 Pa, a substrate temperature of 700-750 °C, a laser energy of 5 J/cm 2 , a laser frequency of 10 Hz, a target-to-base distance of 4 cm, and a deposition time of about 50 min. In this structure, through the simulations in
实施例3Example 3
一种基于过渡层对外延SrTiO3薄膜与氧化的Si衬底(SiO2(100))结合力影响评价的过渡层选择的实例,与实施例1其他步骤相同或类似,仅用以下步骤代替步骤六:使用SrO和TiO2两种高纯靶材,与TiN靶材一起放入脉冲激光沉积系统(PLD)的生长室,在沉积SrTiO3薄膜时,每2min先遮盖住衬底,再通过靶材公转杆,依次选择SrO、TiO2靶材,层层沉积,借助其反应形成SrTiO3薄膜。沉积条件为衬底温度800~850℃,激光能量为5J/cm2,激光频率10Hz,靶基距4cm,沉积时间约50min。在该结构中,通过步骤一~五的模拟,TiN(100)仍是最为合适的过渡层材料,与SrTiO3(100)薄膜之间的结合力是N-Sr和N-Ti(N-金属氧化物中的金属元素)的类似化学键作用。An example of selection of transition layer based on the evaluation of the effect of transition layer on the bonding force between the epitaxial SrTiO 3 film and the oxidized Si substrate (SiO 2 (100)), the same or similar to other steps in Example 1, only the following steps are used instead of steps Six: Use two high-purity targets, SrO and TiO 2 , and put them into the growth chamber of the pulsed laser deposition system (PLD) together with the TiN target. When depositing the SrTiO 3 film, cover the substrate every 2min, and then pass the target The material revolution rod is used, and SrO and TiO 2 targets are selected in turn, and the layers are deposited, and the SrTiO 3 film is formed by their reaction. The deposition conditions were substrate temperature of 800-850° C., laser energy of 5 J/cm 2 , laser frequency of 10 Hz, target base distance of 4 cm, and deposition time of about 50 min. In this structure, through the simulation in
本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。The present invention can also have other various embodiments. Without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding changes and deformations are all It should belong to the protection scope of the appended claims of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711432502.1A CN108154004B (en) | 2017-12-26 | 2017-12-26 | Transition layer material selection method based on evaluation of bonding force of transition layer on epitaxial film and substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711432502.1A CN108154004B (en) | 2017-12-26 | 2017-12-26 | Transition layer material selection method based on evaluation of bonding force of transition layer on epitaxial film and substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108154004A CN108154004A (en) | 2018-06-12 |
CN108154004B true CN108154004B (en) | 2020-01-14 |
Family
ID=62462847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711432502.1A Active CN108154004B (en) | 2017-12-26 | 2017-12-26 | Transition layer material selection method based on evaluation of bonding force of transition layer on epitaxial film and substrate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108154004B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111415711A (en) * | 2019-01-04 | 2020-07-14 | 上海汽车集团股份有限公司 | Method and device for determining conductive corrosion-resistant coating material |
CN110824137B (en) * | 2019-10-10 | 2022-03-11 | 中国建筑材料科学研究总院有限公司 | Method and device for predicting crystallization order of silver film in low-emissivity glass on substrate |
CN113255139A (en) * | 2021-05-31 | 2021-08-13 | 国网山东省电力公司电力科学研究院 | Porous phospholene film pair SF6/N2Calculation method and system for separation of decomposition products |
CN113471093B (en) * | 2021-06-08 | 2024-06-04 | 广东省大湾区集成电路与系统应用研究院 | Film morphology prediction method and device for semiconductor device |
CN114749744B (en) * | 2022-05-12 | 2023-04-18 | 华北水利水电大学 | Method for predicting nitride of non-magnetic steel connection interface |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104607796A (en) * | 2015-02-12 | 2015-05-13 | 南京理工大学 | Friction-stir welding method allowing transitional layer between butt faces of metal composite plates to be under control |
CN104944998A (en) * | 2015-05-20 | 2015-09-30 | 合肥工业大学 | Method for enhancing strength of carbon/carbon composite material |
CN106886615A (en) * | 2015-12-10 | 2017-06-23 | 南京理工大学 | A kind of analogy method of RDX Quito component containing energy compound |
CN107313088A (en) * | 2017-07-12 | 2017-11-03 | 江苏科技大学 | A kind of method based on the nanocrystalline functional coating of anodic oxidation porous metals primary surface electro-deposition |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9193595B2 (en) * | 2011-06-21 | 2015-11-24 | Drexel University | Compositions comprising free-standing two-dimensional nanocrystals |
-
2017
- 2017-12-26 CN CN201711432502.1A patent/CN108154004B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104607796A (en) * | 2015-02-12 | 2015-05-13 | 南京理工大学 | Friction-stir welding method allowing transitional layer between butt faces of metal composite plates to be under control |
CN104944998A (en) * | 2015-05-20 | 2015-09-30 | 合肥工业大学 | Method for enhancing strength of carbon/carbon composite material |
CN106886615A (en) * | 2015-12-10 | 2017-06-23 | 南京理工大学 | A kind of analogy method of RDX Quito component containing energy compound |
CN107313088A (en) * | 2017-07-12 | 2017-11-03 | 江苏科技大学 | A kind of method based on the nanocrystalline functional coating of anodic oxidation porous metals primary surface electro-deposition |
Non-Patent Citations (1)
Title |
---|
异质生长金刚石衬底用 TiN/MgO 叠层制备及性能研究;王杨;《中国优秀硕士学位论文全文数据库 基础科学辑》;20160215(第2期);摘要,第2章第2.1,2.2,2.3,2.4节 * |
Also Published As
Publication number | Publication date |
---|---|
