CN108122688A - 一种可用于全固态储能器件的柔性电化学电极的制备方法 - Google Patents

一种可用于全固态储能器件的柔性电化学电极的制备方法 Download PDF

Info

Publication number
CN108122688A
CN108122688A CN201711190728.5A CN201711190728A CN108122688A CN 108122688 A CN108122688 A CN 108122688A CN 201711190728 A CN201711190728 A CN 201711190728A CN 108122688 A CN108122688 A CN 108122688A
Authority
CN
China
Prior art keywords
flexible
storage device
solid
preparation
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711190728.5A
Other languages
English (en)
Inventor
王素敏
王奇观
张开
申婧文
李璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Technological University
Original Assignee
Xian Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Technological University filed Critical Xian Technological University
Priority to CN201711190728.5A priority Critical patent/CN108122688A/zh
Publication of CN108122688A publication Critical patent/CN108122688A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明涉及电化学电极材料领域,更具体地,涉及一种可用于全固态储能器件的柔性电化学电极的制备方法。以解决现有技术存在的制备方法步骤繁琐的问题,还要解决现有技术制备出的电极存在的导电性低、性能不稳定和电化学性能不良的问题。本发明采用的步骤为:S1、在柔性基底上电沉积纳米金属层;S2、将所述覆盖金属层的柔性基底放入导电高分子单体的酸性水溶液中,通入0.5~1.0V直流电,使导电高分子单体均匀的生长覆盖在纳米金属层上,得到一层导电高分子膜;S3、将固态电解质涂敷于上述柔性电极上并封装为储能器件,固态电解质以聚乙烯醇为基体,以聚苯胺磺酸为电解质。

Description

一种可用于全固态储能器件的柔性电化学电极的制备方法
本发明涉及电化学电极材料领域,更具体地,涉及一种可用于全固态储能器件的柔性电化学电极的制备方法。
背景技术
便携式、可穿戴电子产品在人工皮肤、可穿着电子器件和航空航天等领域中显示了巨大的应用前景,同时,引起了人们对可折叠柔性电极及其储能器件的研究。另外也对用于这些可穿戴电子产品的电源性能提出了全固态、柔性、体积小、效率高等新要求。为了实现上述目标,开发全固态可快速充放电,兼具高电导率、优良机械强度、可折叠弯曲的柔性新型电极,是当前该领域的重要技术问题。
柔性电极多以聚合物或导电布作为基底材料,其上沉积碳纳米材料。碳纳米材料(碳纳米管、石墨烯)作为一种新型的纳米材料,具备高的电导率,纳米材料的尺寸效应,优异的电化学性质,在柔性导电材料的制备中具有非常广阔的应用前景。
现有技术中,有利用层层自组装(Layer by layer, LBL)原理将电极材料如单壁碳纳米管薄膜沉积于隔膜上[如Z. Niu, W. Zhou, J. Chen, et al. Compact-designedsupercapacitors using free-standing single-walled carbon nanotube films[J].Energy Environ. Sci., 2011, 4(4): 1440-1446];还有通过将棉布、纸张等浸渍到电极活性材料的溶液中[如L. Hu, M. Pasta, F. L. Mantia, et al. Stretchable, porous,and conductive energy textiles[J]. Nano Lett., 2010, 10(2): 708-714],制备导电纸,然后再组装成各种器件,组装中使用的电解质均为聚乙烯醇(PVA)、硫酸和磷酸。第一种制备方法过程复杂,成本高,且不利于批量生产;第二种制备方法,配制电极材料的溶液时需要使用一定浓度的表面活性剂,因此影响电极的导电性能。且两种方法组装中所用的硫酸、磷酸均为小分子酸,腐蚀性大且易挥发,一方面存在生产安全隐患,也会导致器件的性能不稳定。
发明内容
本发明要提供一种可用于全固态储能器件的柔性电化学电极的制备方法,以解决现有技术存在的制备方法步骤繁琐的问题,还要解决现有技术制备出的电极存在的导电性低、性能不稳定和电化学性能不良的问题。
为了达到本发明的目的,本发明提供一种可用于全固态储能器件的柔性电化学电极的制备方法,包括以下步骤:
S1、在柔性基底上电沉积纳米金属层;
S2、将所述覆盖金属层的柔性基底放入导电高分子单体的酸性水溶液中,通入0.5~1.0V直流电,使导电高分子单体均匀的生长覆盖在纳米金属层上,得到一层导电高分子膜;
S3、将固态电解质涂敷于上述柔性电极上并封装为储能器件,固态电解质以聚乙烯醇(PVA)为基体,以聚苯胺磺酸为电解质。
作为优选的,所述步骤S1具体包括:取柔性基底浸渍到质量浓度为0.5%~10%的纳米金属溶胶中电沉积5~60分钟,取出后,在50℃~70℃下烘干1~2小时,形成纳米金属层。
作为优选的,纳米金属溶胶可以为金溶胶或银溶胶。
作为优选的,所述步骤S2具体包括:将所述覆盖金属的柔性基底放入0.1~1.0mol/L导电高分子单体形成的pH=0~1的酸性水溶液中,通入0.5~1.0V直流电,使单体在柔性基体表面原位聚合,得到一层导电聚合物膜。
所述酸性水溶液为盐酸和/或硫酸水溶液;导电高分子单体为苯胺、吡咯或噻吩。
与现有技术相比,本发明的优点是:
1、本发明的制备方法易于实现批量生产,重复性高,为柔性电极在全固态储能器件中的广泛性应用提供了条件。
2、制备出的产品膜电导率高;电极的电化学性能优良,具有一定柔性,反复弯曲500次后仍然保持良好的电化学行为。轻薄且方便携带。该方法所制备的柔性电极可应用于柔性储能器件如柔性锂离子电池,超级电容器等的制备。
3、使用柔性基底,成本低,简单易行。
4、固体电解质为高分子电解质,相比于磷酸、硫酸等小分子电解质,其离子电导性好,稳定性高。
附图说明
图1为根据本发明实施例的柔性电极制备方法流程图;
图2为根据本发明实施例的柔性电极的表面结构形貌示意图;
图3为根据本发明实施例的单个柔性电极在0.5M H2SO4中活化的循环伏安图;
图4为根据本发明实施例的弯曲不同次数的单个柔性电极在0.5M H2SO4溶液中表征的循环伏安图;
图5为根据本发明实施例的柔性电极在1.0A/g时的时间-电压曲线。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
参见图1,本申请提出一种可用于全固态储能器件的柔性电化学电极的制备方法,在柔性基体上电沉积纳米金属层,然后在酸性溶液中聚合导电性高分子单体,从而在柔性基底上原位沉积一层导电聚合物,最后在上述基底上涂敷一层由高分子电解质组成的固体电解质,形成可用于全固态储能器件的柔性电化学电极。
本发明提供了一种可用于全固态储能器件的柔性电化学电极的制备方法,包括:
S1、在柔性基底上电沉积纳米金属层;
S2、将所述金属覆盖的柔性基底与导电高分子单体发生聚合反应,使导电聚合物均匀的生长覆盖在基底上;
S3、将固态电解质涂敷于上述柔性电极上并封装为储能器件。
具体方法包括以下步骤:
S1、在柔性基底上电沉积纳米金属层,以提高基底的导电性能:取柔性基底浸渍到质量浓度为0.5%~10%的纳米金属溶胶中电沉积5~60分钟,取出后,在50℃~70℃下烘干1~2小时,形成纳米金属层;
S2、将所述覆盖金属的柔性基底放入0.1~1.0mol/L导电高分子单体形成的pH=0~1酸性水溶液中,通入0.5~1.0V直流电,使单体在柔性基体表面原位聚合,得到一层导电聚合物膜;
S3、在经过步骤S1和S2处理的柔性基底上涂敷固体电解质,厚度0.1~0.5mm,封装为储能器件,固态电解质以聚乙烯醇(PVA)为基体,以聚苯胺磺酸为电解质。
所述的纳米金属溶胶为金溶胶或银溶胶。所述柔性基底的材料可以是碳布、无纺布、棉花或纸。
实施例1,一种可用于全固态储能器件的柔性电化学电极的制备方法,包括下述步骤:
S1:取碳布浸渍到质量浓度为0.5%的纳米金溶胶中,0.8V下电沉积10分钟,取出后,在60℃下烘干2小时,形成纳米金属层。以提高基底的导电性能;
S2:将所述覆盖金属层的柔性基底放入苯胺单体的盐酸水溶液中,pH=0,0.8V电压,保持10分钟,使单体在柔性基体表面原位聚合,得到一层导电聚合物膜。如图2中所示,为柔性电极的表面纳米材料的结构形貌示意图。
S3:在经过步骤S1和S2处理的柔性基底上涂敷由聚乙烯醇(PVA)和聚苯胺磺酸组成的固体电解质,厚度0.2mm,将以上两片电极贴合组装为储能器件。
本实施例为最佳实施例。
参见图3,可以看到在+0.2/-0.04和+0.8/+0.69V出现了一对氧化还原峰,分别对应于聚苯胺的还原态和氧化态,表现出优良的电化学活性;
参见图4,可以看到循环伏安曲线相对吻合,说明了该电极在弯曲500次数之后,还能够具有良好的电化学性能;
参见图5,循环伏安曲线基本重合,说明了该电极在弯曲不同程度之后,还能够具有良好的电化学性能。
实施例2,一种可用于全固态储能器件的柔性电化学电极的制备方法,包括下述步骤:
S1:取无纺布浸渍到质量浓度为8%的纳米金溶胶中在0.8V下电沉积30分钟,取出后,在70℃下烘干2小时,形成纳米金属层。
S2:将所述覆盖金属层的柔性基底放入吡咯单体的硫酸水溶液中,pH=0,施加0.8V电压,保持30分钟,使单体在柔性基体表面原位聚合,得到一层导电聚合物膜。
S3:在经过步骤S1和S2处理的柔性基底上涂敷由聚乙烯醇(PVA)和聚苯胺磺酸组成的固体电解质,厚度0.5mm,即得到本发明提供的柔性电极。
实施例3,一种可用于全固态储能器件的柔性电化学电极的制备方法,包括下述步骤:
S1:取无纺布浸渍到质量浓度为5%的纳米银溶胶中在1.0V下电沉积40分钟,取出后,在60℃下烘干2小时,形成纳米金属层。
S2:将所述覆盖金属层的柔性基底放入噻吩单体的硫酸水溶液中,pH=1,施加0.6V电压,保持30分钟,使单体在柔性基体表面原位聚合,得到一层导电聚合物膜。
S3:在经过步骤S1和S2处理的柔性基底上涂敷由聚乙烯醇(PVA)和聚苯胺磺酸组成的固体电解质,厚度0.3mm,即得到本发明提供的柔性电极。
实施例4,一种可用于全固态储能器件的柔性电化学电极的制备方法,包括下述步骤:
S1:取纸做的浸渍到质量浓度为2%的纳米银溶胶中在1.0V下电沉积5分钟,取出后,在50℃下烘干1小时;然后再浸入到金属溶胶中电沉积10分钟,取出后,在50℃下烘干1小时,形成纳米金属层。
S2:将所述覆盖金属层的柔性基底放入噻吩单体的盐酸水溶液中,pH=0,施加0.9V电压,保持10分钟,使单体在柔性基体表面原位聚合,得到一层导电聚合物膜。
S3:在经过步骤S1和S2处理的柔性基底上涂敷由聚乙烯醇(PVA)和聚苯胺磺酸组成的固体电解质,厚度0.2mm,即得到本发明提供的柔性电极。
最后,本申请的方法仅为较佳的实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种可用于全固态储能器件的柔性电化学电极的制备方法,其特征在于:包括以下步骤:
S1、在柔性基底上电沉积纳米金属层;
S2、将所述覆盖金属层的柔性基底放入导电高分子单体的酸性水溶液中,通入0.5~1.0V直流电,使导电高分子单体均匀的生长覆盖在纳米金属层上,得到一层导电高分子膜;
S3、将固态电解质涂敷于上述柔性电极上并封装为储能器件,固态电解质以聚乙烯醇为基体,以聚苯胺磺酸为电解质。
2.根据权利要求1所述的一种可用于全固态储能器件的柔性电化学电极的制备方法,其特征在于:所述步骤S1具体包括:取柔性基底浸渍到质量浓度为0.5%~10%的纳米金属溶胶中电沉积5~60分钟,取出后,在50℃~70℃下烘干1~2小时,形成纳米金属层。
3.根据权利要求1或2所述的一种可用于全固态储能器件的柔性电化学电极的制备方法,其特征在于:所述的纳米金属溶胶为金溶胶或银溶胶。
4.根据权利要求3所述的一种可用于全固态储能器件的柔性电化学电极的制备方法,其特征在于:所述步骤S2具体包括:将所述覆盖金属的柔性基底放入0.1~1.0mol/L导电高分子单体形成的pH=0~1的酸性水溶液中,通入0.5~1.0V直流电,使单体在柔性基体表面原位聚合,得到一层导电聚合物膜。
5.根据权利要求4所述的一种可用于全固态储能器件的柔性电化学电极的制备方法,其特征在于:所述酸性水溶液为盐酸和/或硫酸水溶液;导电高分子单体为苯胺、吡咯或噻吩。
CN201711190728.5A 2017-11-24 2017-11-24 一种可用于全固态储能器件的柔性电化学电极的制备方法 Pending CN108122688A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711190728.5A CN108122688A (zh) 2017-11-24 2017-11-24 一种可用于全固态储能器件的柔性电化学电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711190728.5A CN108122688A (zh) 2017-11-24 2017-11-24 一种可用于全固态储能器件的柔性电化学电极的制备方法

Publications (1)

Publication Number Publication Date
CN108122688A true CN108122688A (zh) 2018-06-05

Family

ID=62227846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711190728.5A Pending CN108122688A (zh) 2017-11-24 2017-11-24 一种可用于全固态储能器件的柔性电化学电极的制备方法

Country Status (1)

Country Link
CN (1) CN108122688A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066671A (zh) * 2021-03-02 2021-07-02 浙江工业大学 一种热电柔性超级电容器及其制备方法
CN114892223A (zh) * 2022-04-19 2022-08-12 武汉理工大学 利用聚苯胺/聚乙烯醇电极电沉积天然高分子膜的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321322A (zh) * 1999-09-10 2001-11-07 松下电器产业株式会社 固体电解电容器及其制造方法和导电性聚合物聚合用的氧化剂溶液
CN1409418A (zh) * 2001-09-26 2003-04-09 三星Sdi株式会社 电极材料、制备电极材料方法、电极和包括该电极的电池
CN102568865A (zh) * 2012-02-22 2012-07-11 华中科技大学 一种基于纸张的柔性超级电容器的制备方法及其应用
CN103825011A (zh) * 2014-02-28 2014-05-28 苏州路特新能源科技有限公司 锂离子电池的锡和导电高分子复合负极材料膜的制备方法
CN106548875A (zh) * 2016-11-03 2017-03-29 东华大学 一种全固态柔性透明超级电容器及其制备和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321322A (zh) * 1999-09-10 2001-11-07 松下电器产业株式会社 固体电解电容器及其制造方法和导电性聚合物聚合用的氧化剂溶液
CN1409418A (zh) * 2001-09-26 2003-04-09 三星Sdi株式会社 电极材料、制备电极材料方法、电极和包括该电极的电池
CN102568865A (zh) * 2012-02-22 2012-07-11 华中科技大学 一种基于纸张的柔性超级电容器的制备方法及其应用
CN103825011A (zh) * 2014-02-28 2014-05-28 苏州路特新能源科技有限公司 锂离子电池的锡和导电高分子复合负极材料膜的制备方法
CN106548875A (zh) * 2016-11-03 2017-03-29 东华大学 一种全固态柔性透明超级电容器及其制备和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066671A (zh) * 2021-03-02 2021-07-02 浙江工业大学 一种热电柔性超级电容器及其制备方法
CN114892223A (zh) * 2022-04-19 2022-08-12 武汉理工大学 利用聚苯胺/聚乙烯醇电极电沉积天然高分子膜的方法
CN114892223B (zh) * 2022-04-19 2024-05-28 武汉理工大学 利用聚苯胺/聚乙烯醇电极电沉积天然高分子膜的方法

Similar Documents

Publication Publication Date Title
Peng et al. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes
Abdah et al. Fabrication of PEDOT coated PVA-GO nanofiber for supercapacitor
Bavio et al. Flexible symmetric and asymmetric supercapacitors based in nanocomposites of carbon cloth/polyaniline-carbon nanotubes
Holze et al. Intrinsically conducting polymers in electrochemical energy technology: Trends and progress
CN102723209B (zh) 一种石墨烯纳米片/导电聚合物纳米线复合材料的制备方法
Xu et al. Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application
Xinping et al. A new nanocomposite: Carbon cloth based polyaniline for an electrochemical supercapacitor
Patil et al. Chemical synthesis of highly stable PVA/PANI films for supercapacitor application
Wang et al. Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors
CN102324317B (zh) 一种用于柔性固态超级电容器的电极及其制备方法
Soni et al. Realizing high capacitance and rate capability in polyaniline by enhancing the electrochemical surface area through induction of superhydrophilicity
Yuan et al. Synthesis of flexible and porous cobalt hydroxide/conductive cotton textile sheet and its application in electrochemical capacitors
Khoh et al. Solid-state asymmetric supercapacitor based on manganese dioxide/reduced-graphene oxide and polypyrrole/reduced-graphene oxide in a gel electrolyte
Peng et al. Flexible polypyrrole/cobalt sulfide/bacterial cellulose composite membranes for supercapacitor application
Oliveira et al. IR drop studies of poly (aniline)-based modified electrodes
Wang et al. A wearable supercapacitor engaged with gold leaf gilding cloth toward enhanced practicability
Hou et al. Boosting the electrochemical properties of polyaniline by one-step co-doped electrodeposition for high performance flexible supercapacitor applications
CN107946091A (zh) 一种纸基柔性平面超级电容器制备方法
Li et al. Three-dimensional stretchable fabric-based electrode for supercapacitors prepared by electrostatic flocking
Zuo et al. Flexible polypyrrole@ Fe2O3@ stainless steel yarn composite electrode for symmetric thread‐like supercapacitor with extended operating voltage window in Li2SO4‐based aqueous electrolyte
Chen et al. Electrochemical capacitance of spherical nanoparticles formed by electrodeposition of intrinsic polypyrrole onto Au electrode
Ma et al. Asymmetric hybrid capacitors based on novel bearded carbon fiber cloth–pinhole polyaniline electrodes with excellent energy density
Rasouli et al. The influence of electrodeposited PPy film morphology on the electrochemical characteristics of Nafion-based energy storage devices
Zhou et al. A dual-doped strategy to enhance the electrochemical performances of electropolymerized polyaniline electrodes for flexible energy storage
Branzoi et al. Coatings based on conducting polymers and functionalized carbon nanotubes obtained by electropolymerization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180605