CN108118317A - 一种银纳米粒子薄膜及制备方法 - Google Patents

一种银纳米粒子薄膜及制备方法 Download PDF

Info

Publication number
CN108118317A
CN108118317A CN201711305422.XA CN201711305422A CN108118317A CN 108118317 A CN108118317 A CN 108118317A CN 201711305422 A CN201711305422 A CN 201711305422A CN 108118317 A CN108118317 A CN 108118317A
Authority
CN
China
Prior art keywords
silver
substrate
film
marine product
nano silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711305422.XA
Other languages
English (en)
Inventor
翁蕾
张健
李佳
张雨
万尚尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN201711305422.XA priority Critical patent/CN108118317A/zh
Publication of CN108118317A publication Critical patent/CN108118317A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/02Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using precipitation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种银纳米粒子薄膜及制备方法,其薄膜以衬底为主体,在衬底上生长银层后,利用还原剂析出银纳米粒子,并形成银层;将该薄膜析出银层的面作为海产品的内包装层,能够监测海产品的新鲜程度。其制备方法是:通过将衬底浸泡在正丁胺溶液中,利用银氨法在该衬底上生长银纳米粒子层,还原析出银纳米粒子,并形成银层,得到所述银纳米粒子薄膜。本发明利用海鲜变质时会释放出硫化氢气体而与银纳米粒子薄膜反应生成硫化银黑色沉淀,使得本应是光亮的银层而变黑,来监测海产品新鲜程度。本发明的薄膜,用于海产品的监测相比传统监测方法而言,不需特定的实验温度及专业设备,且可以与现有的海产品包装实现衔接,可以大规模制造、性价比高。

Description

一种银纳米粒子薄膜及制备方法
技术领域
本发明涉及薄膜的制备,尤其是一种可以大规模一次性成型的银纳米粒子薄膜;将该薄膜用于海产品的包装,能够监测海产品新鲜程度。
背景技术
随着物质条件的不断丰富,日常生活饮食中对海产品的需求愈加明显。但海产品却存在着诸多隐患问题,只有在保证新鲜度的情况下才对人体是有益处的,而如果是变质的海产品则会对身体带来坏的影响,严重时危及生命。而现有的海产品监测方法虽然较多,但大多数还只是停留在用专业的仪器设备进行检测,难以做到商业化、便携化的应用。
近年来,一些研究通过去分辨海产品新鲜时和不新鲜时的一些不同特征作为对照,从而可以监测海产品的新鲜程度,如专利号200910308398.4的海产品气味辨别方法,虽然对于海产品的新鲜程度可以做到一定程度上的监测,但存在的问题是,上述方法所采用的分析技术、监测方法复杂,尚不能做到商业应用中便携化的应用。
发明内容
本发明的目的是针对现有技术的不足而提供的一种银纳米粒子薄膜及制备方法,该薄膜可实现在现有的海产品包装上进行新鲜程度的监测,具有简单、成本低、效率高的优点。
实现本发明目的的具体技术方案是:
一种银纳米粒子薄膜,特点是:该膜以衬底为主体,在衬底上生长银层后,利用还原剂析出银纳米粒子,并形成银层;将该薄膜析出银层的面作为海产品的内包装层,能够监测海产品的新鲜程度;其中,所述衬底为聚对苯二甲酸乙二醇酯(PET)。
一种上述银纳米粒子薄膜的制备方法,该方法包括以下具体步骤:
步骤1:选一衬底贴附于玻璃片上,将贴附有衬底的玻璃片浸泡在纯度为95%的乙醇溶液中超声震荡25~30分钟;
步骤2:将步骤1所得衬底用去离子水冲洗干净,浸泡在纯度为99%的正丁胺中,50℃下50~60分钟,之后用去离子水冲洗,放至室温;
步骤3:将步骤2所得衬底使用银氨法生长银层,具体包括:
S3.1:将硝酸银溶于去离子水中,搅拌均匀,得浓度为0.02~0.03mol/L的硝酸银溶液;
S3.2:将S3.1所得的硝酸银溶液缓慢滴加NH3含量为25%~28%的氨水,使得溶液从浑浊变澄清,滴定结束,得到银氨溶液;
S3.3:将步骤2所得衬底浸入S3.2所得的银氨溶液中13~15分钟;
S3.4:将S3.3所得衬底去离子水冲洗,并置于浓度为8~10mmol/L的还原剂中使之析出银纳米粒子,并形成银层;
S3.5:将S3.4所得衬底去离子水冲洗,室温干燥20~25分钟;
步骤4:将步骤3所得衬底从玻璃片上撕下,得到所述银纳米粒子薄膜。
所述衬底为聚对苯二甲酸乙二醇酯(PET)。
所述还原剂为硼氢化钠溶液或过氧化氢溶液。
本发明的薄膜,用于海产品的监测相比传统监测方法而言,不需特定的实验温度及专业设备,且可以与现有的海产品包装实现衔接,可以大规模制造、性价比高。
附图说明
图1为本发明制备方法流程图;
图2为本发明制备方法步骤3的流程图。
具体实施方式
下面结合附图,对本发明进行详细描述。
参阅图1-2,本发明银纳米粒子薄膜的制备包括以下具体步骤:
S1:选一衬底12贴附于玻璃片11上,将该衬底浸泡在纯度为95%的乙醇溶液13中超声震荡25~30分钟;
S2:将步骤1所得衬底12用去离子水冲洗干净,浸泡在纯度为99%的正丁胺14中,50℃下50~60分钟,之后用去离子水冲洗,放至室温;
S3:将步骤2所得衬底12使用银氨法生长银层,具体包括:
S3.1:将硝酸银溶于去离子水中,搅拌均匀,得浓度为0.02~0.03mol/L的硝酸银溶液21;
S3.2:将S3.1所得的硝酸银溶液缓慢滴加NH3含量为25%~28%的氨水22,使得溶液从浑浊变澄清,滴定结束,得到银氨溶液23;
S3.3:将步骤S2所得衬底12浸入S3.2所得的银氨溶液25中13~15分钟;
S3.4:将S3.3所得衬底12去离子水冲洗,并置于浓度为8~10mmol/L的还原剂24中使之析出银纳米粒子,并形成银层25;
S3.5:将S3.4所得衬底12去离子水冲洗,室温干燥20~25分钟;
S4:将S3所得衬底12从玻璃片11上撕下,得到所述银纳米粒子薄膜;将该薄膜析出银层的一面作为海产品的内包装层,能够监测海产品的新鲜程度。
本发明是这样制作使用的:
首先,将衬底PET浸泡在乙醇溶液中超声处理,是为了去除表面杂质,以确保衬底PET表面干净。之后将其浸泡在正丁胺中,使得PET表面活性化。然后配置银氨溶液,将PET衬底浸入银氨溶液中13~15min,使之发生络合反应,利用0.16~0.2mmol/L的过氧化氢溶液作为还原剂使得表面析出形成银层,过氧化氢溶液浓度不宜过高,否则所生长出来的银层较疏松。所形成的银层在显微镜下观察银颗粒为50~100nm,即生长所得为银纳米粒子。利用海鲜变质时会释放出硫化氢气体而与所制备的银纳米粒子薄膜反应生成硫化银黑色沉淀,使得本应是光亮的银层而变黑,从而监测海产品新鲜程度。该反应不可逆,即无法再通过低温使得海产品的外包装变回光亮的银层。工艺流程中,无需繁琐的步骤,流程简单易操作,可大规模制备,而且本发明的银纳米粒子薄膜可以与现有的海产品包装实现衔接,可以大规模制造、性价比高。

Claims (4)

1.一种银纳米粒子薄膜,其特征在于,该膜以衬底为主体,在衬底上生长银层后,利用还原剂析出银纳米粒子,并形成银层;将该薄膜析出银层的面作为海产品的内包装层,能够监测海产品的新鲜程度;其中,所述衬底为聚对苯二甲酸乙二醇酯。
2.一种权利要求1所述银纳米粒子薄膜的制备方法,其特征在于,该方法包括以下具体步骤:
步骤1:选一衬底贴附于玻璃片上,将贴附有衬底的玻璃片浸泡在纯度为95%的乙醇溶液中超声震荡25~30分钟;
步骤2:将步骤1所得衬底用去离子水冲洗干净,浸泡在纯度为99%的正丁胺中,50℃下50~60分钟,之后用去离子水冲洗,放至室温;
步骤3:将步骤2所得衬底使用银氨法生长银层,具体包括:
S3.1:将硝酸银溶于去离子水中,搅拌均匀,得浓度为0.02~0.03mol/L的硝酸银溶液;
S3.2:将S3.1所得的硝酸银溶液缓慢滴加NH3含量为25%~28%的氨水,使得溶液从浑浊变澄清,滴定结束,得到银氨溶液;
S3.3:将步骤2所得衬底浸入S3.2所得的银氨溶液中13~15分钟;
S3.4:将S3.3所得衬底去离子水冲洗,并置于浓度为8~10mmol/L的还原剂中使之析出银纳米粒子,并形成银层;
S3.5:将S3.4所得衬底去离子水冲洗,室温干燥20~25分钟;
步骤4:将步骤3所得衬底从玻璃片上撕下,得到所述银纳米粒子薄膜。
3.根据权利要求2所述的制备方法,其特征在于,所述衬底为聚对苯二甲酸乙二醇酯。
4.根据权利要求2所述的制备方法,其特征在于,所述还原剂为硼氢化钠溶液或过氧化氢溶液。
CN201711305422.XA 2017-12-11 2017-12-11 一种银纳米粒子薄膜及制备方法 Pending CN108118317A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711305422.XA CN108118317A (zh) 2017-12-11 2017-12-11 一种银纳米粒子薄膜及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711305422.XA CN108118317A (zh) 2017-12-11 2017-12-11 一种银纳米粒子薄膜及制备方法

Publications (1)

Publication Number Publication Date
CN108118317A true CN108118317A (zh) 2018-06-05

Family

ID=62229849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711305422.XA Pending CN108118317A (zh) 2017-12-11 2017-12-11 一种银纳米粒子薄膜及制备方法

Country Status (1)

Country Link
CN (1) CN108118317A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907427A (zh) * 2019-12-12 2020-03-24 吉林大学 一种氨基酸辅助的sers活性试纸的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101200553A (zh) * 2006-12-14 2008-06-18 中国科学院理化技术研究所 银纳米粒子/聚乙烯醇复合薄膜及其制备方法和用途
CN101623763A (zh) * 2009-08-03 2010-01-13 北京印刷学院 在薄膜表面以大分子为模板合成纳米银的方法
CN103203465A (zh) * 2013-04-02 2013-07-17 陕西师范大学 银纳米颗粒的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101200553A (zh) * 2006-12-14 2008-06-18 中国科学院理化技术研究所 银纳米粒子/聚乙烯醇复合薄膜及其制备方法和用途
CN101623763A (zh) * 2009-08-03 2010-01-13 北京印刷学院 在薄膜表面以大分子为模板合成纳米银的方法
CN103203465A (zh) * 2013-04-02 2013-07-17 陕西师范大学 银纳米颗粒的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907427A (zh) * 2019-12-12 2020-03-24 吉林大学 一种氨基酸辅助的sers活性试纸的制备方法
CN110907427B (zh) * 2019-12-12 2021-11-19 吉林大学 一种氨基酸辅助的sers活性试纸的制备方法

Similar Documents

Publication Publication Date Title
Sundar et al. Biosynthesis of copper oxide (CuO) nanowires and their use for the electrochemical sensing of dopamine
Qiao et al. As a new peroxidase mimetics: The synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine
Thanh et al. In situ synthesis of graphene-encapsulated gold nanoparticle hybrid electrodes for non-enzymatic glucose sensing
Lian et al. Electrochemical sensor using neomycin-imprinted film as recognition element based on chitosan-silver nanoparticles/graphene-multiwalled carbon nanotubes composites modified electrode
Luo et al. Non-enzymatic electrochemical sensors for the detection of hydrogen peroxide based on Cu 2 O/Cu nanocomposites
Umar et al. Bi2O2CO3 nanoplates: Fabrication and characterization of highly sensitive and selective cholesterol biosensor
Zhang et al. An electrochemical sensor based on plasma-treated zinc oxide nanoflowers for the simultaneous detection of dopamine and diclofenac sodium
Lamba et al. Sb2O3–ZnO nanospindles: A potential material for photocatalytic and sensing applications
Waqas et al. Zn2+ induced self-assembled fabrication of marigold-like ZnO microflower@ Ni (OH) 2 three-dimensional nanosheets for nonenzymatic glucose sensing
Domingo-Tafalla et al. Applications of carbon dots for the photocatalytic and electrocatalytic reduction of CO2
Lu et al. Carbon-shielded three-dimensional Co–Mn nanowire array anchored on Ni foam with dual-enzyme mimic performance for selective detection of ascorbic acid
CN108118317A (zh) 一种银纳米粒子薄膜及制备方法
CN110068599A (zh) 一种基于CoFe2O4/Co3O4双壳结构立方体材料的甲醛气体传感器及其制备方法
Hao et al. The synergy of graphene oxide and polydopamine assisted immobilization of lysozyme to improve antibacterial properties
Zhang et al. Synthesis of three-dimensional laccase-Cu3 (PO4) 2⋅ 3H2O microflowers via biomineralization for UV–vis epinephrine biosensing
CN109580746B (zh) 硫化钼-氧化钛纳米复合材料的制备及其应用
Yang et al. Urchin-like Bi2S3 nanostructures with rich sulfur vacancies for ppb-level NO2 sensing
Singh et al. Synthesis and characterization of wearable cuprous oxide/conductive fabric enabled non-enzymatic electrochemical sensing of glucose
CN109999757A (zh) 一种可捕捉重金属离子的Cr-MOF/木材复合气凝胶及其制备方法及应用
CN113120973B (zh) 一种铜掺杂的镍铝层状双金属氢氧化物的制备方法及所得产品和应用
US20220162074A1 (en) Ink compositions based on graphene and a stabilising agent and sensors fabricated from the ink
CN108568519A (zh) 一种银纳米复合材料的制备方法和应用
Ge et al. In situ synthesis and characterization of Prussian blue nanocubes on graphene oxide and its application for H 2 O 2 reduction
Cao Zinc ferrite nanoparticles: Simple synthesis via lyophilisation and electrochemical application as glucose biosensor
CN114477103B (zh) 室温下具有高活性性能的MoS2-xSex分级气敏材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180605