CN108154004A (en) | 2018-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108154004B (en) | Transition layer material selection method based on evaluation of bonding force of transition layer on epitaxial film and substrate | |
Sillassen et al. | Low‐temperature superionic conductivity in strained yttria‐stabilized zirconia | |
CN105895576B (en) | A kind of method for preparing semiconductor material thick film by ion implantation stripping | |
Engelmark et al. | Electrical characterization of AlN MIS and MIM structures | |
CN104499047A (en) | Substrate for realizing heteroepitaxial growth of large-size monocrystal diamond and preparation method thereof | |
Legallais et al. | Improvement of AlN film quality using plasma enhanced atomic layer deposition with substrate biasing | |
Chen et al. | Ultrahigh Energy Storage Capacitors Based on Freestanding Single‐Crystalline Antiferroelectric Membrane/PVDF Composites | |
Kim et al. | Atomic layer-by-layer etching of graphene directly grown on SrTiO3 substrates for high-yield remote epitaxy and lift-off | |
CN110257788B (en) | A kind of BaZr0.35Ti0.65O3 epitaxial film and preparation method thereof | |
Cole et al. | Evaluation of Ta2O5 as a buffer layer film for integration of microwave tunable Ba1− xSrxTiO3 based thin films with silicon substrates | |
Ma et al. | In situ growth of SiNx as gate dielectric and surface passivation for AlN/GaN heterostructures by metalorganic chemical vapor deposition | |
Pang et al. | Bimodal gate-dielectric deposition for improved performance of AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors | |
Emanetoglu et al. | Mg/sub x/Zn/sub 1-x/O: a new piezoelectric material | |
Wang et al. | Ultralow electron emission yield achieved on alumina ceramic surfaces and its application in multipactor suppression | |
Martinez-Perdiguero et al. | Electrical insulation and breakdown properties of SiO2 and Al2O3 thin multilayer films deposited on stainless steel by physical vapor deposition | |
Yang et al. | Vertical-conducting InGaN/GaN multiple quantum wells LEDs with AlN/GaN distributed Bragg reflectors on Si (111) substrate | |
Kathiresan et al. | Effect of Sr and La co-doping on structural and electrical properties of RF sputtered PZT thin films | |
Mánuel et al. | Engineering of III-Nitride semiconductors on low temperature co-fired ceramics | |
Lin et al. | Nonvolatile memories with dual-layer nanocrystalline ZnO embedded Zr-Doped HfO2 high-k dielectric | |
Gao et al. | A scandium doped aluminum nitride thin film bulk acoustic resonator | |
US20090294776A1 (en) | Highly Oxygen-Sensitive Silicon Layer and Method for Obtaining Same | |
Li et al. | High quality transferable AlN thin film by PLD | |
AU2022328264A1 (en) | An electronic device and method of forming an electronic device | |
CN109797367B (en) | Lead zirconate titanate/nickel iron oxide electric superlattice thin film material and preparation method thereof | |
CN114499432A (en) | Heterogeneous thin film substrate, preparation method thereof and filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231110 Address after: 450008 Intersection of Longyuan East 7th Street, Longhu Central North Road, Zhengdong New District, Zhengzhou City, Henan Province Patentee after: Zhengzhou Research Institute of Harbin Institute of Technology Address before: 150001 No. 92 West straight street, Nangang District, Heilongjiang, Harbin Patentee before: HARBIN INSTITUTE OF TECHNOLOGY |
|
TR01 | Transfer of patent right | ||
CI03 | Correction of invention patent |
Correction item: Patentee|Address Correct: Harbin Institute of Technology|150001 No. 92 West straight street, Nangang District, Heilongjiang, Harbin False: Zhengzhou Research Institute of Harbin Institute of Technology|450008 Intersection of Longyuan East 7th Street, Longhu Central North Road, Zhengdong New District, Zhengzhou City, Henan Province Number: 48-01 Volume: 39 |
|
CI03 | Correction of invention patent | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240103 Address after: 450008 Intersection of Longyuan East 7th Street, Longhu Central North Road, Zhengdong New District, Zhengzhou City, Henan Province Patentee after: Zhengzhou Research Institute of Harbin Institute of Technology Address before: 150001 No. 92 West straight street, Nangang District, Heilongjiang, Harbin Patentee before: HARBIN INSTITUTE OF TECHNOLOGY |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241128 Address after: Room 302, No. 26 Longyuan Dongqi Street, Zhengdong New District, Zhengzhou City, Henan Province, 450000 (Harbin Institute of Technology Zhengzhou Research Institute) Patentee after: Henan Hazheng Technology Development Co.,Ltd. Country or region after: China Address before: 450008 Intersection of Longyuan East 7th Street, Longhu Central North Road, Zhengdong New District, Zhengzhou City, Henan Province Patentee before: Zhengzhou Research Institute of Harbin Institute of Technology Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241213 Address after: Building 3, 1st Floor, National Beidou Industry Product Quality Supervision and Inspection Center, Cuibai Road and Qingmei Street Intersection, High tech Development Zone, Zhengzhou City, Henan Province, 450000 Patentee after: Henan Carbon True Core Material Technology Co.,Ltd. Country or region after: China Address before: Room 302, No. 26 Longyuan Dongqi Street, Zhengdong New District, Zhengzhou City, Henan Province, 450000 (Harbin Institute of Technology Zhengzhou Research Institute) Patentee before: Henan Hazheng Technology Development Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |