CN108148096A - 一种六核钌nnn配合物及其制备和应用 - Google Patents

一种六核钌nnn配合物及其制备和应用 Download PDF

Info

Publication number
CN108148096A
CN108148096A CN201611101860.XA CN201611101860A CN108148096A CN 108148096 A CN108148096 A CN 108148096A CN 201611101860 A CN201611101860 A CN 201611101860A CN 108148096 A CN108148096 A CN 108148096A
Authority
CN
China
Prior art keywords
nnn
complexs
reaction
nitrogenous
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611101860.XA
Other languages
English (en)
Other versions
CN108148096B (zh
Inventor
刘婷婷
余正坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201611101860.XA priority Critical patent/CN108148096B/zh
Publication of CN108148096A publication Critical patent/CN108148096A/zh
Application granted granted Critical
Publication of CN108148096B publication Critical patent/CN108148096B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/0244Pincer-type complexes, i.e. consisting of a tridentate skeleton bound to a metal, e.g. by one to three metal-carbon sigma-bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种六核钌金属配合物的合成及其应用。在室温条件下,以配位不饱和的钌金属配合物为原料与含氮六齿配体反应,合成具有较高催化活性的六核钌金属配合物。此六核钌金属配合物可应用于氢转移反应中,是制备二级醇的简便绿色的方法。

Description

一种六核钌NNN配合物及其制备和应用
技术领域
本发明涉及一种六核钌NNN配合物及其制备方法,以配位不饱和的单核钌金属配合物为原料,与含氮六齿配体在有机溶剂中发生配位反应,合成具有较高催化活性的六核钌NNN配合物。本发明具有操作简便、反应条件温和、合成效率高等优点。
技术背景
吡啶基氮杂环配体易与过渡金属配位,所形成的金属配合物较稳定,已成功应用于交叉偶联、催化氢化、Michael加成、环丙烷化和烯丙基取代等反应中。
近年来,多核金属配合物受到了广泛的关注,通过不同的组装与反应方式可以得到立体构型各异的多核金属配合物,在多种催化领域有着较好的应用前景。2008年,Anderson小组(Anderson,H.L.et al.Angew.Chem.Int.Ed.2008,47,4993.)利用六齿linker作为模板剂成功合成了纳米环状卟啉锌超分子化合物,相对于链状的卟啉锌超分子,纳米环状的超分子具有更好的π共轭效应。Stang研究组(Stang,P.J.etal.J.Am.Chem.Soc.2016,138,4580.)利用双铂配合物及双吡啶linker自组装,成功制备了金属环状超分子化合物,并研究其光物理性能,在生物技术及分子电子方面有着一定的应用前景。Li研究组(Li,X.P.et al.J.Am.Chem.Soc.2015,137,1556.)利用铂的金属前体与多齿linker自组装,通过改变两者之间的配比,就可得到2D或者3D结构的超分子化合物,在主客体化学及模板导向合成上有潜在的应用前景。
本发明主要是利用吡啶基氮杂环配体配位的单核钌金属配合物与含氮六齿配体作用,单核钌金属配合物中金属中心具有一个空位,可与六齿配体中配位性的原子进行配位,合成具有较高氢转移活性的六核钌NNN配合物,制备方法简单、产率高。此类六核钌NNN配合物性质稳定,对空气不敏感,易于保存。
发明内容
本发明的目的在于提供一种操作简便、反应条件温和、高收率的制备六核钌NNN配合物的方法。该六核钌NNN配合物性质稳定,对空气不敏感,易于保存。
为了实现上述目的,本发明的技术方案如下:
1.一种六核钌NNN配合物,其结构式1如下:
S取代基为苯基或者苯乙炔基。
利用配位不饱和的单核钌金属配合物2与含氮六齿配体3在有机溶剂中进行反应合成六核钌NNN配合物1;
含氮六齿配体3的结构式如下:
S取代基为苯基或者苯乙炔基。
六核钌NNN配合物1的合成路线如下述反应式所示:
单核钌金属配合物2与含氮六齿配体3的反应溶剂为二氯甲烷、甲醇、乙醇和甲苯中的一种或者两种。
单核钌金属配合物2与含氮六齿配体3的摩尔比范围为1:1-10:1,单核钌金属配合物2与含氮三齿配体3的摩尔比优选为6:1。
单核钌金属配合物2与含氮六齿配体3的反应温度为20-110℃,优选为78℃;反应时间为1-24h。
反应气氛为氮气,压力条件为一个大气压。
将反应体系减压浓缩后用二氯甲烷/正己烷(v/v=1/3)重结晶即可得到六核钌NNN配合物1。
所述酮类化合物为芳香酮,脂肪酮。
氮气氛围下异丙醇中回流,在较低催化剂浓度下,即可将酮类化合物转化为相应的醇类化合物。
本发明具有以下优点:
1)六核钌NNN配合物合成路线简单,条件温和,可方便快捷的合成出目标产物。
2)制备得到的六核钌NNN配合物性质稳定,对空气不敏感,易于保存。
3)六核钌NNN配合物可用于高效催化酮的氢转移反应。
具体实施方式
本发明以单核钌金属配合物2为原料,与含氮六齿配体3按6:1摩尔比在有机溶剂中发生配位反应,合成六核钌NNN配合物1。通过下述实施例有助于进一步理解本发明,但本发明的内容并不仅限于此。
单核钌金属配合物2按文献方法制备(Yu,Z.K.et al.Organometallics2008,27,2898.);含氮六齿配体的3按文献方法制备(Anderson,H.L.et al.Angew.Chem.Int.Ed.2008,47,4993.)
实施例1
氮气条件下,配位不饱和的单核钌金属配合物2(41mg,0.06mmol)、三齿配体3a(10mg,0.01mmol),在3mL的乙醇溶剂中78℃搅拌1h。减压下除去挥发组份,固体用CH2Cl2/正己烷(v:v=1:2)重结晶,得到红棕色固体为目标产物1a(48mg,收率94%)。目标产物通过核磁共振谱与元素分析测定得到确认。
实施例2
反应步骤与操作同实施例1,与实施例1不同之处在于,体系反应时间为24h。停止反应后,经后处理得到红棕色固体为目标产物1a(45mg,收率88%)。说明延长反应时间对增加目标产物收率无益。
实施例3
反应步骤与操作同实施例1,与实施例1不同之处在于,反应溶剂为甲苯,反应温度为110℃。停止反应后,经后处理得到红棕色固体为目标产物1a(42mg,收率82%)。说明在非质子性溶剂中也能进行此反应。
实施例4
反应步骤与操作同实施例1,与实施例1不同之处在于,反应溶剂为二氯甲烷/甲醇(v/v,5/1),反应温度为28℃。停止反应后,经后处理得到红棕色固体为目标产物1a(46mg,收率90%)。说明在混合溶剂中也能进行此反应。
实施例5
反应步骤与操作同实施例1,与实施例1不同之处在于,体系反应温度为50℃。停止反应后,经后处理得到红棕色固体为目标产物1a(40mg,收率78%)。
实施例6
反应步骤与操作同实施例1,与实施例1不同之处在于,体系反应温度为20℃。停止反应后,经后处理得到红棕色固体为目标产物1a(32mg,收率63%)。
实施例7
反应步骤与操作同实施例1,与实施例1不同之处在于,反应体系中加入的是三齿配体3b(11mg,0.01mmol)。停止反应后,经后处理得到红棕色固体为目标产物1b(50mg,收率96%)。目标产物通过核磁共振谱与元素分析测定得到确认。
实施例8
在氮气保护下,将三核钌NNN配合物1(2.5μmol)溶于20.0mL异丙醇中配成催化剂溶液。在氮气保护下,将底物苯乙酮(2.0mmol)、2mL催化剂溶液和17.6mL异丙醇的混合物在82℃搅拌5分钟。然后将0.4mL iPrOK的异丙醇溶液(0.05M)加入反应体系中。在指定的时间内,抽取0.1mL的反应液,并立即用0.5mL异丙醇稀释后做气相色谱分析。在所述条件下,苯乙酮几乎定量的还原为对应的醇产物,说明本发明的配合物可作为潜在的酮还原催化剂使用。
典型化合物表征数据
六核金属配合物1a,红棕色固体。Dark red solid.M.p.:>300℃,1H NMR(DMSO-d6,400MHz,23℃)δ8.42and 8.08(d each,12:12H,2″′-H and 3-H),7.55-7.64(m,6:6:12H,4-H,5-H and 3″′-H),7.43(t,12:12H,8″′-H and 9″′-H),7.31(d,6H,5″-H),7.16-7.24(m,54H,Ph in PPh3),7.04-7.11(m,36:6:6H Ph in PPh3,7″-H and 8″-H),6.98(t,6H,6″-H),6.37(s,6H,4′-H),2.69(s,18H,C3′-CH3),2.53(s,18H,C5′-CH3).13C{1H}NMR(DMSO-d6,100MHz,23℃)δ160.1,156.7,155.3,151.5,150.1,147.0,146.1,139.7,135.8,131.5,131.4,128.8(Cq each),132.9(d,o-C of PPh3),131.8(d,i-C PPh3),129.2(s,p-C ofPPh3),127.6(d,m-C of PPh3),144.5,128.7,127.5,124.9,120.5,120.4,119.5,118.7,117.1,116.1,112.4,107.9(CH),14.4(s,C3′-CH3),14.1(s,C5′-CH3).31P{1H}NMR(DMSO-d6,162MHz,23℃)δ33.5.Anal.Calcd for C282H222Cl6N36P6Ru6:C,66.15;H,4.37;N,9.85.Found:C,63.06;H,4.51;N,9.69.
六核金属配合物1b,橙黄色固体。Dark red solid.M.p.:>300℃,1H NMR(DMSO-d6,400MHz,23℃)δ8.57(d,12H,2″′-H),8.16and 7.70(d and m,6:12H,3-H,4-H and 5-H),7.38-7.51(m,24H,5″-H,8″-H and 3″′-H),7.19-7.24(m,54:6:12H,Ph in PPh3,6″-H and10″′-H),7.02-7.12(m,36:6:12H,Ph in PPh3,7″-H and 11″′-H),6.39(s,6H,4′-H),2.70(s,18H,C3′-CH3),2.54(s,18H,C5′-CH3).13C{1H}NMR(DMSO-d6,100MHz,23℃)δ157.0,153.7,151.6,151.4,145.0,144.9,140.6,139.4,130.4,130.0,125.7(Cq each),131.5(d,i-C of PPh3),149.9,136.1,132.8(d,o-C of PPh3),129.4,127.7(d,m-C of PPh3),125.3,121.5,118.8,117.7,116.8,112.6,121.1,117.3and 108.7(CH),93.3and87.0(C≡C,Cq each),14.4(C3′-CH3),14.1(C5′-CH3).31P{1H}NMR(DMSO-d6,162 MHz,23℃)δ33.0.Anal.Calcd for C294H222Cl6N36P6Ru6:C,67.08;H,4.25;N,9.58.Found:C,67.15;H,4.34;N,9.55.

Claims (10)

1.一种六核钌NNN配合物,其结构式1如下:
S取代基为苯基或者苯乙炔基。
2.一种权利要求1所述六核钌NNN配合物的制备方法,其特征在于:利用配位不饱和的单核钌金属配合物2与含氮六齿配体3在有机溶剂中进行反应合成六核钌NNN配合物1;
含氮六齿配体3的结构如下:
S取代基为苯基或者苯乙炔基;
六核钌NNN金属配合物1的合成路线如下述反应式所示:
3.按照权利要求2所述的合成方法,其特征在于:单核金属配合物2与含氮六齿配体3的反应溶剂为二氯甲烷、甲醇、乙醇和甲苯中的一种或者两种以上。
4.按照权利要求2所述的合成方法,其特征在于:单核金属配合物2与含氮六齿配体3的摩尔比范围为1:1-10:1。
5.按照权利要求2所述的合成方法,其特征在于:单核金属配合物2与含氮六齿配体3的反应温度为20-110℃,反应时间为1-24h。
6.按照权利要求2所述的合成方法,其特征在于:反应气氛为氮气,压力条件为一个大气压。
7.按照权利要求2所述的合成方法,其特征在于:将反应体系减压浓缩后用二氯甲烷/正己烷(v/v=1/3)重结晶即可得到六核钌NNN配合物1。
8.一种权利要求1所述六核钌NNN配合物作为酮类化合物还原催化剂的应用。
9.按照权利要求8所述的应用,其特征在于:所述酮类化合物为芳香酮,脂肪酮中的一种或二种以上。
10.按照权利要求8所述的应用,其特征在于:氮气氛围下异丙醇中回流,在催化剂存在下,即可将酮类化合物转化为相应的醇类化合物。
CN201611101860.XA 2016-12-05 2016-12-05 一种六核钌nnn配合物及其制备和应用 Active CN108148096B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611101860.XA CN108148096B (zh) 2016-12-05 2016-12-05 一种六核钌nnn配合物及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611101860.XA CN108148096B (zh) 2016-12-05 2016-12-05 一种六核钌nnn配合物及其制备和应用

Publications (2)

Publication Number Publication Date
CN108148096A true CN108148096A (zh) 2018-06-12
CN108148096B CN108148096B (zh) 2020-07-07

Family

ID=62470816

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611101860.XA Active CN108148096B (zh) 2016-12-05 2016-12-05 一种六核钌nnn配合物及其制备和应用

Country Status (1)

Country Link
CN (1) CN108148096B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109081855A (zh) * 2018-07-16 2018-12-25 辽宁大学 一种含能六核叠氮钯配合物及其合成方法和应用
CN111018895A (zh) * 2018-10-09 2020-04-17 中国科学院大连化学物理研究所 一种四吡啶基卟啉锌-二十四核钌配合物及其制备和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105601672A (zh) * 2014-11-25 2016-05-25 中国科学院大连化学物理研究所 一种双核钌nnn配合物及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105601672A (zh) * 2014-11-25 2016-05-25 中国科学院大连化学物理研究所 一种双核钌nnn配合物及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109081855A (zh) * 2018-07-16 2018-12-25 辽宁大学 一种含能六核叠氮钯配合物及其合成方法和应用
CN111018895A (zh) * 2018-10-09 2020-04-17 中国科学院大连化学物理研究所 一种四吡啶基卟啉锌-二十四核钌配合物及其制备和应用
CN111018895B (zh) * 2018-10-09 2022-05-31 中国科学院大连化学物理研究所 一种四吡啶基卟啉锌-二十四核钌配合物及其制备和应用

Also Published As

Publication number Publication date
CN108148096B (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
CN106749417B (zh) 一种三核钌nnn配合物及其制备方法
Ung et al. Low‐Temperature N2 Binding to Two‐Coordinate L2Fe0 Enables Reductive Trapping of L2FeN2− and NH3 Generation
Mankad et al. Terminal FeI N2 and FeII⋅⋅⋅ H C Interactions Supported by Tris (phosphino) silyl Ligands
CN105601672B (zh) 一种双核钌nnn配合物及其制备方法
Justice et al. Unsaturated, Mixed‐Valence Diiron Dithiolate Model for the Hox State of the [FeFe] Hydrogenase
Nishiura et al. Synthesis and Structures of the C5Me4SiMe3‐Supported Polyhydride Complexes over the Full Size Range of the Rare Earth Series
Maurya et al. Dioxovanadium (V) Complexes of ONO Donor Ligands Derived from Pyridoxal and Hydrazides: Models of Vanadate‐Dependent Haloperoxidases
Roy et al. Reduction of CO 2 by a masked two-coordinate cobalt (i) complex and characterization of a proposed oxodicobalt (ii) intermediate
Mädl et al. Functionalization of a cyclo‐P5 Ligand by Main‐Group Element Nucleophiles
Yuan et al. Ultrastable hydrido gold nanoclusters with the protection of phosphines
Braunschweig et al. Stepwise Intermetal Borylene Transfer: Synthesis and Structure of Mono‐and Dinuclear Cobalt–Borylene Complexes
Gök et al. Half-sandwich η6-arene–ruthenium (II) complexes bearing 1-alkyl (benzyl)-imidazo [4, 5-f][1, 10]-phenanthroline (IP) derivatives: the effect of alkyl chain length of ligands to catalytic activity
Patra et al. Dehydrogenation of Formic Acid Catalyzed by Water‐Soluble Ruthenium Complexes: X‐ray Crystal Structure of a Diruthenium Complex
Haslinger et al. Formation of Highly Strained N‐Heterocycles via Decomposition of Iron N‐Heterocyclic Carbene Complexes: The Value of Labile Fe C Bonds
CN108148096A (zh) 一种六核钌nnn配合物及其制备和应用
Flores‐Figueroa et al. Template‐Controlled Formation of an [11] ane‐P2CNHC Macrocyclic Ligand at an Iron (II) Template
Tu et al. Geometrically Specific Imino Complexes of the [Re6 (μ3‐Se) 8] 2+ Core‐Containing Clusters
Monkcom et al. Structurally Modelling the 2‐His‐1‐Carboxylate Facial Triad with a Bulky N, N, O Phenolate Ligand
Sen et al. pH‐Tuned Modulation of 1D Chain to 3D Metal–Organic Framework: Synthesis, Structure and Their Useful Application in the Heterogeneous Claisen–Schmidt Reaction
Yi et al. Recent developments in ruthenium nitrido complexes
Maurya et al. Trinuclear cis-dioxidomolybdenum (VI) complexes of compartmental C3 symmetric ligands: Synthesis, characterization, DFT study and catalytic application for hydropyridines (Hps) via the Hantzsch reaction
CN108610380A (zh) 一种四吡啶基卟啉锌-钌配合物及其制备和应用
Benmansour et al. New coordination polymers based on a novel polynitrile ligand: Synthesis, structure and magnetic properties of the series [M (tcnoetOH) 2 (4, 4′-bpy)(H2O) 2](tcnoetOH−=[(NC) 2CC (OCH2CH2OH) C (CN) 2]−; M= Fe, Co and Ni)
Keypour et al. Synthesis and characterization of three heptaaza manganese (II) macrocyclic Schiff base complexes containing two 2-pyridylmethyl pendant arms
Kumah et al. Synthesis and Applications of (Pyridyl) imine Fe (II) Complexes as Catalysts in Transfer Hydrogenation of Ketones

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant