CN108111169A - A kind of joint bearing calibration of the linear mismatches of four-way TIADC and non-linear mismatch - Google Patents
A kind of joint bearing calibration of the linear mismatches of four-way TIADC and non-linear mismatch Download PDFInfo
- Publication number
- CN108111169A CN108111169A CN201810005682.3A CN201810005682A CN108111169A CN 108111169 A CN108111169 A CN 108111169A CN 201810005682 A CN201810005682 A CN 201810005682A CN 108111169 A CN108111169 A CN 108111169A
- Authority
- CN
- China
- Prior art keywords
- linear
- mrow
- mismatch
- error
- tiadc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005070 sampling Methods 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 29
- 238000012937 correction Methods 0.000 claims abstract description 23
- 238000013461 design Methods 0.000 claims abstract description 8
- 238000012512 characterization method Methods 0.000 claims abstract 3
- 238000012546 transfer Methods 0.000 claims description 5
- 238000006467 substitution reaction Methods 0.000 claims 2
- 230000005540 biological transmission Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 4
- 238000010606 normalization Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 6
- 238000005316 response function Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
Description
技术领域technical field
本发明涉及信号采样与处理技术领域,更具体地,涉及一种四通道TIADC线性失配和非线性失配的联合校正方法。The present invention relates to the technical field of signal sampling and processing, and more specifically, to a joint correction method for four-channel TIADC linear mismatch and nonlinear mismatch.
背景技术Background technique
随着集成电路技术的不断发展,数字化技术的推广,对模数转换器件ADC的采样速率以及采样精度的要求越来越高,不仅要求数据采集系统有高的采样率,还要有高的采样精度。在实际的运用中,对实时采样速率以及采样精度有极高的依赖性。然而ADC的最大采样速率受限于它的分辨率,分辨率与采样速率之间是一对矛盾体,高采样速率要求较短的转换时间,而高分辨率则要求较长的转换时间。根据目前的IC设计工艺,要实现更高速的采样速率,需要开发一种基于新结构和新方法的ADC模块。现有技术所提供的能够实现超高速采样的系统就是利用时间交织(Time-interleaved)结构的ADC系统(TIADC)。With the continuous development of integrated circuit technology and the promotion of digital technology, the requirements for the sampling rate and sampling accuracy of the analog-to-digital conversion device ADC are getting higher and higher. Not only the data acquisition system is required to have a high sampling rate, but also a high sampling rate precision. In actual application, there is a high dependence on the real-time sampling rate and sampling accuracy. However, the maximum sampling rate of ADC is limited by its resolution. There is a contradiction between resolution and sampling rate. High sampling rate requires shorter conversion time, while high resolution requires longer conversion time. According to the current IC design process, to achieve a higher sampling rate, it is necessary to develop an ADC module based on a new structure and a new method. A system capable of realizing ultra-high-speed sampling provided by the prior art is a time-interleaved (Time-interleaved) ADC system (TIADC).
这种结构的ADC系统利用M片有着相同采样率fs的单个ADC模块,采用并行的结构,每片ADC模块以相隔1/(M*fs)的时间间隔进行采样,以达到采样率为M*fs(总采样率f=M*fs)的效果。理论上,这种M通道并行交替采样的ADC系统能够使得整个系统的采样率达到单个ADC模块的M倍。但是由于制造工艺本身固有的缺点,不可能使得每一片ADC模块完全一模一样,所以必然会使得各个通道的ADC模块之间存在失配误差,且每片ADC自身带有微分和积分非线性特性,从而严重降低了整个ADC系统的信噪比。The ADC system of this structure uses M slices of single ADC modules with the same sampling rate f s , adopts a parallel structure, and each ADC module samples at a time interval of 1/(M*f s ) to achieve a sampling rate of The effect of M*f s (total sampling rate f=M*f s ). Theoretically, this M-channel parallel and alternate sampling ADC system can make the sampling rate of the entire system M times that of a single ADC module. However, due to the inherent shortcomings of the manufacturing process itself, it is impossible to make each ADC module exactly the same, so there will inevitably be mismatch errors between the ADC modules of each channel, and each ADC has its own differential and integral nonlinear characteristics, so Seriously reduces the signal-to-noise ratio of the entire ADC system.
目前,大多数方法主要针对线性失配,例如增益误差,时间误差等进行估计和校正,部分方法针对模数转换器(ADC)自身的积分和微分非线性造成的失配进行估计和校正。然而,为了提高TIADC的整体性能,不论是线性失配和非线性失配,都应该纳入考虑范围并得到估计和校正。此前也有针对双通道TIADC的线性失配和非线性失配联合校正的方法,为了提高系统的采样速率以适应更广泛的应用场景,将二通道扩展到四通道甚至更多的采样通道是具有探讨研究价值以及行之有效的方法。当然,采样通道数的扩展必然伴随着更加复杂的混叠误差需要分析,以及设计相应的校正算法进行补偿。At present, most methods mainly estimate and correct linear mismatch, such as gain error, time error, etc., and some methods estimate and correct the mismatch caused by the integral and differential nonlinearity of the analog-to-digital converter (ADC). However, in order to improve the overall performance of the TIADC, both linear and nonlinear mismatches should be considered and estimated and corrected. Previously, there was also a joint correction method for linear mismatch and nonlinear mismatch for dual-channel TIADC. In order to increase the sampling rate of the system to adapt to a wider range of application scenarios, it is necessary to expand the two-channel to four-channel or even more sampling channels. Research value and proven methods. Of course, the expansion of the number of sampling channels is bound to be accompanied by more complex aliasing errors that need to be analyzed and corresponding correction algorithms designed to compensate.
发明内容Contents of the invention
本发明为解决以上现有TIADC技术只单独对线性失配误差或非线性失配误差进行估计和补偿所导致的校正效果不佳的技术缺陷,提供了一种四通道TIADC线性失配和非线性失配的联合校正方法。The present invention provides a four-channel TIADC linear mismatch and nonlinear A joint correction method for mismatches.
为实现以上发明目的,采用的技术方案是:For realizing above-mentioned purpose of the invention, the technical scheme that adopts is:
一种四通道TIADC线性失配和非线性失配的联合校正方法,包括以下步骤:A joint correction method for four-channel TIADC linear mismatch and nonlinear mismatch, comprising the following steps:
S1.设置输入信号x(t)满足奈奎斯特采样定理,并采用轻微过采样获取4-TIADCs系统的输出y[n];S1. Set the input signal x(t) to satisfy the Nyquist sampling theorem, and use slight oversampling to obtain the output y[n] of the 4-TIADCs system;
S2.确定通道频率响应函数的阶数P,利用P阶多项式表征4-TIADCs系统的线性频响失配:系统各通道的离散频率响应函数时域表达式为0≤m≤3,其中αm,p为第m通道的p阶多项式系数,dp[n]为p级离散微分器;S2. Determine the order P of the channel frequency response function, and use the P-order polynomial to characterize the linear frequency response mismatch of the 4-TIADCs system: the time domain expression of the discrete frequency response function of each channel of the system is: 0≤m≤3, where α m,p is the p-order polynomial coefficient of the m-th channel, and d p [n] is the p-level discrete differentiator;
S3.令 期望线性误差可以表示为其中xp[n]=dp[n]*x[n];x[n]为4-TIADCs系统的输入;S3. order The expected linearity error can be expressed as Where x p [n]=d p [n]*x[n]; x[n] is the input of the 4-TIADCs system;
S4.令线性误差系数0≤p≤P-1,,假设它在某时刻的估计值为利用y[n]近似替代步骤S3中的x[n]对线性误差进行重构,得到某时刻线性误差的估计值为其中yp[n]=dp[n]*y[n];S4. Order the linear error coefficient 0≤p≤P-1, assuming that its estimated value at a certain moment is Using y[n] to approximately replace x[n] in step S3 to reconstruct the linear error, the estimated value of the linear error at a certain moment is in yp [n]= dp [n]*y[n];
S5.确定非线性传递函数阶数L,利用泰勒级数表征4-TIADCs系统通道的非线性失配特性:系统各通道的非线性传输特性函数0≤m≤3,其中表示4-TIADCs系统第m通道泰勒多项式的第l阶的系数,xl[n]表示x[n]的l次方;S5. Determine the order L of the nonlinear transfer function, and use the Taylor series to characterize the nonlinear mismatch characteristics of the 4-TIADCs system channel: the nonlinear transfer characteristic function of each channel of the system 0≤m≤3, where Represents the coefficient of the lth order of the Taylor polynomial of the mth channel of the 4-TIADCs system, and x l [n] represents the lth power of x[n];
S6.令 期望非线性误差可以表示为: S6. Order The expected nonlinear error can be expressed as:
S7.令非线性误差系数2≤l≤L,,假设其在某一个时刻的估计值为利用y[n]近似替代步骤S6中的x[n]对非线性误差进行重构,得到某时刻非线性误差的估计值为其中yl[n]表示y[n]的l次幂;S7. Order nonlinear error coefficient 2≤l≤L, assuming that its estimated value at a certain moment is Using y[n] to approximately replace x[n] in step S6 to reconstruct the nonlinear error, the estimated value of the nonlinear error at a certain moment is in y l [n] represents the l power of y[n];
S8.利用4-TIADCs系统的输出y[n]减去步骤S4重构的线性失配误差和步骤S7重构的非线性失配误差,得到补偿后的结果进行输出,即某时刻的校正输出 S8. Use the output y[n] of the 4-TIADCs system to subtract the linear mismatch error reconstructed in step S4 and the nonlinear mismatch error reconstructed in step S7 to obtain the compensated result Output, that is, the corrected output at a certain moment
优选地,所述步骤S4中线性误差系数的估计值以及S7中非线性误差系数的估计值的具体估计过程如下:Preferably, the estimated value of the linear error coefficient in the step S4 and an estimate of the non-linear error coefficient in S7 The specific estimation process is as follows:
设计相应的高通滤波器f[n],使高通滤波器f[n]的截止频率高于理想采样信号的截止频率,定义代价函数其中当且时,ε[n]→0,以此设计NLMS算法对线性误差系数Rp和非线性误差系数Sl进行迭代估计,迭代公式如下:Design the corresponding high-pass filter f[n], so that the cut-off frequency of the high-pass filter f[n] is higher than the cut-off frequency of the ideal sampling signal, and define the cost function in when and When ε[n]→0, the NLMS algorithm is designed to iteratively estimate the linear error coefficient R p and the nonlinear error coefficient S l . The iterative formula is as follows:
其中μt和μh是收敛因子,cont是一个很小的正数,避免零除问题。Among them, μ t and μ h are convergence factors, and cont is a small positive number to avoid division by zero.
优选地,所述步骤S3中使用到的微分器为线性相位数字微分器。Preferably, the differentiator used in the step S3 is a linear phase digital differentiator.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
本发明解决了现有TIADC技术只单独对线性失配误差或非线性失配误差进行估计和补偿所导致的校正效果不佳的技术缺陷,并且相对于双通道采样,将采样通道扩展到四通道可以提高采样速率以适应更广泛的应用场景。本发明提供了一种针对四通道时间交织模数转换器(4-TIADC)线性失配和非线性失配联合校正的方法,该方法通过4-TIADC对理想输入信号轻微地过采样,并分别采用适当阶的频响多项式和泰勒级数表征系统的线性失配特性和非线性失配特性,利用4-TIADC系统输出过采样带上的失配信息,设计基于归一化最小均方误差(NLMS)算法对线性失配误差和非线性失配误差并行地进行实时边估计边补偿,从而获得联合校正输出。该方法把4-TIADC系统的线性和非线性误差都纳入考虑范围并采用并行联合校正的技术,从而得到比对任意单一误差进行补偿更好的校正效果。该方法对TIADC系统的失配误差考虑更全面,并且简单易行,补偿效果好。The invention solves the technical defect that the existing TIADC technology only estimates and compensates the linear mismatch error or the nonlinear mismatch error, and the correction effect is not good, and compared with the dual-channel sampling, the sampling channel is extended to four channels The sampling rate can be increased to adapt to a wider range of application scenarios. The present invention provides a method for joint correction of linear mismatch and nonlinear mismatch of a four-channel time-interleaved analog-to-digital converter (4-TIADC). The method uses 4-TIADC to slightly oversample the ideal input signal and respectively Using frequency response polynomials of appropriate order and Taylor series to characterize the linear and nonlinear mismatch characteristics of the system, using the 4-TIADC system to output the mismatch information on the oversampling band, the design is based on the normalized minimum mean square error ( NLMS) algorithm performs real-time estimation and compensation for linear mismatch error and nonlinear mismatch error in parallel, so as to obtain joint correction output. This method takes both the linear and nonlinear errors of the 4-TIADC system into consideration and adopts a parallel joint correction technique, so that a better correction effect can be obtained than any single error compensation. This method considers the mismatch error of the TIADC system more comprehensively, is simple and easy to implement, and has a good compensation effect.
附图说明Description of drawings
图1为时间交织模数转换器的结构示意图。FIG. 1 is a schematic structural diagram of a time-interleaved analog-to-digital converter.
图2为带有线性和非线性失配的四通道TIADC模型示意图。Figure 2 is a schematic diagram of a four-channel TIADC model with linear and nonlinear mismatch.
图3为本发明提供的联合校正方法的基本框图。Fig. 3 is a basic block diagram of the joint correction method provided by the present invention.
图4为本发明提供的自适应联合校正方法的实施示意图。Fig. 4 is a schematic diagram of implementation of the adaptive joint correction method provided by the present invention.
图5为校正方法的流程图。Fig. 5 is a flowchart of the calibration method.
具体实施方式Detailed ways
附图仅用于示例性说明,不能理解为对本专利的限制;The accompanying drawings are for illustrative purposes only and cannot be construed as limiting the patent;
以下结合附图和实施例对本发明做进一步的阐述。The present invention will be further elaborated below in conjunction with the accompanying drawings and embodiments.
实施例1Example 1
如图5所示,本发明提供的方法具体包括有以下步骤:As shown in Figure 5, the method provided by the present invention specifically includes the following steps:
S1.设置输入信号x(t)满足奈奎斯特采样定理,并采用轻微过采样获取4-TIADCs系统的输出y[n];S1. Set the input signal x(t) to satisfy the Nyquist sampling theorem, and use slight oversampling to obtain the output y[n] of the 4-TIADCs system;
S2.确定通道频率响应函数的阶数P,利用P阶多项式表征4-TIADCs系统的线性频响失配:系统各通道的离散频率响应函数时域表达式为0≤m≤3,其中αm,p为第m通道的p阶多项式系数,dp[n]为p级离散微分器;S2. Determine the order P of the channel frequency response function, and use the P-order polynomial to characterize the linear frequency response mismatch of the 4-TIADCs system: the time domain expression of the discrete frequency response function of each channel of the system is: 0≤m≤3, where α m,p is the p-order polynomial coefficient of the m-th channel, and d p [n] is the p-level discrete differentiator;
S3.令 期望线性误差可以表示为其中xp[n]=dp[n]*x[n];S3. order The expected linearity error can be expressed as where xp [n]= dp [n]*x[n];
S4.令假设它在某时刻的估计值为利用y[n]近似替代步骤S3中的x[n]对线性误差进行重构,得到某时刻线性误差的估计值为其中yp[n]=dp[n]*y[n];S4. Order Assume that its estimated value at a certain moment is Using y[n] to approximately replace x[n] in step S3 to reconstruct the linear error, the estimated value of the linear error at a certain moment is in yp [n]= dp [n]*y[n];
S5.确定非线性传递函数阶数L,利用泰勒级数表征4-TIADCs系统通道的非线性失配特性:系统各通道的非线性传输特性函数0≤m≤3,其中表示4-TIADCs系统第m通道泰勒多项式的第l阶的系数,xl[n]表示x[n]的l次方;S5. Determine the order L of the nonlinear transfer function, and use the Taylor series to characterize the nonlinear mismatch characteristics of the 4-TIADCs system channel: the nonlinear transfer characteristic function of each channel of the system 0≤m≤3, where Represents the coefficient of the lth order of the Taylor polynomial of the mth channel of the 4-TIADCs system, and x l [n] represents the lth power of x[n];
S6.令 期望非线性误差可以表示为其中v[n]=x[n]+et[n]表示输入信号经过通道频率响应函数产生的采样离散信号,由于误差et[n]相对输入信号x[n]非常小,故它们相加在幂次运算下et[n]可忽略不计,即vl[n]=(x[n]+et[n])l≈xl[n],则期望非线性误差可以近似表示为S6. Order The expected nonlinear error can be expressed as Where v[n]=x[n]+e t [n] represents the sampled discrete signal generated by the input signal through the channel frequency response function, since the error e t [n] is very small relative to the input signal x[n], so they are relatively Added to the power operation, e t [n] can be ignored, that is, v l [n]=(x[n]+e t [n]) l ≈ x l [n], then the expected nonlinear error can be approximately expressed for
S7.令假设其在某一个时刻的估计值为利用y[n]近似替代步骤S6中的x[n]对非线性误差进行重构,得到某时刻非线性误差的估计值为其中yl[n]表示y[n]的l次幂;S7. Order Suppose its estimated value at a certain moment is Using y[n] to approximately replace x[n] in step S6 to reconstruct the nonlinear error, the estimated value of the nonlinear error at a certain moment is in y l [n] represents the l power of y[n];
S8.利用4-TIADCs系统的输出y[n]减去步骤S4重构的线性失配误差和步骤S7重构的非线性失配误差,得到补偿后的结果进行输出,即某时刻的校正输出 S8. Use the output y[n] of the 4-TIADCs system to subtract the linear mismatch error reconstructed in step S4 and the nonlinear mismatch error reconstructed in step S7 to obtain the compensated result Output, that is, the corrected output at a certain moment
在具体的实施过程中,所述步骤S4中线性误差系数的估计值In the specific implementation process, the estimated value of the linear error coefficient in the step S4
以及S7中非线性误差系数的估计值 and an estimate of the non-linear error coefficient in S7
的具体估计过程如下: The specific estimation process is as follows:
设计相应的高通滤波器f[n],使高通滤波器f[n]的截止频率高于理想采样信号的截止频率,定义代价函数其中当且时,ε[n]→0,以此设计NLMS算法对线性误差系数Rp和非线性误差系数Sl进行迭代估计,迭代公式如下:Design the corresponding high-pass filter f[n], so that the cut-off frequency of the high-pass filter f[n] is higher than the cut-off frequency of the ideal sampling signal, and define the cost function in when and When ε[n]→0, the NLMS algorithm is designed to iteratively estimate the linear error coefficient R p and the nonlinear error coefficient S l . The iterative formula is as follows:
其中μt和μh是收敛因子,cont是一个很小的正数,避免零除问题。Among them, μ t and μ h are convergence factors, and cont is a small positive number to avoid division by zero.
实施例2Example 2
本实施例在实施例1的基础上,进行了具体的实验:On the basis of embodiment 1, this embodiment has carried out concrete experiment:
如图1所示为时间交织模数转换器的结构示意图,输入信号以M通道输入,每条通道以相同的采样率但不同的采样时刻(相邻通道相差时刻)对高速输入信号采样,最终合并出输出信号,以此实现高速采样的模数转化。本实施例的实验测试窄带输入信号,采用22个频率的多音正弦信号作为输入,通过图2所示的四通道TIADC系统,得到校正前的TIADC输出y[n].Figure 1 is a schematic diagram of the structure of a time-interleaved analog-to-digital converter. The input signal is input by M channels, and each channel samples the high-speed input signal at the same sampling rate but at different sampling times (difference between adjacent channels). Finally, The output signals are combined to realize the analog-to-digital conversion of high-speed sampling. In the experiment of this embodiment, the narrow-band input signal is tested, and multi-tone sinusoidal signals with 22 frequencies are used as input, and the TIADC output y[n] before correction is obtained through the four-channel TIADC system shown in Figure 2.
采用3阶频率响应多项式对TIADC系统线性失配进行建模,即P=3,采用3阶(即P=3)线性多项式对通道频率响应函数进行近似,得到线性误差参数为:R0=[0.005,0.003,0.01]T,R1=[-0.01,0.02,-0.003]T,R2=[0.001,-0.001,0.004]T,利用matlab的fdatool滤波器设计工具包设计一级40阶的微分器,并通过卷积运算获得更高级的微分器。A third-order frequency response polynomial is used to model the linear mismatch of the TIADC system, that is, P=3, and a third-order (that is, P=3) linear polynomial is used to approximate the channel frequency response function, and the linear error parameter is obtained as: R 0 =[ 0.005,0.003,0.01] T , R 1 =[-0.01,0.02,-0.003] T , R 2 =[0.001,-0.001,0.004] T , use the fdatool filter design toolkit of matlab to design a 40-order filter Differentiators, and get more advanced differentiators with convolution operations.
同样采用3阶(即L=3)非线性多项式对非线性特性进行描述,各通道的参数设定如下: 得到非线性误差参数为S2=10-4[2,-1.5,-3,-0.5]T,S3=10-4[1.75,-0.75,1.75,2.25]T。Also use the third-order (ie L=3) nonlinear polynomial to describe the nonlinear characteristics, and the parameters of each channel are set as follows: The nonlinear error parameters obtained are S 2 =10 -4 [2,-1.5,-3,-0.5] T , and S 3 =10 -4 [1.75,-0.75,1.75,2.25] T .
如图3所示为本实施例的基本框图,采用并行方式对线性失配和非线性失配联合估计估计校正,如图4示出该自适应联合校正方法的具体示意图,设置收敛因子μt=0.005,μh=0.0005,利用利用fdatool工具包设计得到40阶的高通滤波器。As shown in Figure 3, it is the basic block diagram of this embodiment, adopting a parallel mode to jointly estimate and correct the linear mismatch and nonlinear mismatch, and Figure 4 shows the specific schematic diagram of the adaptive joint correction method, setting the convergence factor μ t =0.005, μ h =0.0005, using the fdatool toolkit to design a 40-order high-pass filter.
实验过程中观察线性失配参数和非线性失配参数的迭代过程,收敛曲线在刚开始时变化幅度比较大,但在采样数据点到104后基本达到收敛状态,且主要影响参数都能在误差允许范围内收敛到精确值。Observing the iterative process of linear mismatch parameters and nonlinear mismatch parameters during the experiment, the convergence curve changes a lot at the beginning, but basically reaches the convergence state after the sampling data point reaches 10 4 , and the main influencing parameters can be in the Converge to the exact value within the allowable range of error.
信号未经过校正前,有多处由于混叠失配产生的信号尖峰,即存在大量的噪声毛刺,且由于非线性失配的存在导致误差平面的上升(在-75dBc处),此时的SFDR(无杂散动态范围)为34.08dBc,信噪比SNR=31.8631dB。而通过校正之后,由于失配产生的信号尖峰基本消失,噪声频谱受到抑制,且误差平面由之前的-75dBc处下降到-100dBc处,校正后的SFDR=54.451dBc,SNR=52.0186dB,基本达到校正期望效果。Before the signal is corrected, there are many signal spikes due to aliasing mismatch, that is, there are a large number of noise spikes, and the error plane rises (at -75dBc) due to the existence of nonlinear mismatch. At this time, the SFDR (Spurious-free dynamic range) is 34.08dBc, signal-to-noise ratio SNR=31.8631dB. After the correction, the signal peak due to the mismatch basically disappears, the noise spectrum is suppressed, and the error plane drops from the previous -75dBc to -100dBc, the corrected SFDR=54.451dBc, SNR=52.0186dB, basically reaching Calibration for desired effect.
实施例3Example 3
本实施例在实施例1的基础上,采用与实施例2中同样的系统参数以及微分器和高通滤波器,进行了具体的实验:On the basis of embodiment 1, this embodiment adopts the same system parameters and differentiator and high-pass filter as in embodiment 2, and has carried out specific experiments:
本实施例的实验测试宽带输入信号,采用一个均值为零,方差为1的高斯白噪声通过一个由fdatool工具设计所得的0~0.8fs(fs为系统采样频率)的低通滤波器(满足系统过采样条件),所得信号作为TIADC的输入,通过图2所示的四通道TIADC系统,得到校正前的TIADC输出y[n].The experiment test broadband input signal of this embodiment adopts a Gaussian white noise with a mean value of zero and a variance of 1 to pass through a low-pass filter ( Satisfy the system oversampling condition), the obtained signal is used as the input of TIADC, through the four-channel TIADC system shown in Figure 2, the TIADC output y[n] before correction is obtained.
设置收敛因子μt=0.1,μh=0.01,将信号y[n]通过图4所示自适应联合校正方法的具体实施示意图,实验过程中观察线性失配参数和非线性失配参数的迭代过程,收敛曲线在刚开始时变化幅度比较大,但在采样数据点到104后基本达到收敛状态,且主要影响参数都能在误差允许范围内收敛到精确值。Set the convergence factor μ t = 0.1, μ h = 0.01, pass the signal y[n] through the specific implementation schematic diagram of the adaptive joint correction method shown in Figure 4, and observe the iteration of the linear mismatch parameter and the nonlinear mismatch parameter during the experiment In the process, the convergence curve changes greatly at the beginning, but basically reaches the convergence state after the sampling data point reaches 10 4 , and the main influencing parameters can converge to accurate values within the allowable range of error.
信号未校正前,由于线性和非线性误差的存在导致在本无信号能量的过采样带上产生误差信号能量,其误差平面大概在-88.99dBc处,此时的信噪比SNR=34.7593dB;通过校正后,过采样带上的误差平面下降到大概-120dBc处,校正后的信噪比SNR=61.2817dB,校正效果较好。Before the signal is corrected, due to the existence of linear and nonlinear errors, error signal energy is generated in the oversampling band without signal energy. The error plane is about -88.99dBc, and the signal-to-noise ratio SNR at this time is 34.7593dB; After the correction, the error plane on the oversampling band drops to about -120dBc, and the corrected signal-to-noise ratio SNR=61.2817dB, and the correction effect is good.
