CN108114567A - 精确筛分co2/n2的方法 - Google Patents
精确筛分co2/n2的方法 Download PDFInfo
- Publication number
- CN108114567A CN108114567A CN201611057554.0A CN201611057554A CN108114567A CN 108114567 A CN108114567 A CN 108114567A CN 201611057554 A CN201611057554 A CN 201611057554A CN 108114567 A CN108114567 A CN 108114567A
- Authority
- CN
- China
- Prior art keywords
- zif
- ionic liquid
- composite material
- hours
- adsorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012216 screening Methods 0.000 title claims abstract description 4
- 239000002131 composite material Substances 0.000 claims abstract description 29
- 239000002608 ionic liquid Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 13
- 238000000926 separation method Methods 0.000 claims abstract description 12
- IQQRAVYLUAZUGX-UHFFFAOYSA-N 1-butyl-3-methylimidazolium Chemical compound CCCCN1C=C[N+](C)=C1 IQQRAVYLUAZUGX-UHFFFAOYSA-N 0.000 claims abstract description 9
- MFLKDEMTKSVIBK-UHFFFAOYSA-N zinc;2-methylimidazol-3-ide Chemical compound [Zn+2].CC1=NC=C[N-]1.CC1=NC=C[N-]1 MFLKDEMTKSVIBK-UHFFFAOYSA-N 0.000 claims description 48
- 239000013154 zeolitic imidazolate framework-8 Substances 0.000 claims description 46
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 36
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 15
- 239000011701 zinc Substances 0.000 claims description 12
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 9
- 239000000047 product Substances 0.000 claims description 8
- 239000012046 mixed solvent Substances 0.000 claims description 5
- -1 1-butyl- 3-methylimidazolium cation Chemical class 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000003786 synthesis reaction Methods 0.000 claims description 4
- 239000012265 solid product Substances 0.000 claims description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 150000003751 zinc Chemical class 0.000 claims description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 claims 1
- 239000011592 zinc chloride Substances 0.000 claims 1
- 235000005074 zinc chloride Nutrition 0.000 claims 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 26
- 238000012986 modification Methods 0.000 abstract description 4
- 150000001450 anions Chemical class 0.000 abstract description 3
- 230000004048 modification Effects 0.000 abstract description 3
- MCTWTZJPVLRJOU-UHFFFAOYSA-O 1-methylimidazole Chemical compound CN1C=C[NH+]=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-O 0.000 abstract description 2
- 238000007873 sieving Methods 0.000 abstract description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 abstract 1
- 238000001179 sorption measurement Methods 0.000 description 34
- 238000012512 characterization method Methods 0.000 description 6
- 238000003795 desorption Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- JBFYUZGYRGXSFL-UHFFFAOYSA-N imidazolide Chemical compound C1=C[N-]C=N1 JBFYUZGYRGXSFL-UHFFFAOYSA-N 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000013153 zeolitic imidazolate framework Substances 0.000 description 2
- 229910007340 Zn(OAc)2.2H2O Inorganic materials 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005102 attenuated total reflection Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000012621 metal-organic framework Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 229910052665 sodalite Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- BEAZKUGSCHFXIQ-UHFFFAOYSA-L zinc;diacetate;dihydrate Chemical compound O.O.[Zn+2].CC([O-])=O.CC([O-])=O BEAZKUGSCHFXIQ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明提供一种精确筛分CO2/N2的方法,是使用离子液体与ZIF‑8所形成的复合材料进行气体分离的方法;其中,所述的离子液体是由1‑丁基‑3‑甲基咪唑阳离子和双三氟甲磺酰亚胺阴离子构成。通过使用离子液体[BMIM][Tf2N]对ZIF‑8笼的占据修饰实现对ZIF‑8笼径的调变,改善了ZIF‑8孔道的分子筛分能力。使用该改性处理后的ZIF‑8材料,实现对CO2/N2的吸附选择性,从而实现分离。
Description
技术领域
本发明涉及一种气体分离的方法,尤其涉及利用改性的沸石咪唑酯骨架材料(ZIFs)进行气体分离的方法。
背景技术
沸石咪唑酯骨架材料(zeolitic imidazolate frameworks,以下简称ZIFs)。ZIFs材料具有丰富的孔道结构,较大的比表面积,较高的热稳定性和易于后修饰的特性。一些ZIFs材料还对某些小分子气体(如H2、CO2、CH4等)具有良好的亲和性。这为这类材料在气体吸附和分离领域的应用奠定了良好的基础。ZIF-8是其中最具应用前景的材料之一。ZIF-8六元孔窗直径为0.34nm,方钠石(SOD)笼径为1.10nm,其孔窗能够截留尺寸较大的N2(0.364nm)和CH4(0.38nm)而使CO2(0.33nm)顺利通过,也就是说,理论上ZIF-8材料可用于CO2/CH4、CO2/N2的分离。然而,在我们的研究中发现,实际的应用结果与预测并不一致,ZIF-8材料在应用至实际CO2/N2混合物分离时达不到预期的选择性。据分析,这是由于咪唑配体的振动导致的骨架柔性而致。因此,急需有效的方法来解决上述问题,从而提供更具有产业应用价值的分离方案。
发明内容
本发明的目的在于提供精确筛分CO2/N2的方法,是使用离子液体与ZIF-8所形成的复合材料进行气体分离的方法;其中,所述的离子液体是由1-丁基-3-甲基咪唑阳离子(BMIM)和双三氟甲磺酰亚胺阴离子(Tf2N)构成。
即本发明中使用了离子液体修饰后的ZIF-8材料进行混合气体CO2/N2的分离。从表征参数来看,离子液体[BMIM][Tf2N]对ZIF-8的修饰是通过占据其孔笼的空间位置,从而限制ZIF-8结构中咪唑环的柔性变化而实现孔笼孔径的控制,进而实现分离的。
本发明中复合材料[BMIM][Tf2N]@ZIF-8通过下述方法制备:
(1)合成ZIF-8:室温下按照摩尔比例Zn2+:xmIm:yCH3OH反应,x=2~8,y=200~800,合成时间为1~24小时;
其中,Zn2+来自可溶性的锌盐,mIm代表2-甲基咪唑,CH3OH代表溶剂甲醇;Zn2+,可举例但不限于Zn(NO3)2·6H2O,Zn(NO3)2·4H2O,ZnCl2,Zn(OAc)2·2H2O;
(2)步骤(1)合成所得到的ZIF-8固体用甲醇或乙醇洗涤3~5次,然后在30~100℃条件下烘干12~48小时;
(3)将步骤(2)制得的产物浸渍于低碳醇和离子液体[BMIM][Tf2N]的混合溶剂中,于50℃~180℃条件下浸渍处理1~96小时;
其中低碳醇可按照常规理解为碳原子数不超过4的醇类;优选甲醇、乙醇、丙醇或丁醇,其在混合溶剂中的体积百分比为20%~60%;
(4)步骤(3)所得到的固体产物用甲醇或乙醇洗涤3~5次,然后在30~100℃条件下烘干12~48小时。
本发明中使用了改性后的ZIF-8材料,
通过使用离子液体[BMIM][Tf2N]对ZIF-8笼的占据修饰实现对ZIF-8笼径的调变,改善了ZIF-8孔道的分子筛分能力;此外,通过对笼内固载的客体分子离子液体阴阳离子的选择实现对ZIF-8的笼内微环境的修饰,改善其对CO2/N2的吸附选择性,从而实现分离。
附图说明
本发明附图11幅:
附图1为实施例1合成得到的ZIF-8材料的X-射线衍射图;
附图2为实施例1合成得到的母ZIF-8材料的扫描电子显微镜图;
附图3为实施例1合成得到的ZIF-8材料的77K下N2吸附等温线图,其中,实心圆代表吸附,空心圆代表脱附;
附图4为实施例2制备的复合材料IL@ZIF-8的X-射线衍射图;
附图5为实施例2制备的复合材料IL@ZIF-8的扫描电子显微镜图;
附图6为复合材料IL@ZIF-8与ZIF-8材料的X-射线衍射对比图;
附图7为复合材料IL@ZIF-8与ZIF-8材料的红外特征峰对比图;
附图8为实施例2制备的复合材料IL@ZIF-8在77K下N2吸附等温线图,其中 实心圆代表吸附,空心圆代表脱附;
附图9为实施例2制备的复合材料IL@ZIF-8在273K下CO2吸附等温线图,其中实心圆代表吸附,空心圆代表脱附;
附图10为实施例2制备的复合材料IL@ZIF-8在273K下N2吸附等温线图,其中实心圆代表吸附,空心圆代表脱附;
附图11为实施例2制备的复合材料IL@ZIF-8在273K下CO2与N2的吸附等温线对比图,其中:-■-代表CO2吸附;-□-代表CO2脱附;-▲-代表N2吸附;-△-代表N2脱附)。通过利用吸附等温线起始段的斜率比值来计算理想的吸附选择性,即亨利吸附选择性计算发现,笼内固载离子液体的IL@ZIF-8其CO2/N2的理想亨利吸附选择性高达3110,远高于母体材料ZIF-8的CO2/N2的理想吸附选择性32。
具体实施方式
下面以非限制性实施例的形式对本发明做进一步的说明,但不应当理解为对本发明内容的限定。
实施例1
沸石咪唑酯骨架材料ZIF-8的制备及表征
(1)向1.8g固体Zn(NO3)2·6H2O和4.0g固体2-甲基咪唑(mim)混合物中加入100ml无水甲醇,搅拌30分钟使反应物充分溶解并混合均匀,然后将反应混合物在室温下静置24小时。室温下合成ZIF-8的配方为:Zn2+:xmIm:yCH3OH,其中x为8,y为400。
(2)步骤(1)得到的产物离心分离得到,并用大量无水甲醇超声清洗三次,每次超声清洗后离心分离产物与甲醇洗液。得到的ZIF-8固体在室温下干燥12小时,然后在60℃烘箱中干燥24小时。
所得产物即沸石咪唑酯骨架材料ZIF-8,对其的表征结果如附图1~3所示。
实施例2
高温下浸渍合成离子液体与ZIF-8的复合材料([BMIM][Tf2N]@ZIF-8):
将实施例1制备的沸石咪唑酯骨架材料ZIF-8加入至离子液体[BMIM[Tf2N] 与丁醇组成的混合溶剂中,其中离子液体[BMIM[Tf2N]与丁醇的体积比为6:4,丁醇占总体积的体积分数为40%,然后将其置于120℃烘箱内,浸渍温度为120℃,浸渍时间为12小时。离心分离得到固体产物,并用大量无水甲醇超声清洗三次,每次超声清洗后离心分离产物与甲醇洗液。所得到的复合材料产物先在室温下干燥12小时,然后在60℃烘箱中干燥24小时,最后在60℃真空干燥箱中干燥12小时。
所得产物即的笼内固载离子液体[BMIM[Tf2N]的ZIF-8复合材料,记为IL@ZIF-8,对其的表征结果如附图4~11所示。
从上述表征结果可见:
材料ZIF-8以及复合材料IL@ZIF-8做X-射线衍射结果表明复合材料IL@ZIF-8与母体材料ZIF-8二者具有完全相同的晶相结构,并且复合材料IL@ZIF-8与ZIF-8相比其特征衍射峰(100)的峰强度显著降低,这是由于离子液体进入ZIF-8笼内导致电子云密度发生变化所致。
对材料ZIF-8以及复合材料IL@ZIF-8的扫描电子显微镜表征,分别为附图2、附图5所示。
对母体材料ZIF-8以及复合材料IL@ZIF-8做傅里叶衰减全反射光谱,二者在特征官能团区的对比为附图7。与ZIF-8相比,复合材料IL@ZIF-8在1350、1230、1200、1065cm-1出现新的振动带,这些振动带为离子液体[BMIM][Tf2N]中阴离子部分的特征振动带,分别对应SO2反对称伸缩振动、CF3反对称伸缩振动、SO2对称伸缩振动和SNS反对称伸缩振动模式。与离子液体沉积于ZIF-8表面不同,离子液体负载于ZIF-8的笼内后,其SO2对称伸缩振动带和SNS反对称伸缩振动带出现明显的蓝移,这可能与离子液体和ZIF-8笼之间的相互作用有关。
对母体材料ZIF-8以及复合材料IL@ZIF-8粉末做在77K下的N2吸附等温线,分别为附图3和附图8;此外,对复合材料IL@ZIF-8粉末做在273K下的CO2、N2的吸附等温线,分别为附图9和附图10,并利用吸附等温线起始段的斜率比值来计算理想的CO2/N2吸附选择性,并与母体材料ZIF-8的理想CO2/N2吸附选择性对比。通过附图3和附图8我们发现,ZIF-8与复合材料IL@ZIF-8在77K下N2吸附 等温线为典型的I-型吸附。由于ZIF-8笼内空间被离子液体占据,复合材料IL@ZIF-8的N2吸附量明显降低,根据77K下N2吸附等温线计算得到相应的比表面积也从原先ZIF-8的1379m2g-1降至374m2g-1,孔体积从0.67ml g-1降至0.18mlg-1,复合材料IL@ZIF-8相比ZIF-8比表面积显著降低,这也进一步证实了离子液体进入到ZIF-8笼中,降低了材料本身的比表面积。此外对273K下复合材料对CO2和N2的吸附等温线进行数据分析,通过利用吸附等温线起始段的斜率比值来计算理想的吸附选择性,即亨利吸附选择性计算发现,复合材料IL@ZIF-8的CO2/N2的理想亨利吸附选择性高达3110,远高于母体材料ZIF-8的CO2/N2的理想吸附选择性32,也远远超过了迄今文献报道的其他MOFs晶体。
Claims (4)
1.精确筛分CO2/N2的方法,其特征在于,是使用离子液体与ZIF-8所形成的复合材料进行气体分离的方法;其中,所述的离子液体是由1-丁基-3-甲基咪唑阳离子和双三氟甲磺酰亚胺阴离子构成。
2.根据权利要求1所述的方法,其特征在于,所述的复合材料通过下述方法制备:
(1)合成ZIF-8:室温下按照摩尔比例Zn2+:xmIm:yCH3OH反应,x=2~8,y=200~800,合成时间为1~24小时;
(2)步骤(1)合成所得到的ZIF-8固体用甲醇或乙醇洗涤3~5次,然后在30~100℃条件下烘干12~48小时;
(3)将步骤(2)制得的产物浸渍于低碳醇和离子液体[BMIM][Tf2N]的混合溶剂中,于50℃~180℃条件下浸渍处理1~96小时;
(4)步骤(3)所得到的固体产物用甲醇或乙醇洗涤3~5次,然后在30~100℃条件下烘干12~48小时。
3.根据权利要求2所述的方法,其特征在于,所述步骤(1)中的Zn2+来自可溶性锌盐,选自Zn(NO3)2·6H2O,Zn(NO3)2·4H2O,ZnCl2,Zn(OAc)2·2H2O。
4.根据权利要求2所述的方法,其特征在于,所述的步骤(2)中的低碳醇选自甲醇、乙醇、丙醇或丁醇,其在混合溶剂中的体积百分比为20%~60%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611057554.0A CN108114567A (zh) | 2016-11-26 | 2016-11-26 | 精确筛分co2/n2的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611057554.0A CN108114567A (zh) | 2016-11-26 | 2016-11-26 | 精确筛分co2/n2的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108114567A true CN108114567A (zh) | 2018-06-05 |
Family
ID=62224040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611057554.0A Pending CN108114567A (zh) | 2016-11-26 | 2016-11-26 | 精确筛分co2/n2的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108114567A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113648788A (zh) * | 2021-07-27 | 2021-11-16 | 南京工业大学 | 一种表面具有高密度离子液体的纳米材料 |
CN114618437A (zh) * | 2020-12-10 | 2022-06-14 | 中国科学院大连化学物理研究所 | 吸附剂及其制备方法和在二氧化碳/氮气分离的应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103058189A (zh) * | 2013-01-28 | 2013-04-24 | 北京化工大学 | 一种吸收/吸附耦合捕集二氧化碳的方法 |
CN104722284A (zh) * | 2013-12-18 | 2015-06-24 | 中国科学院大连化学物理研究所 | 一种由微孔材料负载离子液体的复合材料或薄膜及其制备 |
-
2016
- 2016-11-26 CN CN201611057554.0A patent/CN108114567A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103058189A (zh) * | 2013-01-28 | 2013-04-24 | 北京化工大学 | 一种吸收/吸附耦合捕集二氧化碳的方法 |
CN104722284A (zh) * | 2013-12-18 | 2015-06-24 | 中国科学院大连化学物理研究所 | 一种由微孔材料负载离子液体的复合材料或薄膜及其制备 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114618437A (zh) * | 2020-12-10 | 2022-06-14 | 中国科学院大连化学物理研究所 | 吸附剂及其制备方法和在二氧化碳/氮气分离的应用 |
CN114618437B (zh) * | 2020-12-10 | 2023-06-30 | 中国科学院大连化学物理研究所 | 吸附剂及其制备方法和在二氧化碳/氮气分离的应用 |
CN113648788A (zh) * | 2021-07-27 | 2021-11-16 | 南京工业大学 | 一种表面具有高密度离子液体的纳米材料 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yu et al. | Pore distortion in a metal–organic framework for regulated separation of propane and propylene | |
Wang et al. | Microporous metal–organic frameworks for adsorptive separation of C5–C6 alkane isomers | |
Huang et al. | Preparation and adsorption performance of GrO@ Cu-BTC for separation of CO2/CH4 | |
Yu et al. | Enhanced gas uptake in a microporous metal–organic framework via a sorbate induced-fit mechanism | |
Lv et al. | Linker desymmetrization: access to a series of rare-earth tetracarboxylate frameworks with eight-connected hexanuclear nodes | |
Peralta et al. | Separation of C6 paraffins using zeolitic imidazolate frameworks: comparison with zeolite 5A | |
Iacomi et al. | Role of structural defects in the adsorption and separation of C3 hydrocarbons in Zr-fumarate-MOF (MOF-801) | |
Shi et al. | Guest-induced switchable breathing behavior in a flexible metal–organic framework with pronounced negative gas pressure | |
Lv et al. | Selective adsorption of ethane over ethylene in PCN-245: impacts of interpenetrated adsorbent | |
Chen et al. | Gating effect for gas adsorption in microporous materials—mechanisms and applications | |
CN108114695A (zh) | 笼内固载离子液体的沸石咪唑酯骨架材料及其应用 | |
Zhang et al. | Enhancement of CO2 adsorption and CO2/N2 selectivity on ZIF‐8 via postsynthetic modification | |
Kim et al. | A Chemical route to activation of open metal sites in the copper-based metal–organic framework materials HKUST-1 and Cu-MOF-2 | |
Burd et al. | Highly selective carbon dioxide uptake by [Cu (bpy-n) 2 (SiF6)](bpy-1= 4, 4′-bipyridine; bpy-2= 1, 2-bis (4-pyridyl) ethene) | |
Hillman et al. | Linker-doped zeolitic imidazolate frameworks (ZIFs) and their ultrathin membranes for tunable gas separations | |
Horike et al. | Dense coordination network capable of selective CO2 capture from C1 and C2 hydrocarbons | |
Yang et al. | A partially interpenetrated metal–organic framework for selective hysteretic sorption of carbon dioxide | |
Li et al. | Calcium-based metal–organic framework for simultaneous capture of trace propyne and propadiene from propylene | |
Han et al. | Facile and green synthesis of MIL-53 (Cr) and its excellent adsorptive desulfurization performance | |
Rashidi et al. | Synthesis, characterization, and tunable adsorption and diffusion properties of hybrid ZIF‐7‐90 frameworks | |
Zhu et al. | Soft hydrogen-bonded organic frameworks constructed using a flexible organic cage hinge | |
Shen et al. | CO2 adsorption over Si-MCM-41 materials having basic sites created by postmodification with La2O3 | |
Chen et al. | Molecular sieving of propylene from propane in metal–organic framework-derived ultramicroporous carbon adsorbents | |
Yuan et al. | Synthesis of zeolitic imidazolate framework-69 for adsorption separation of ethane and ethylene | |
Qi et al. | Structure transformation of a luminescent pillared-layer metal–organic framework caused by point defects accumulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180605 |