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Apparently, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the implementation of the present invention. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. All modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810005682.3A CN108111169B (en) | 2018-01-03 | 2018-01-03 | Combined correction method for linear mismatch and nonlinear mismatch of four-channel TIADC |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810005682.3A CN108111169B (en) | 2018-01-03 | 2018-01-03 | Combined correction method for linear mismatch and nonlinear mismatch of four-channel TIADC |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108111169A true CN108111169A (en) | 2018-06-01 |
CN108111169B CN108111169B (en) | 2021-04-20 |
Family
ID=62219404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810005682.3A Active CN108111169B (en) | 2018-01-03 | 2018-01-03 | Combined correction method for linear mismatch and nonlinear mismatch of four-channel TIADC |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108111169B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109361389A (en) * | 2018-09-03 | 2019-02-19 | 北京新岸线移动多媒体技术有限公司 | A kind of timesharing interleaved analog-digital converter multichannel mismatch error calibration method and system |
CN110113049A (en) * | 2019-04-12 | 2019-08-09 | 中国人民解放军国防科技大学 | A Two-Channel TIADC Nonlinear Mismatch Adaptive Estimation Method |
CN111988046A (en) * | 2020-08-19 | 2020-11-24 | 中国电子科技集团公司第三十六研究所 | Nonlinear system correction method and device and electronic equipment |
CN113517890A (en) * | 2021-07-21 | 2021-10-19 | 电子科技大学 | A Method for Extracting Sampling Time Mismatch of Time Interleaved ADC |
CN115801009A (en) * | 2023-01-30 | 2023-03-14 | 上海芯炽科技集团有限公司 | Method for compensating time offset error of TIADC parallel acquisition system |
CN115941078A (en) * | 2022-10-31 | 2023-04-07 | 西安微电子技术研究所 | A receiver multi-channel consistency calibration method based on IF processing unit |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080122673A1 (en) * | 2006-11-29 | 2008-05-29 | Dyer Kenneth C | Gain and linearity matching for multi-channel time-interleaved pipelined ADC |
US20120326902A1 (en) * | 2009-06-26 | 2012-12-27 | Anthony Michael P | Background calibration of offsets in interleaved analog to digital converters |
CN103746695A (en) * | 2013-12-27 | 2014-04-23 | 电子科技大学 | Mismatch correction method of time-interleaved analog-to-digital converter inter-channel sampling time |
CN103825612A (en) * | 2014-01-17 | 2014-05-28 | 电子科技大学 | Sampling clock mismatch background correction method based on time-to-digital converter |
US20170227653A1 (en) * | 2016-02-05 | 2017-08-10 | Thales | Method for calibrating a satellite radio navigation receiver |
CN107302357A (en) * | 2017-05-15 | 2017-10-27 | 中山大学 | A kind of joint bearing calibration of the linear frequency response mismatches of binary channels TIADC and non-linear mismatch |
CN106788436B (en) * | 2016-11-09 | 2020-05-22 | 上海芯圣电子股份有限公司 | Voltage coefficient calibration method applied to PIP capacitor array in SARADC |
-
2018
- 2018-01-03 CN CN201810005682.3A patent/CN108111169B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080122673A1 (en) * | 2006-11-29 | 2008-05-29 | Dyer Kenneth C | Gain and linearity matching for multi-channel time-interleaved pipelined ADC |
US20120326902A1 (en) * | 2009-06-26 | 2012-12-27 | Anthony Michael P | Background calibration of offsets in interleaved analog to digital converters |
CN103746695A (en) * | 2013-12-27 | 2014-04-23 | 电子科技大学 | Mismatch correction method of time-interleaved analog-to-digital converter inter-channel sampling time |
CN103825612A (en) * | 2014-01-17 | 2014-05-28 | 电子科技大学 | Sampling clock mismatch background correction method based on time-to-digital converter |
US20170227653A1 (en) * | 2016-02-05 | 2017-08-10 | Thales | Method for calibrating a satellite radio navigation receiver |
CN106788436B (en) * | 2016-11-09 | 2020-05-22 | 上海芯圣电子股份有限公司 | Voltage coefficient calibration method applied to PIP capacitor array in SARADC |
CN107302357A (en) * | 2017-05-15 | 2017-10-27 | 中山大学 | A kind of joint bearing calibration of the linear frequency response mismatches of binary channels TIADC and non-linear mismatch |
Non-Patent Citations (2)
Title |
---|
YINAN WANG: "Joint Blind Calibration for Mixed Mismatches in Two-Channel Time-Interleaved ADCs", 《IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS》 * |
洪亮: "交替并行模数转换器系统通道的失配误差", 《上海大学学报(自然科学版)》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109361389A (en) * | 2018-09-03 | 2019-02-19 | 北京新岸线移动多媒体技术有限公司 | A kind of timesharing interleaved analog-digital converter multichannel mismatch error calibration method and system |
CN109361389B (en) * | 2018-09-03 | 2022-09-16 | 北京新岸线移动多媒体技术有限公司 | Time-division alternative analog-to-digital converter multi-channel mismatch error calibration method and system |
CN110113049A (en) * | 2019-04-12 | 2019-08-09 | 中国人民解放军国防科技大学 | A Two-Channel TIADC Nonlinear Mismatch Adaptive Estimation Method |
CN110113049B (en) * | 2019-04-12 | 2022-09-09 | 中国人民解放军国防科技大学 | Double-channel TIADC nonlinear mismatch self-adaptive estimation method |
CN111988046A (en) * | 2020-08-19 | 2020-11-24 | 中国电子科技集团公司第三十六研究所 | Nonlinear system correction method and device and electronic equipment |
CN111988046B (en) * | 2020-08-19 | 2021-11-19 | 中国电子科技集团公司第三十六研究所 | Nonlinear system correction method and device and electronic equipment |
CN113517890A (en) * | 2021-07-21 | 2021-10-19 | 电子科技大学 | A Method for Extracting Sampling Time Mismatch of Time Interleaved ADC |
CN115941078A (en) * | 2022-10-31 | 2023-04-07 | 西安微电子技术研究所 | A receiver multi-channel consistency calibration method based on IF processing unit |
CN115941078B (en) * | 2022-10-31 | 2024-11-19 | 西安微电子技术研究所 | A receiver multi-channel consistency calibration method based on intermediate frequency processing unit |
CN115801009A (en) * | 2023-01-30 | 2023-03-14 | 上海芯炽科技集团有限公司 | Method for compensating time offset error of TIADC parallel acquisition system |
Also Published As
Publication number | Publication date |
---|---|
CN108111169B (en) | 2021-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108111169A (en) | A kind of joint bearing calibration of the linear mismatches of four-way TIADC and non-linear mismatch | |
CN107302357B (en) | Dual-channel TIADC linear frequency response mismatch and nonlinear mismatch joint correction method | |
CN108471313B (en) | A TIADC system calibration method based on digital-analog mixed signal | |
CN107294534B (en) | A Real-time Correction Method for Frequency Response Mismatch of Dual-Channel TIADC for Narrowband Signal Sampling | |
CN105024696B (en) | The calibrating installation and method of multi-channel parallel A/D conversion system sampling time error | |
CN103078640B (en) | A kind of RLS adaptive-filtering calibration steps for ADC | |
CN201957001U (en) | Pipeline analog-to-digital converter capable of carrying out background digital calibration | |
JP2014023164A (en) | Time interleaved adc mismatch correction method | |
CN113114243B (en) | TIADC system mismatch error correction method and system | |
CN106341132A (en) | Error blind correction method for time interleaved sampling ADC (Analog-to-Digital Converter) | |
CN103957009A (en) | Method for compensating for low-pass filter of compressed sampling system | |
CN102118167B (en) | Multiple-channel analog-digital converter | |
CN105720983A (en) | Error estimation method and device for time interleaving analog-digital conversion system | |
CN105141312A (en) | Digital background calibration algorithm for clock skew in N-channel time-interleaved analog-to-digital converter | |
CN106209103A (en) | TIADC gain based on spectrum analysis and the bearing calibration of time error | |
Vogel et al. | A review on low-complexity structures and algorithms for the correction of mismatch errors in time-interleaved ADCs | |
CN107359877B (en) | All-digital blind compensation method for ultra-wideband signal time-interleaved sampling ADC (analog to digital converter) | |
CN103812506A (en) | TIADC (Time-Interleaved Analog-to-Digital Converter) time mismatch parameter blind measuring method based on signal frequency domain sparsity | |
CN107302358B (en) | Nonlinear mismatch compensation method of four-channel TIADC | |
Ta et al. | Fully digital background calibration technique for channel mismatches in TIADCs | |
CN104410417B (en) | A kind of double sampled puppet splits separation structure fast digital calibration algorithm | |
CN117749177A (en) | A TI SAR ADC circuit with digital calibration and its calibration method | |
CN110855259A (en) | Digital compensation differential signal acquisition system circuit and compensation method | |
Thi et al. | Background calibration of multiple channel mismatches in time-interleaved ADCs | |
CN113065304B (en) | A Sliding Window-Based Loop Delay Estimation Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |